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Summary—In a chemically uniform semiconductor with o constant
impurity concentration and without elastic strains, the forbidden band
has o constant width, and there are no internal electric fields, A non-
homogeneous impurilty distribution introduces electric fields, while non-
uniform elagtic strains introduce a nonuniform bandwidth, If the semi-’
conductor ia an alloy, such as a germanium—silicon alloy, a change in the
alloy composition also changes the bandwidih.

© A change in bandwidth means gradients of the band edges which are
different for the conduction and the valence bands. These gradients act
upon the electron and hole movement ag though they were electric fields,
but, because the two glopes are different, these “quasi-electric” fields are
not the same for electrons and holes, contrary to the case of real electric

elds. : '
# In dddition, a type of ‘“quasi-magnetic’” field 18 produced when an
inhomogeneity produces o shift of the location within the Brillowin zone
of the energy minimum of the band. These quasi-magnetic fields not only
are different for electrons and holes but they are also different for the
electrons (holes) inside the various emergy minima of that band.

INHOMOGENEOUS SEMICONDUCTORS

in which the crystal potential is not perfectly periodic but where,

instead, the shape of the atomic potential changes gradually
from cell to cell if one proceeds through the crystal, as illustrated in
Figure 1. It iz this type of inhomogeneity to which we refer in this
paper when we speak of “inhomogeneous” semiconductors. An example
of an inhomogenecus semiconductor in thiz sense iz a semiconductor
" under nonuniform elastical strains. Another example is an alloy of
several semiconductors such that the composition of the alloy changes
gradually throughout the crystal (e.g., a nonuniform germanium-
silicon alloy). Actually, the atomic potential in such an alloy does not
vary continuously from one cell to the next, but rather in a discon-
tinuous and random fashion. In first-order considerations, however,
it is permissible to neglect those statistical fluctuations by treating a

THIS paper deals with the electron movement in semiconductors

* This paper was presented at the Symposium on “The Role of Solid
State Phenomena in Electric Circuits,” in New York, April 24, 1857, and
is included in the records of this symposium.
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“local average” of the potential, which may be formed by averaging
the actual potential over a certain number of cells adjoining the cell
under consideration. In a nonuniform alloy this local average will
then represent a slowly varying atomic potential as in the case of
elastical deformation.

It is believed that nonuniform semiconductors in the sense used
here are much more common than would be indicated by these two
examples. Lattice discontinuities, like surfaces, are believed to lead
to potential defermations in their neighborhood. Polarizations of the
electronic orbits due to electric fields or due to high densities of injected
carriers also belong in this class, and there may be other types. In
many cases the inhomogeneity effects may be small compared to other
effects so that they are overlocked in experiments not designed to show

YV

Fig. 1—An example of a nonuniform crystal potential.

them up. The purpose of this paper is to outline the general effects
upon the electron movement of inhomogeneous potentials, regardiess
of their origin, and of the strength of the effects compared with other
effects that might be present simultaneously.

QUASI-ELECTRIC FIELDS

In a nonuniform semiconductor one has essentially a different kind
of semiconductor in every portion of the crystal. Different semicon-
ductors, in general, have different widths of the forbidden energy band,
80 the nonuniform semiconductor leads to the concept of a nonuniform
band gap. The question immediately arises as to whether this is a
legitimate concept, i.e., whether the following three conditions are
satisfied:

(1) A local density of states can still be defined, and the
distribution of the states over the various energy levels can '
be described by sharp band edges and by effective mass tensors.

(2) The band gap and the mass tensors at each point are
the same, as in a homogeneous crystal which has the same
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atomic potential throughout as that which the inhomogeneous
crystal has at the given point.

(3) The dynamics of the electron are still governed by
Newton’s Law, using as the mass of the electron the above
effective mass and as the force upon the electron the slope of
the edge of that band to which the electron belongs.
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Fig. 2—(a): Effect of a true electric field; (b) andr {c) : Effects of
quagi-electrie fields. :

