The Zero-Error Capacity of Compound Channels

Jayanth Nayak & Kenneth Rose
University of California, Santa Barbara
Outline

• Preliminaries
• Problem definition
• Capacity
 – Neither side has side-information
 – Encoder has side-information
 – Decoder has side-information
• Comparison with vanishing-error case
Zero-Error vs. Vanishing-Error

• Vanishing-error Case
 – P_e tends to zero as block length tends to infinity.

• Zero-error case
 – P_e zero at all block lengths
 – Tools: graph theory and combinatorics
Discrete Memoryless Channel

Channel transition probability $p(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$

$F(x) = \{ y \in \mathcal{Y} : p(y|x) > 0 \}$

$G_X = (\mathcal{X}, E_X)$ Characteristic graph of the channel

$(x_1, x_2) \in E_X \iff F(x_1) \cap F(x_2) = \emptyset$

Undirected

Example

\[\mathcal{X} \quad \mathcal{Y} \]

\[1 \quad 2 \quad 3 \]

\[a \quad b \quad c \quad d \quad e \]

\[G_X \]
Channel Code

• Code ⇒ symbols pair-wise connected = clique
• Example (cont.)
 – Scalar code: \{1, 3\}
• 1-use capacity = \(\log_2 \omega(G_X)\) bits
 – \(\omega(G_X)\) is the clique number
Channel Code

- \(n \) uses of the channel
 - Fan-out set is Cartesian product of fan-out sets at each coordinate

\[
\begin{array}{cccc}
 x_1^1 & x_2^1 & \cdots & x_i^1 & \cdots & x_n^1 \\
 x_1^2 & x_2^2 & \cdots & x_i^2 & \cdots & x_n^2 \\
\end{array}
\]

- \(N(G_x, n) \) = size of largest pairwise connected set
Channel Code

• Zero error capacity (Shannon ’56)

\[C^0 = \lim_{n \to \infty} \frac{1}{n} \log_2 \left[N(G_X, n) \right] \text{ bits/channel use} \]

• Depends only on characteristic graph
 – Shannon capacity of a graph \(G_X \)
Other Graph Capacities

• Shannon capacity of a set of graphs: $C(\mathcal{G})$
 – Asymptotic size of set of sequences connected with respect to every graph from \mathcal{G}
 – Defined by Cohen et al. ‘88

• Directed graphs

\[\begin{align*}
x_1^1 & | x_2^1 \\
& \downarrow \\
x_1^2 & | x_2^2 \\
\end{align*} \quad \begin{align*}
\cdots & \quad \begin{align*}
x_i^1 & | x_j^1 \\
& \downarrow \\
x_i^2 & | x_j^2 \\
\cdots & \quad \begin{align*}
x_n^1 & | x_n^2 \\
\end{align*} \quad \begin{align*}
\quad \text{Connected}
\end{align*}
\]
Other Graph Capacities

• Sperner capacity of a graph $\Sigma(G)$
 – largest pairwise connected set
• $\Sigma(G)$: connected with respect to every graph
• Sperner capacities defined by Gargano et al. ’94
 – Motivated by extremal set theory
The Compound Channel

\[\mathcal{C} = \{ p(y|x, s) : x \in \mathcal{X}, y \in \mathcal{Y}, s \in \mathcal{S} \} \]

- Once chosen, DMC remains constant throughout the transmission.
Capacity

• Conventional Case:
 – Dobrushin ‘59, Wolfowitz ‘60, Breiman ‘59

• Zero-Error Case:
 – Cohen et al. ‘88, Gargano et al. ‘94
 – Capacity expression accurate only when decoder is informed.
Characteristic Set of Graphs

- Fan-out set $\bigcup_{s \in S} F_s(x)$

 $\left(\bigcup_{s \in S} F_s(x) \right) \cap \left(\bigcup_{s' \in S} F_{s'}(x') \right) = \bigcup_{s \in S} \bigcup_{s' \in S} F_s(x) \cap F_{s'}(x')$

- $G(\mathcal{C}) = \{ G_{ss'}, \forall s, s' \in S \}$
 - Vertex set \mathcal{X}
 - $x \rightarrow x'$ in $G_{ss'} \iff F_s(x) \cap F_{s'}(x') = \emptyset$
 - Directed graph
Capacity of Compound Channel

- Every code is a pairwise connected set with respect to $\mathcal{G}(\mathcal{C})$ and vice versa

$$C^0(\mathcal{C}) = \sum(\mathcal{G}(\mathcal{C}))$$
Encoder Informed of S

$$C_{enc}^0(\mathcal{C}) = \begin{cases}
\min_{s \in S} C(G_s) & \text{if } C^0(\mathcal{C}) > 0 \\
0 & \text{if } C^0(\mathcal{C}) = 0
\end{cases}$$

- If $C^0(\mathcal{C}) > 0$, encoder sends side-information to decoder.
- Needs constant number of channel uses.
- $C^0(\mathcal{C}) = 0$ case:
 - $\mathcal{G}(\mathcal{C})$ contains an edge-free graph
Decoder Informed of S

- Decoder can change with channel
 \[F_s(x) \cap F_s(x') = \emptyset, \forall s \in S \]
- Therefore
 \[C_{dec}^0 (\mathcal{C}) = C(\mathcal{G}_S) \]
 \[\mathcal{G}_S = \{ G_s, s \in S \} \]
Conventional vs. Zero-Error

• Conventional Capacities
 \[
 \min_s C_s > 0 \Rightarrow C(\mathcal{C}) > 0
 \]
 \[
 C(\mathcal{C}) = C_{dec}(\mathcal{C}) \leq C_{enc}(\mathcal{C})
 \]

• Zero-Error Capacities
 \[
 \min_s C(G_s) > 0 \text{ but } C^0(\mathcal{C}) = 0
 \]
 \[
 C^0(\mathcal{C}) \leq C^0_{dec}(\mathcal{C}); C^0(\mathcal{C}) \leq C^0_{enc}(\mathcal{C})
 \]

• Reason: Decoder can identify channel with high probability
Thank you