ECE 225
High-Speed Digital IC Design

Lecture 17
Semiconductor Memories, SRAM Design

Prof. Kaustav Banerjee
Electrical and Computer Engineering
E-mail: kaustav@ece.ucsb.edu
Semiconductor Memories
Memory Design...

- Increasing number of transistors in processors are devoted to cache memories….more than 60%, see ITRS for more details…..

- At the system level: high-performance workstations and desktops have several Gbytes of memory

- Audio (MP3), Video players (MPEG4) and GPUs require large amount of memory

- Can we store Memory using registers? ….yes but the area required will be excessive (need > 10 transistors/bit)

- Memory cells are therefore combined into large arrays, which minimizes the overhead caused by the peripheral circuits and increases storage density

- Memory design can be classified as high-performance, high density, low-power circuit design
Memory Classification

- Size
- Timing Parameters
- Function
- Access Pattern
Memory Size

- Depends on the level of abstraction
- **Bits**: (used by circuit designers) are equivalent to the number of individual cells (FFs or Registers) to store data
- **Bytes**: (used by chip designers) are groups of 8 or 9 bits or their multiples: Kbyte, Mbyte, Gbyte, Tbyte
- **Words**: (used by system designers) represent a basic computational entity. For example, a group of 32 bits represent a word in a computer that operates on 32 bit data
Timing Parameters

- **READ-Access Time**: time it takes to retrieve (read) from the memory. This is equal to the delay between the read request and the moment the data becomes available at the O/P.

- **WRITE-Access Time**: time elapsed between a write request and the final writing of the input data into the memory.

- **CYCLE Time**: minimum time required between successive reads or writes.
Note: Read and Write cycles do not necessarily have the same length but are considered to be equal for simplicity of system design.
Function

- **Read-Only Memory (ROM):**
 - encode the information into the circuit topology-by removing or adding transistors. The topology is hard wired and the data cannot be modified….can only be read.
 - They belong to the class of **Non-volatile** memories. Disconnection of the supply voltage does not result in a loss of the stored data.

- **Read-Write Memories (RWM):** called as **RAM** (Random-Access Memories).
 - **Static** (retains data if Vdd is retained): example SRAM
 - **Dynamic** (needs periodic refreshing): example DRAM
 - They use active circuitry to store information and belong to the class of **Volatile** memories.
Non-Volatile Read-Write (NVRWM):
- Recent Non-Volatile Memories can read and write---although write function is substantially slower
- Novel, cheap and dense: Fastest growing among semiconductor memories

Examples:
- EPROM: Electrically Programmable ROM
- E²PROM: Electrically Erasable and Programmable ROM
- Flash memory
Access Pattern

- **Random-Access (RAM):**
 - memory locations can be read or written in a random manner
 - Most ROMs and NVRWMs allow random access, but “RAM” is used for the RWMs only

- **Serial Access:**
 - Restricts the order of access. Results in faster access times, smaller area, or allows special functionality
 - Examples: (Video Memories)
 - FIFO (first-in first-out)
 - LIFO (last-in first-out)
 - Shift Register

- **Content-Addressable Memory (CAM):** (non-random access)
 - Also known as associative memory
 - Doesn’t use an address to locate the data, rather uses a word of data itself as input when input data matches a data word stored in memory array, a MATCH flag is raised
 - Important component of the cache architecture of most microprocessors
Semiconductor Memory Classification

<table>
<thead>
<tr>
<th>Read-Write Memory</th>
<th>Non-Volatile Read-Write Memory</th>
<th>Read-Only Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Access</td>
<td>Non-Random Access</td>
<td>EPROM</td>
</tr>
<tr>
<td>SRAM</td>
<td>FIFO</td>
<td>E²PROM</td>
</tr>
<tr>
<td>DRAM</td>
<td>LIFO</td>
<td>FLASH</td>
</tr>
<tr>
<td></td>
<td>Shift Register</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAM</td>
<td>Mask-Programmed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programmable (PROM)</td>
</tr>
</tbody>
</table>

Where does your brain's memory fit into these classification schemes?
More Classification

- **I/O Architecture:**
 - Based on the number of data input and output ports
 - Most memories use a single I/O port
 - **Multiport memories** offer higher bandwidth
 - Example: register files used in RISC processors
 - Adds more complexity to the design