The third of these conditions is the most interesting one. In a
homogeneous semiconductor the band slope under an external field
is the same for all bands and, as a result, the forces upon electrons
and holes are equal in magnitude and opposite in direction. This is
not the case with a varying band gap. If the concept of a varying
band gap is legitimate, the forces would noe longer be equal and
opposite. It should, for example, be possible to have a force acting
only upon one kind of the carriers, or to have a forece which acts
in the same direction for both (Figure 2). Electrical forces in
uniform crystals can never do this. This is why we call these forces
“quasi-electric.”” They present a new degree of freedom for the
device designer to enable him to obtain effects with the quasi-electric
fields that are basically impossible to obtain with ordinary eircuit
means involving only “real” electric flelds. Two simple examples are
given in the next section.
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The principal question as to the correctness of the above three
conditions and, therefore, the reality of the quasi-electric fields, has
been answered in the affirmative; Bardeen and Shockley’ have shown
in their treatment of the electron-lattice scattering via deformation
potentials that the concept of a variable band gap is legitimate in the
above sense, provided the nonuniformity arises from nonuniform elas-
tical deformation. The present author® has extended their proof and
has shown that the concept holds true regardless of the shape or the
origin of the variation of the atomic potential, provided this variation
is a sufficiently gradual cone.

Mathematically, this result can be expressed as an extension of
the Wannier—-Slater® Theorem: Assume that E:(;) is the energy of
an electron with the wave vector I_c: which moves in an exactly periodie
potential of such a shape as exists in the monuniform crystal at the
pesition 7 inside the crystal. Then an operator & _; < ("5) can be derived
from E:(;) by replacing h}; with the operator —i%v. The behavior of
the electron can then be described by a Wannier—Slater wave equation:

E_iv (D®E) =Fo (@), (1)

where @(;) is the familiar Wannier-Slater amplitude function for the
electron.t

In a semiconductor with a single energy minimum at & —0,

e h2k? -
Ey(z) =——+ Eg(x}, (2)
2m*

where Ep (;) is the position-dependent? band edge. This leads to

1J. Bardeen and W. Shockley, “Deformation Potentials and Mobilities
in Non-Polar Crystals,” Phys. Rev., Vol, 80, p. T2, October, 1950.

2 H. Kroemer, “Band Structure of Semiconductor Alloys with Locally
Varying Composition,” Bull. Amer. Phys. Soe,, Vol. 1, p. 143, March, 1957,

3 J. C. 8later, “Electrons in Perturbed Periodic Lattices,” Phys. Rev.,
Vol. 76, p. 1592, December, 1949,

t Equation (1) is identical with Equation (6) in Slater’s paper. The
—
operator —i¥7 in E_;; operates only upon &(x), not upon x inside
e d
E_iv ().

1 It is now irrelevant whether this position dependence is due to external
electric fields or changes in the band gap. Aectually, the two effects cannot
be separated frem each other. Eqguation (3), therefore, covers as well the
older caze of an electric perturbation in a truly periodic potential.
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h2 - - b 4
|:_ Ve +-E3(m)] & (x) =E®(x), (3)
2m*

the familiar wave equation for an electron in a potential, Ep (;-). Since
the position dependence of EB(;) will be different, in a nonuniform
semiconductor, for- the conduction band and for the valence band,

Equation (8) represents the mathematical expression for the existence
of the quasi-electric fields.

Two EXAMPLES

In this section the potential usefulness of the quasi-electric fields
will be illustrated by two examples of how transistor performance can
be improved by the incorporation of quasi-electric fields.t
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Fig. 3—Wide-gap emitter.

The Wide-Gap Emitter

Figure 3 shows a forward biased p-n junction where the p side
has a wider band gap than the n side. In the transition region we then
have a guasi-electric field opposing the hole flow to the right, and
another gquasi-electric field opposing the electron flow to the left. The
electron field is stronger. This means that such a junection has a higher
ratio of hole-to-electron current than a constant-gap junction with the
same impurity distribution and the same mobilities. Used as an emitter
in a p-n-p transistor, the transistor has a higher emitter efficiency
and a higher current-amplification factor than an otherwise identieal
constant-gap transistor. This higher emitter efficiency may be utilized
in either one of two ways:

1H, Ki‘oemer, “The Theory of Diffusion and Drift Transistors, Part
1IT—Dimensional Equations,” Archiv der Elektrischen Ubertragung, Vol. 8,
p. 499, November, 1954. )
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(1) In low-frequency transistors the high emitter effi-
ciency results in a reduction of the well-known and undesirable
falloff of the eurrent amplification factor with increasing
current. '

(2) In high-frequency transistors the intrinsically higher
emitter efficiency of a wide-gap emitter may be utilized to
decrease the doping of the emitter region without adversely
affecting the current amplification factor. Such a decrease
in doping results in a decrease of the emitter capacitance,
which is one of the most seriously frequency-limiting quanti-
ties of modern high-frequency transistors.

