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A simple one-dimensional model for SNS weak links in the ballistic limit is presented.
In the presence of a bias voltage, the quasiparticle state at any given instant of time is
described as a superposition of that particular set of phase-dependent Andreev bound
states that belongs to the specific phase difference present at that instant between
the superconducting banks. The treatment—basically a form of adiabatic perturbation
theory—has a strong formal similarity to the treatment of thek-space dynamics of an
electron in a periodic potential under perturbation by an external electric field, sufficiently
strong to cause transitions across the energy gaps between bands (Zener tunneling). It is
shown that the quasiparticle wavefunction retains its phase information during analogous
transitions between Andreev bands. The experimental observation of Shapiro steps at
one-half the canonical voltage follows naturally from the model, along with some of
the experimental properties of these steps, especially their much weaker temperature
dependence, compared to the canonical steps.
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1. Introduction: the problem

In a 1985 paper [1], Kümmel and Senftinger (KS) studied the time evolution of a quasiparticle (QP)
wavepacket in an idealized SNS weak link, under the influence of a weak external voltage bias, making the
idealizing assumptions of perfectly ballistic transport, perfectly transparent SN interfaces, and zero Fermi
velocity mismatch. The authors showed that, as a result of multiple Andreev reflections (ARs), the QP would
pick up kinetic energy from the applied bias, until it was ejected from the Andreev well, into the downstream
superconducting bank. However, the paper did not address questions of the ac Josephson effect under voltage
bias, in the presence of this energy pickup.

Experimentally, a pronounced—and highly anomalous—ac Josephson effect in ballistic SNS weak links
has recently been reported by Drexleret al. [2] and Lehnertet al. [3, 4] (DL). In the present paper, we
re-examine the KS treatment and attempt to reconcile it—at least qualitatively—with these experimental
observations, and especially with the very pronounced anomalies found by DL.
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In DL, the authors investigated the Shapiro steps induced, by high-frequency irradiation, in the dc current–
voltage characteristics (CVCs) of superconducting weak links, which were based on InAs quantum wells as
a coupling medium between Nb electrodes. The two investigations differ in the details of the device structure
as well as the measurement technique, but both studies revealed a common behavior quite different from that
in more conventional Josephson devices:

(a) In addition to the ‘canonical’ Shapiro steps at the voltageV = ~ω/2e, whereω is the irradiation
frequency, the devices also showed strong steps at one-half that voltage,

V1/2 = ~ω/4e, (1)

indicating the presence of a strong component in the ac Josephson current at the frequency 4eV/~, twice the
canonical Josephson frequencyωJ = 2 eV/~.

(b) With increasing temperature, both kinds of steps decreased, but the half-integer steps did so much more
slowly, persisting to higher temperatures than the integer steps, into a temperature range close to the critical
temperatureTc of the superconducting Nb banks, where indications of both the dc Josephson effect and the
integer step had all but disappeared.

(c) By varying the drive frequency over a wide range, Lehnert found that the half-integer steps became
more pronounced with increasing frequency.

Perhaps the most surprising of these observations is the temperature dependence; as pointed out by
Lehnertet al. it rules out many potential explanations one might otherwise offer.

It was shown by Argaman [5, 6] that the observations can be explained in terms of a certain nonequilibrium
model: in systems with long energy relaxation times, the voltages necessary to reach the Shapiro steps
are sufficiently large to drive the quasiparticle (QP) energy distribution out of equilibrium, leading to a
distribution function that contains itself a component oscillating with the canonical Josephson frequency.
This ultimately causes the current to contain a component oscillating with twice the Josephson frequency.
The higher the drive frequency, the larger the Shapiro step voltage, and hence the larger the nonequilibrium
component, thus immediately explaining observation (c) above. Beyond that, Argaman’s theory makes
several quantitative predictions, essentially all of which were confirmed experimentally by Lehnert [3, 4].
For details of the theory, we must refer to the original papers [5, 6], which also give extensive references to
related theoretical work by others. Of those other theoretical papers the ones most relevant to the present
work are those by Averin and Bardas [7, 8], who consider related problems for superconducting quantum
point contacts, drawing on a significantly different formalism.

