Analog I/O

ECE 153B
Sensor & Peripheral Interface Design
Winter 2016
Introduction

- Anytime we need to monitor or control analog signals with a digital system, we require analog-to-digital (ADC) and digital-to-analog (DAC) conversion

- Examples include:
 - Process control
 - Digital audio and video
 - Interfacing to any type of continuous (vs. discrete) voltage or current
Op - Amps (Operational Amplifiers)

- Op – Amps are the basic building blocks in analog input and output devices
 - Current-to-voltage converters, voltage amplifiers, buffers, active filters, sample-and-holds, etc.

- Characteristics: high gain, two analog signal inputs (inverting and non-inverting), and one or two analog signal outputs

- Often, two DC supply voltages of opposite polarity are required
The Ideal Op – Amp

- Infinite input impedance
 - no current flows into input terminals

- Extremely high open loop gain (A_{OL})
 - typically 10^4 to 10^6

- $V_o = A_{OL} (V_+ - V_-)$
 - differential amplifier
Common Op - Amp Circuits

- Because the open loop gain of an op-amp is so high, we generally employ “negative feedback” in circuit design.

- The closed loop gain is (to a first approximation) dictated entirely by the external feedback components.
 - Makes the design of linear circuits using op amps relatively straightforward.
 - Analysis of transfer characteristics accomplished using virtual ground analysis.
Virtual Ground Analysis - Requirements

- A first approximation of the operation of an op amp circuit can be done via virtual ground analysis if:
 - The op amp circuit employs negative feedback
 - Output to V_-
 - The op amp has a high open loop gain
 - The output of the op amp is operating in the linear range
 - This restricts the closed loop gain and the input signal range
Virtual Ground Analysis - Assumptions

- Virtual ground analysis allows the following assumptions:
 - $V^+ = V^-$
 - Current (I) into either input terminal = 0
 - $I^+ = I^- = 0$

- This allows the elementary circuit laws to be used in analyzing these circuits
 - i.e., Ohm’s and Kirchoff’s
Virtual Ground Analysis

Inverting Voltage Amplifier

- We’ll start with the inverting voltage amplifier
 - This is probably the most common application of an op amp
Virtual Ground Analysis
Inverting Voltage Amplifier

Based on the virtual ground analysis assumptions we know that:
- The input terminals, $V_+ = V_- = GND = 0 \, V$

Since we know that V_I is dropped across R_1 (to GND), we also know that:
- the current through R_1 is $I = \frac{V_I}{R_1}$.
Virtual Ground Analysis
Inverting Voltage Amplifier

- Now we look at the second virtual ground analysis assumption:
 - I_- (the current into the inverting terminal of the op amp) = 0

- Since the current produced by the voltage drop across R_1 has to go somewhere (Kirchoff’s current law), it goes to V_o through R_F
 - The output voltage would then be the current through R_F (determined above to be V_I / R_1) times its resistance:

 $$V_o = - \left(\frac{V_I}{R_1} \right) R_F = - \left(\frac{R_F}{R_1} \right) V_I$$
Virtual Ground Analysis
Inverting Voltage Amplifier

- The sign inversion is a result of
 - \(V^+ = V^- = \text{GND} = 0 \text{ V} \)

- If \(V_I \) is positive, current flows into the node at \(V^- \) (but not into the \(V^- \) terminal itself), then into \(R_F \) and finally to \(V_o \)
 - Since \(V^- \) is at \(\text{GND} \), \(V_o \) must be a negative voltage assuming conventional current flow (+ to -)

- Conversely, if \(V_I \) is negative
 - Current flows out of the node at \(V^- \) and hence \(V_o \) must be a positive voltage
Virtual Ground Analysis
Inverting Voltage Amplifier

\[V_o = -\left(\frac{V_I}{R_1}\right) R_F = -\left(\frac{R_F}{R_1}\right) V_I \]
Common Op – Amp Circuits