EMITTER BASE COLLECTOR

{a) CONSTANT-GAFP DRIFT TRANSISTOR

(b} VARIABLE ~GAP  DRIFT TRANSISTOR

Fig, 4—Two drift-transistor types.

The wide-gap emitter will be described in more detail elsewhere.

Graded-Gap Drift Transistor

In an ordinary drift transistor the drift field is generated by
inhomogeneous doping in the base region (Figure 4a). Figure 4b
shows a structure in which the guasi-electric field due to a decreasing
band gap is used as a drift field. Such a structure has two advantages:!

1. Stronger drift fields are obtainable than by inhomoge-

neous doping.

5 H. Kroemer, “Theory of a Wide-Gap Emitter for Transistors.” To
be published.
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2. In an ordinary drift transistor a neutralizing electron
accompanies each hole that travels through the base region.
While the hole is aided by the drift field, the electron is op-
posed by it. It can be shown?! that this effect wipes out the
advantage of the drift field at high current densities. In a
graded-base drift transistor, as shown in Figure 4b, there is
no guasi-electrie field opposing the electron flow, and the drift
effect persists to much higher current densities.

QUASI-MAGNETIC FIELDS

Equation (3) was derived under the assumption of Equation (2),
i.e., of spherical energy surfaces around ¥ =40. In many semiconduc-
tors known today this assumption is not fulfilled; instead, there are
several nonspherical minima located at symmetrical points in k-space.
If one of them is centered around, say, I? = Es),, then, in the neighbor-
hood of this minimum one has, instead of Equation (2),

h2

EL(2) = (k— k)2 + Ep (), (4a)

2m

where 1/m* i8 now a tensor. If there iz a minimum at Ezl_c)o there

will also be an identical minimum at k = — IZ,:
— h? — - -
E (x) = (k+ k)2 + Ep(x). (4b)
2m*

By substituting Equations (4a) and (4b) into Equation (1}, one
obtains;

2 . . |
1: (-1'V—k0)2+EB(w):| $=Ed (5a)
2m*
#2 . .
l: (—iv + k)2 + EB(SL')] =K, (5b)
2m

These are exactly the equations for an electron moving under the
influence of a vector potential,

> N
A=+x—%k,. (6)
€
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In a uniform semiconductor, ?s: is constant and the vector potential
has no physical meaning and can be transformed out of the equation
by a simple gauge transformation. In a nonuniform gemiconductor,
however, io may vary with position. In general, then, curl Z will no
longer vanish. This means that the electron movement is as though
a magnetic field

- N he 5
B=curlA==*=——-curlk, (7
e

were present. This is the guasi-magnetic field.

Thus far this result is a purely mathematical one, But the existence
and the physical origin of the quasi-magnetic field can actually be
understood qualitatively without resorting to the above mathematical
derivation.

For simplicity we assume Ey to be constant, i.e., no quasi-electric
fields are present. We wish to show, then, in a special example that
the electron moves in an orbit if curl }_EO%O. We assume that the
crystal has a primitive cubic structure and that it is inhomogeneocus
along one of the [100] directions, which direction we call the x-direc-
tion. We further assume that the energy minima lie along the [100]
directions of the k-space and that the minima move away from k=20
if one proceeds in the positive-v direction. The k-space, then, is shown
by Figures 5a and 5b. In such a case the direction of curl A for the
six ellipsoids is shown in Figure 5c. Only for the two ellipsoids on
the k, axis is curl A =01 The four other ellipsoids should see finite
quasi-magnetic fields of the same magnitude, but of different directions.

An electron near the %, minimum will be studied in more detail.
Figure 6 shows the position of this minimum in k-space for three
different positions inside the crystal, £ =0 and ===+ Az. Assume
~ now that an electron is located at x == 0 with a k-vector co_rresponding
to the point “A" in the diagram. Since the velocity, 3, of the electron
is proportional to the gradient of the energy in k-space, the electron
in that moment moves exactly in plus-z direction. After the time
interval Ax/v the electron has arrived at x — 4 Az, still having the
same absolute % vector. But since the ellipsoid itself has shifted, the

position of the electron with respect to _Ia;: ﬁo has changed. The
gradient of the energy now has a component in the minus-k, direction.

t For these two ellipsoids, div Z%O, contrary to ordinary vector
potentials.
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Correspondingly, the velocity has a component in the minus-y direction,
i.e., the electron is constantly deflected towards the right of its instan-
taneous direction of motion.