- **Application:**
 - Embedded Memories in SoCs
 - For massive storage (multiples of Gbytes and beyond), more cost effective solutions are to use **magnetic tapes** and **optical disks**—they however, tend to be slower and provide limited access pattern
Semiconductor Memory Trends (up to the 90’s)

Memory Size as a function of time: x 4 every three years
Semiconductor Memory Trends
(recent)

From [Itoh01]
Trends in Memory Cell Area

From [Itoh01]
Memory Architecture: Decoders

Intuitive architecture for $N \times M$ memory
Too many select signals:
N words $\Rightarrow N$ select signals

Decoder reduces the number of select signals
$K = \log_2 N$
Decoder Basic

- Recall that a decoder is a combinational circuit with k inputs and at most 2^k outputs.
- Its characteristics property is that for every combination of input values only ONE output = 1 at the same time.
- Used to route input data to specific output line.

For example: for $a=b=c=0$, only $S0 = 1$.
Problem: consider ~1 million ($N=2^{20}$) 8-bit ($M=2^3$) words, ASPECT RATIO is very large!!! or HEIGHT >> WIDTH, cannot be implemented and will result in very slow design…..

Solution: Make vertical and horizontal dimensions of the same order of magnitude

Store multiple words in one row

Use a column decoder to select the correct word

$K = \log_2 N$

$2^L - K$

Peripheral circuitry is needed to recover the desired digital signal properties

OK for 64 Kbits to 256 Kbits beyond which speed degrades as length, C, and R of word/bit lines increase excessively

Lecture 17, ECE 225

Kaustav Banerjee
Hierarchical Memory Architecture

For Larger Memories

Advantages:
1. Shorter wires within blocks: faster access times
2. Block address activates only 1 block => power savings
32 blocks, each containing 128 Kbits

Each block is structured as an array of 1024 rows and 128 columns
Read-Write Memories (RAM)

- **STATIC (SRAM)**
 - Data stored as long as supply is applied
 - Large (6 transistors/cell)
 - Fast
 - Differential

- **DYNAMIC (DRAM)**
 - Periodic refresh required
 - Small (1-3 transistors/cell)
 - Slower
 - Single Ended
READ Operation:
Assume 1 is stored at Q
Assume both BLs are held high before the read.
Read cycle started by asserting the WL, enables PTs M5 and M6
During a correct read operation values stored in Q and Q are transferred to the bit lines leaving BL at its precharge value and by discharging BL through M1-M5
A “0” can be read in a similar manner (now BL gets discharged through M6 and M3)

Should be minimum sized to achieve high memory density.....

Major advantage of dual BL: Q is clamped to Vdd by BL and prevents any inadvertent toggling of the INV pair

SRAM cell should be as small as possible.....but reliable operation requires careful sizing...
Transistor sizing is needed to avoid writing 1 accidentally, i.e., voltage at Q becomes > V_m of Inv M3-M4

M1 must be stronger than M5

Q must stay low enough so that there is no substantial current through M3-M4 INV

As difference between BL and BLB builds up, the sense amp. is activated to accelerate the reading process

Value of the ripple voltage

$CR = \text{cell ratio} = \frac{M1}{M5}$
CMOS SRAM Analysis (Read)

Node voltage must stay below the V_{th} of M3: CR must be >1.2

Choose $M5$ to be minimum size and $M1 > M5$

$CR = \frac{W_1/L_1}{W_5/L_5}$
CMOS SRAM Analysis (Write)

Assume that \(Q = 1 \)

To write a 0 in the cell: set \(BL = 1 \) and \(BL = 0 \)

Similar to applying a reset pulse to an SR latch. FF will change state if sized properly

\(Q \) cannot be pulled high due to the sizing of \(M_5 \) and \(M_1 \) already done for reading

New value must be written through \(M_6 \)

\[
PR = \frac{M_4}{M_6}
\]

Lecture 17, ECE 225

Kaustav Banerjee
CMOS SRAM Analysis (Write)

Dependence of V_Q on Pull-up Ratio.....lower PR gives lower V_Q

PR between the PMOS (M4) pull-up and the NMOS (M6) Pass Transistor must be < 1.8 to keep $V_{tn} < 0.4$ V
Performance of SRAM