(a) CURRENT TO VOLTAGE CONVERTER

(b) UNITY GAIN BUFFER

(c) INVERTING VOLTAGE AMPLIFIER

(d) INVERTING SUMMING AMPLIFIER

(e) NONINVERTING AMPLIFIER

(f) INTEGRATOR
Digital-to-Analog Converters (DACs)

- DAC accepts an n-bit parallel digital word as its input and provides an analog current or voltage as its output
 - input can be signed or unsigned positional binary number

- Several types of DAC
 - different topologies, different speeds, different accuracies, different output types (voltage vs. current)
Weighted Resistors into a Summing Junction – DAC Type #1
Weighted Resistors into Summing Junction DAC

- Fast, low precision technique
 - Precision of resistors is critical to overall precision
 - Smaller resistors (more significant bits) require proportionally higher precision resistors (tighter tolerance)
 - Only good for a small number of bits as it becomes impractical to attain the required resistor tolerances

- Switches shown on schematic are actually transistors connected to incoming digital word

- B1 is most significant bit
Weighted Resistors Into Summing Junction DAC

- If input bit is 1, the switch is closed and the current is directed to the summing junction of the op amp
 - Conversely if input bit = 0, the current is directed to ground

\[
V_{OUT} = -I_TR
\]

\[
= -\left(\frac{V_{REF}B_1}{2R} + \frac{V_{REF}B_2}{4R} + \frac{V_{REF}B_3}{8R}\right)R
\]

\[
= -V_{REF}\left(\frac{B_1}{2} + \frac{B_2}{4} + \frac{B_3}{8}\right)
\]

\[
= -V_{REF}(B_12^{-1} + B_22^{-2} + B_32^{-3})
\]
Weighted Resistors into Summing Junction DAC

- If \(V_{\text{ref}} \) is 10 volts, the maximum output will be
 - \(10V \times \frac{7}{8} = -8.75 \text{ V} \)
 - Could add inverting amplifier or DC offset to get positive results

- Step size is full scale value \((V_{\text{ref}}) \) divided by \(2^n \) (where \(n \) is the number of bits)
 - Step size for this example is \(10 / 8 = 1.25 \text{ V} \)
 - This is referred to as the “resolution” of the DAC
 - Resolution is the size of the output step associated with a change of 1 in the least significant bit at the input
R–2R Ladder – DAC Type #2
R–2R Ladder DAC

- Requires only 2 resistor values
 - Solves problem of absolute resistor precision we saw in weighted resistor summing junction DAC
 - Resistors in R–2R ladder DAC have to be precisely matched, but their absolute resistance is not important

- Current into summing junction is the same as in weighted resistor summing junction DAC
R–2R Ladder DAC

- Scale and step size are also the same as scaled resistor DAC (for 3 - bit, 10 V case)

- However, because resistor precision is relative for this design, the DAC can be scaled to many more bits
 - Additional bits provide greater resolution
 - For example:
 - 8 - bit, 10V R–2R ladder DAC provides a step size (resolution) of $10 \text{ V} / 2^8 = 39.06 \text{ mV}$
Scaled Current Sources - DAC Type #3

- DAC0802, for example
Scaled Current Sources DAC

- Generic View

![Diagram of Scaled Current Sources DAC](image)
Scaled Current Sources DAC

- Similar Approach to R–2R Ladder DAC

- Bipolar Junction Transistors (BJTs) eliminate the number of floating nodes in the circuit
 - Reduces parasitic capacitance
 - Increases performance

- BJT emitters are sized to be proportional to the desired emitter current
 - 1x, 2x, 4x, etc.
DAC Interfacing Methods

- Store outgoing digital bit pattern in an external register (outside the processor) and apply the register contents continuously to the DAC inputs
 - Only necessary when DAC used has no internal latches (many do)

- Always some analog details to deal with ...
 - Reference voltage or current
 - Full-scale setting
 - External passive components

- And (as always), when in doubt: read the data sheet
Multiplying DACs (a.k.a. “MDACs”)

- By using the full scale adjust (reference voltage) as an input on some DACs, you can create a “multiplying DAC” or simply an “MDAC”
 - Output = input (reference) voltage * digital code