The work by Argaman draws on the well-developed theoretical formalism fordiffusiveweak links, into
which he incorporates nonequilibrium effects via a dis-equilibrated distribution function of the QPs over
a quasi-continuum of Andreev bound states. However, the devices investigated were actually closer to
the ballistic limit. Argaman argues—correctly—that the underlying physics should carry over to ballistic
devices. In fact, the nonequilibrium effects should be more pronounced in the ballistic limit, where the
perturbation by random processes is much weaker. It might therefore be useful to approach the same
nonequilibrium physics from the opposite end, the purely-ballistic limit. Here, the only scattering processes
considered are normal scattering and Andreev scattering at the super/normal interfaces, with scattering
processesinside the normal material being neglected, or at best treated as a weak perturbation. This is of
course again an over-simplification, albeit one in the opposite direction from the diffusive limit.

When a small external bias is applied to a ballistic weak link, two processes take place, one time-periodic,
and the other time-monotonic (nonperiodic):

(a) The time-periodic process is the conventional ac Josephson current, just as in Josephson tunnel diodes.
Its most obvious ‘fingerprint’ is the occurrence of Shapiro steps in the dc CVC under irradiation with a
high-frequency signal (see, for example, Tinkham [9])

(b) In ballistic structures in which multiple Andreev reflections (ARs) can occur, theadditional process
studied by KS can occur, where the quasiparticles may pick up energy from the bias field, in a way that does
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not oscillatory in time. The most obvious ‘fingerprint’ of this phenomenon is the sub-harmonic gap structure
often observed in the current–voltage characteristics (CVCs) of ballistic weak links (see, for example,
Klapwijk et al. [10]).

Each phenomenon by itself has been discussed extensively in the literature, at various levels of
sophistication. Our objective here is to give asimpleunified treatment that treats both phenomena on a
common basis, but on a more elementary level than what appears to be available in the literature.

Our treatment differs from that of KS in two ways: (a) We drop the restriction to perfectly transparent
SN interfaces and zero Fermi velocity mismatch. (b) Rather than explicitly following the time evolution of
a localizedQP wavepacket, we treat the problem in the spirit of adiabatic perturbation theory, in which the
time evolution of anextendedstate is viewed as that of a linear superposition of states from atime-dependent
set of Andreev bound states. Our treatment implicitly assumes a Bogoliubov–de Gennes (BdG) Hamiltonian
as in KS, in which the dc voltage bias has been included, not through a conventional (time-independent)
scalar potential, but through a time-dependent vector potential. The resulting BdG Hamiltonian depends on
time parametrically, making the problem readily tractable as an adiabatic perturbation problem. However, we
shall not find it necessary to invoke the BdG equations explicitly.

Instead, we draw on a very close formal similarity to the dynamics of an ordinary electron in a periodic
potential, under the influence of an applied electric field that is sufficiently strong to cause interband transi-
tions (in semiconductor physics commonly referred to as Zener tunneling). Such a treatment leads to a very
simple theoretical description of the physics of the basic phenomena, including the anomalies listed earlier.

The experimental examples coming closest to our ballistic limit are probably those SNS weak links in
which the normal conductor is the high-mobility two-dimensional electron gas in a semiconductor quantum
well, like the InAs-based quantum wells studied at UCSB and elsewhere (for complete references, see
Thomaset al. [11]). But our treatment itself should not be viewed as being specifically directed towards
those devices.

2. Andreev bands

Our point of departure is the fact that, in the absence of an external bias voltage, it is possible to define a
discrete set of current-carrying Andreev bound states, as first discussed by Kulik [12], and to express the flow
of any current in terms of the occupancy of these states. The states come in pairs, with opposite currents for
the two states of a pair. In the absence of a phase difference between the two superconducting banks, the two
states of each pair are degenerate. In thermal equilibrium they then have the same occupation probability,
and their currents cancel. If a phase differenceϕ is present (but novoltagebias), this degeneracy is lifted.
The states then no longer have equal occupation probabilities, and a net current can flow, even in the absence
of a voltage bias. This is the equilibrium Josephson current.

When avoltagebias is applied, the Andreev bound states are no longer stationary eigenstates of the
problem; they nevertheless remain central to the theory, as complete sets of basis states in terms of which
to express the time-dependent actual quantum states as superpositions of Andreev bound states. This is the
procedure we follow here.