- Read operation is more critical. It requires discharging of the large bit line capacitance through the stack of 2 transistors (M1-M5).
- Write time is dominated by the propagation delay of the cross-coupled inverter pair, since the drivers that set BL and BL can be large.
- Sense amplifiers used to accelerate Read time…as the difference between BL and BL builds up, sense amplifier is activated, and it discharges one of the bit lines.
Sense Amp Operation

The diagram illustrates the operation of a sense amplifier. The axes are labeled as follows:

- Vertical axis: V_{BL}
- Horizontal axis: t (time)
- Points:
 - V_{PRE}
 - $DV(1)$
 - $V(1)$
 - $V(0)$

Key points:
- Sense amp activated
- Word line activated

Equation:

$V = V(1)$

This represents the voltage change $DV(1)$ when the sense amp is activated.
6T-SRAM — Layout

6T SRAM takes significant area...the two PMOS need n-wells
Resistive-load (4T) SRAM Cell

Reduce area using resistive load inverters...simplifies writing

\[R_L \text{ must maintain the state of the cell, that is compensate for the leakage currents (~10}^{-15}A) \]

\[I_{load} \text{ must be two orders of magnitude larger or > 10}^{-13}A \text{ to compensate for leakage—puts an upper limit on } R_L \]

Static power dissipation -- Want \(R_L \) large (use undoped poly)

Bit lines precharged to \(V_{DD} \) to address \(t_p \) problem

Replacing the PMOSs by resistors reduces wiring

SRAM cell size reduced by 1/3
SRAM Characteristics

Instead of PMOS devices, use parasitic devices on top of cell structure using thin-film transistors (TFTs).

However, embedded SRAM cells---used in processor caches, employ 6T cells.
The SNM (hold margin) can be estimated graphically by the length of the side of the square fitted between the VTCs and having the longest diagonal.

As noise increases at the two nodes above, the reverse VTC for INV1 moves upward, while the VTC for INV2 moves to the left (worst case)

Once they both move by the SNM value, the curves meet at only two points…..at A’ and B’…… and any further noise flips the data.
Static Noise Margin (SNM)

- **Hold Margin:** How strongly the node storing ‘1’ and the node storing ‘0’ are coupled to V_{DD} and V_{SS} respectively.

- **Read Margin:** The difference between V_{TRIP} and V_{READ} (max. voltage at Q)

- **Write Margin:** The maximum voltage on a bit-line that allows writing to the cell, while the other bit-line is at V_{DD}. (not determined by the butterfly curve)
SNM Dependencies

- Dependence on V_{DD}: SNM for a bitcell with ideal VTCs is still limited to $V_{DD}/2$
- Dependence on sizing

Here, Cell ratio = size of PD device over size of access device
SNM Dependencies

- Dependence on random doping variation (V_{TH} mismatch)
- Dependence on global variation
The idea is to add a 4T buffer at one side:

- **6T bitcell**
- **4T buffer**

Thus, the worst-case SNM for this bitcell is the Hold SNM related to M1 to M6, which is the same as the 6T Hold SNM for same sized M1 to M6.

M7 to M10 to remove the problem of Read SNM by buffering the stored data during a read access.
for iso-VDD, the 10T cell without M10 (a 9T cell) has 50% higher leakage current than the 6T, but adding M10 drops the overhead to 16%.
Leakage Power Savings with 10T Bitcell

- 6T memories in 65nm usually at 0.9V or greater (lowest reported is 0.7V)
- 10T bitcell allows scaling to lower voltages
- Lower voltage operation reduces leakage power dramatically for unaccessed cells

[1]
16 bit cells on bitline is best can hope for standard 6T
BL leakage limits the number of cells on a BL. The 10T bitcell can sustain 256 cells/BL at 0.3V compared to 16 without M10 (6T or 9T). Higher level of integration allowed by the 10T cell reduces the peripheral circuits and slightly mitigates the bitcell area overhead[1].
To achieve write in sub-threshold, the virtual supply (VVDD) to the selected cells floats during the write operation.
A virtual supply voltage (VVDD) that floats during write allows robust write operation into sub-VT (mono-stable butterfly curve). VVDD stops floating while WL_WR remains asserted to restore the ‘1’ value to full VDD[1].