- Multiplying DACs are often used to implement digital gain control in microprocessor and embedded computer systems
Range of DAC Output

- Terminology
 - Unipolar: output all positive (or all negative)
 - i.e. there is a single power supply
 - Bipolar: output goes both positive and negative
 - signed
 - requires two power supplies

- External op amp circuits can also be used
 - to move range of output voltages up or down
 - to buffer or amplify output
Analog-to-Digital Converters (ADCs)

- Analog-to-Digital converters perform two basic operations
 - Quantization
 - mapping of a continuous signal into one of several possible ranges
 - Coding
 - assignment of a unique binary code to each discrete range
 - Binary, BCD, sign magnitude, 2’s complement, 1’s complement, offset binary, etc.

- Like DACs, there are several types
The Comparator Component

- Fundamental component of any ADC
 - essentially an open loop op amp
 - functions as a 1-bit ADC
 - V_i is input, V_T is threshold voltage

![Comparator Diagram](image)

- $V_i > V_T : V_o = \text{LOGIC 1}$
- $V_i < V_T : V_o = \text{LOGIC 0}$

(a) 5 V

(b) V_o vs $(V_i - V_T)$
Parallel or “Flash” ADC
Parallel or “Flash” ADC

- Input signal is fed to n comparators in parallel

- Each comparator attached to n equally-spaced reference voltages
 - generated by a resistor ladder

- Priority encoder generates a $\log_2 n$ output code
Parallel or “Flash” ADC

- Flash is fastest ADC (parallel)
 - up to ~300 Msps ... perhaps even faster
 - small number of bits
 - usually < 10 due to cost
 - internal componentry grows as 2^n

- Because of high speed, a sample and hold (S/H) circuit is not necessary
 - S/H is necessary with slower converters
Sample and Hold Circuits

- Needed when analog signal changes faster than the conversion rate of ADC
 - Conversion must take place before the analog input changes ± ½ lsb or result is inaccurate
Successive Approximation ADC

- Generic view

![Diagram of Successive Approximation ADC](image.png)
Successive Approximation ADC

- MCP3002 (from ECE 153B lab experiment)
 - 10-bit conversion
 - 2 input channels
 - On-chip sample and hold
 - Serial Interface
Successive Approximation ADC

- Use a DAC and binary search to find correct conversion of n bits after n conversion steps
 - Slower than flash ADC due to n steps needed for n bits of resolution

- Inputs
 - Vin: voltage to be converted
 - Sample and hold often needed
 - Usually (as in MCP3002) S/H is integrated within the ADC
 - Start: external command to begin conversion
 - Clock: digital clock oscillator
Successive Approximation ADC

- **Outputs**
 - EOC: End of Conversion
 - Data out
 - Data [n-1:0], if parallel output
 - Dout, if serial

- **Conversion (sample) time**
 - 1 µs to 50 µs

- **Accuracy**
 - 8 to 12 bits
Successive Approximation ADC

- **Cost**
 - $5 - $400
 - Cost is based on speed and accuracy

- **Potential issues**
 - unipolar vs. bipolar
 - range
 - sample and hold requirements
 - input impedance
Dual Slope Integrating ADC

- also known as Delta – Sigma (ΔΣ) ADC

![Diagram of Dual Slope Integrating ADC](image-url)
Dual Slope Integrating ADC

- Strategy is to cancel the input current with a switched current source
 - Input drives an integrator whose output is compared with any fixed voltage (e.g., ground)
 - Depending on the comparator’s output, fixed length pulses of current are switched into the summing junction of the integrator at each clock transition
 - Maintains zero average current into summing junction
Dual Slope Integrating ADC

- A counter keeps track of the number of pulses switched to the summing junction for a given number of clocks (e.g., 4096 for a 12-bit ADC)
 - Count is the output (it’s proportional to input level)

- Hardware integrating ADC are typically low-speed devices

- They are also capable of high accuracy at low cost due to minimal analog circuitry