2.1. Zero-barrier limit

The Andreev bound states have been extensively studied in the literature; the simplest and most widely
studied case is that of a purely ballistic weak link with perfectly transparent SN interfaces, containing neither
a barrier nor a mismatch in the Fermi velocity; the only difference between the superconductor and the
normal conductor is that the former has a nonzero pair potential1, while in the latter the pair potential is
assumed to be zero. Because of our emphasis on simplicity, we restrict ourselves further to a one-dimensional
problem. The energies of the Andreev bound states in this idealized limit were first given by Kulik [12]. These
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energies depend on the phase differenceϕ between the two superconducting electrodes; Kulik’s result may
be expressed via the simple relation

E = Ec

[
m−

1

π
arcsin

(
E

1

)
±

ϕ

2π

]
. (2)

Here,E is the energy relative to the chemical potential,m is a positive half-integer,
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1 is the pair potential of the superconducting banks, and

Ec =
π~vF

L
(4)

is an energy characterizing the coupling strength of the weak link in terms of the Fermi velocityvF of the
semiconductors and the separationL between the superconducting banks.

In addition to the positive-energy statesabovethe chemical potential, there also exists a second set of
states at the exact mirror energiesbelowthe chemical potential. We may include both sets in (2) by simply
extending them-values in (2) to include negative half-integers:
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2
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If one plots the energy levels described by (2) as functions of the phase difference, the states evidently fall
into two sets with opposite slopes. Because the current is related to the slope via

I =
2e

~

·
d E

dϕ
, (5)

the two sets represent opposite currents; the upper sign in (2) belongs to states with positive currents, the
lower sign to negative currents.

2.2. Andreev bands and gaps

The two sets of states described by (2) intersect: states belonging to opposite currents and tom-values that
differ by1m, will cross each other whenϕ = π ·1m. This crossing-over of the states is unrealistic: it is a
consequence of the extreme oversimplification of the model employed so far, which contains no mechanism
by which forward traveling states can be scattered into backward traveling states, and vice versa. Almost any
perturbation will cause the cross-over degeneracies to be removed, and lead toAndreev bands, separated by
energy gaps (Fig.1).

In the literature, suchE − ϕ diagrams are almost invariably discussed with the phase differenceϕ being
restricted to an interval 2π wide. For our purposes—we will later wish to replace the phaseϕ with the time
t—it will be more useful to discuss theE−ϕ diagram inextended phase space, whereϕ may assume arbitrary
values. This is similar to the way the wavenumberk may assume arbitrary values in extendedk-space
discussions of the dynamics of an electron in a periodic potential, a similarity to which we will return shortly.

Reflection barriers are often modeled by delta function potentials added to the interface, with a certain
dimensionless strength parameterZ (see, for example, Blonderet al. [13]). If those potentials are sufficiently
weak, the resulting gaps are easily obtained by perturbation theory, which yields gaps proportional toZ. We
will not follow this line of thought here; for our purposes it is more useful to work with the gaps directly—
whatever their origin—rather than in terms of a specific perturbation causing the gaps.
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Fig. 1. Schematic Andreev bands, separated by gaps, as functions of the relative phaseϕ, in a weak link structure with nonnegligible
scattering between positive- and negative-current states. The graph is for a weak link of intermediate lengthL such that there are two full
bands each both above and below the chemical potential, with a third band merged partially into the continuum above and below the An-
dreev well. Note that we are deliberatelynot restricting the phase difference to an interval 2π wide, but employ an extended phase space.

3. Interband transitions

In the presence of a bias voltageV , the phase differenceϕ between the two superconducting banks evolves
according to the fundamental Josephson relation

dϕ

dt
=

2 eV

~

. (6)

Associated with each value of the phase difference is a separate set of Andreev bound states, and the central
idea of our treatment is to use a time-dependent set of basis states in such a way that, at every instant of time,
the overall state may be expressed as a superposition of those Andreev bound states that correspond to the
specific phase difference at that instant of time.

Consider now one Andreev bound state|N, ϕ〉 belonging to the specific Andreev bandN, and within that
band to the specific phase differenceϕ. In the absence of a bias voltage,ϕ itself would be time-independent,
and the state|N, ϕ〉 would be a true stationary state of a quasiparticle. Assume next that, at timet = 0, a
nonzero bias voltageV is turned on. According to (6), the phase differenceϕ will then change with time, and
the initial state considered will evolve into a different state.