An electron at x =10 and at point “B” in k-space has an initial
velocity entirely in the plus-y direction. It therefore does not move
into a region of different atomic potential. Nevertheless it, too, will
be deflected towards the right. This is due to the fact that the distance
of point “B” in k-space from }a’,) will vary for different values of x, and
therefore the energy will change with x for fixed 75)-_“.1?3. As shown
in the bottom drawing of Figure 6, the energy decreases with increas-
ing x. This gradient of the energy acts as a force upon the electron

o d=—] o

A 2
Lo —— - L_E__
i i S ﬂ!

© A
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™

Fig. 5—(a) and (b): Examples of the location of the energy ellipsoids in
the Brillouin zone at different positions inside the erystal; (c): Direction
of the quasi-magnetic field for the different ellipsoids.

and also deflects it to its right.

For points intermediate between “A” and “B” on the energy ellip-
soid, both of the two described effects are present and deflect the
electron to the right. The net result is in all cases that the electron
circles in k-space about %= .1;: along a path of constant energy, as in
the presence of a true magnetic field.

The magnitude of the quasi-magnetic field is given by Equation
{7). We assume a favorable case, namely that l_c),, wanders from the
center of the Rrillouin zone to its edge, and that the transition is
rather steep, namely only about 2 X 10¢ atomic distances. For a lattice
constant of 5 X 10—#2 centimeter, then, B = 625 gausses.
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This is not a negligible field. Of course, in practical cases the

change of E, may be smaller, but it is conceivable that the transition,
on the other hand, can be made steeper. It appears reasonable, there-
fore, to expect magnetic fields of several hundred gausses.

The conseguences of the quasi-magnetic fields are limited. As shown
already in Figure 5, the fields for the two ellipsoids of each pair are
in opposite directions. In thermal equilibrium, the two ellipsoids are
equally populated. As a result, all those magnetic effects cancel which
are linear in the magnetic field. There is, therefore, no self-Hall effect,
ne change in the low-field-high-temperature diamagnetic properties,

Fig. 6—Explanation of the origin of the quasi-magnetic field.

ete. There should be, however, an indication of effects that are non-
linear in the magnetic field, such as the magnetoresistance. For ex-
ample, the mobility in a graded semiconductor alloy with noncentral
energy bands will always be lower than in a uniform semiconductor
alloy, due to the magnetoresistance effect caused by the quasi-magnetic
field. It is possible, however, that this decrease of the mobility will
not be observable, because already without the quasi-magnetic field
the mobilities in a semiconductor alloy are lowered due to disorder
scattering, and, the lower the original mobilities are the less they will
be changed by a magnetic field. The situation might be different, how-
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ever, if the nonuniform band structure were due to elastic deformation
rather than to nonuniform composition, because then there is no dis-
order scattering. This should lead to a mobility reduction with non-
uniform strains. One such type of strain is the thermoelastic lattice
waves which are respensible for the lattice scattering of the electrons.
Our theory, then, predicts that, in addition to the already-known
scattering mechanism, these waves also reduce the lattice mobility due
to the quasi-magnetic field they produce in multi-valley semiconduc-
tors. It is believed that this effect has not yet been studied.

Another effect that should be altered by quasi-magnetic fields is
the cyclotren resonance. There the external magnetic field is added
to the quasi flield producing different net fields for different ellipsoids.
If the line widths are small, the result should be a splitting of each
cyclotron resonance line into a multiplett. The line width condition
here means in particular, that no large change of the effective mass
is associated with the change in the position of the ellipsoids.

For example, assume the external magnetic field to be parallel to
the y-direction in Figure 5. The resonance corresponding to the four
ellipsoids on the %k, and the %, axes would then split up into a triplet,
the center line corresponding to the two k, ellipsoids, the two (sym-
metrically Iying) side lines corresponding to the two k, ellipsoids.

Other effects in which the quasi-magnetic field would show up could
be expected if the equal population of the symmetrical minima could
be disturbed.