If the applied bias is sufficiently weak, and the gaps between the Andreev bands are sufficiently wide,
the evolution of the state may then be described, at least to the first order, as anadiabatic change, by
simply letting the phase differenceϕ evolve according to (6), while staying within the same band, without
crossing the gaps. The energy of this time-dependent state evidently oscillates, with the ‘canonical’ Josephson
frequency

ωJ =
dϕ

dt
=

2 eV

~

. (7)

Because of (5), the current also oscillates with the same frequency. This is of course simply the ‘ordinary’ ac
Josephson effect.

Onceϕ becomes time-dependent, the states|N, ϕ(t)〉 are no longer exact solutions of the time-dependent
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BdG equations. In addition to the adiabatic motion of the state throughϕ-space within the initial Andreev
band, there will also be transitions across the gaps to other bands, and it is these transitions that are
responsible for the energy pickup of a quasiparticle in the presence of multiple ARs, up or down what we
would like to call theAndreev ladder.

Formally, the problem is almost exactly the same as the problem of thek-space dynamics of an electron
in a periodic potential, under the influence of an external applied uniform and time-independent forceF . In
this case, it is well known that, for a sufficiently weak force and sufficiently wide gaps separating the bands,
the electron dynamics can be described by the familiar relation

~

dk

dt
= F, (8)

which is evidently analogous to (6), with the substitutionsk↔ ϕ/L andF ↔ 2 eV/L.
However, at the same time, transitions to other bands also take place. The instantaneous transition

probability increases roughly exponentially with decreasing energy separation between the two bands
involved, taken at the particulark-value that is present at that instant. The probability reaches a sharply
peaked maximum at that point ink-space at which the energy separation goes through a minimum, the net
energy gap. The theory, found in advanced semiconductor texts [14], shows that the integrated transition
probability for a single passage through the gap region is given by
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wherem∗ is the effective mass in the two bands, taken at the narrowest gap (and assumed to be equal for both
bands). This is, in semiconductor physics, referred to asZener tunneling; the analogy of the QP dynamics to
Zener tunneling has been noticed previously by Averin and Bardas [7, 8] for the somewhat different case of
superconducting quantum point contacts.

Thek-space result (9) may be transferred directly to ourϕ-space problem by the substitutions
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The result may be written as

Tϕ ≈ exp
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For a sufficiently narrow gap, say,EG = Ec/4, and a bias voltage of, say,V = EG/e, we find a transition
probabilityTφ = exp(−π/8) = 0.68, large, but distinctly less than 100%.

Inasmuch as thek-space result (9) is itself only an approximation, valid under assumptions that might not
carry over to theϕ-space case, (12) is also only an approximation. But it indicates the correct trends one
should expect with respect to the dependence of the transition probability on key parameters such as the gap
between Andreev bands, and the bias voltage.

Taken as an indication of trends, (12) shows that the transfer to higher energies decreases rapidly with an
increasing gap, but for a given finite gap it increases rapidly with increasing bias voltage. The case discussed
by KS is the specific case of zero gap; then the quasiparticle crosses over to the adjacent band with 100%
probability, but this is clearly an unrealistic limit.
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Fig. 2. Interband transitions always involve pairs of states with the same travelingk- or ϕ-value.

4. Interband ac Josephson effect

4.1. Current dynamics

In the case ofk-space dynamics, one of the key properties of the interband transfer is that an electron in a
Bloch wave with a sharp (traveling) value ofk will make transitions to another band only to states with the
same (traveling)k in that band [15, 16]. This property carries over to our problem (Fig.2).

Evidently, the state into which the transfer takes place, carries exactly the same phase information as the
original state. As a result, there is no loss of phase information, hence, such transfer will not destroy the ac
Josephson effect!

However, the transitions drastically alter thedetailsof the ac currents: for any given value ofϕ, adjacent
bands carry currents in with opposite sign. Hence, an interband transition will cause a reversal of the current
direction relative to what would have happened if there had been no transition. Conversely, the current
direction will remain the same as what it was before the transition, while in the absence of the transition
it would have reversed.

This behavior naturally leads to a strong ac component oscillating at 2ωJ, twice the Josephson frequency
ωJ. As a simple example of how this comes about, consider specifically a QP in the highest band just below
the chemical potential(m = −1/2), and assume that the phase difference is initiallyϕ = 0 (Fig. 3). In
the absence of interband transition, this state would remain in its initial band as the phase evolves linearly in
time, and the QP’s energy, as well as its contribution to the overall current, would oscillate with the Josephson
frequencyωJ. There would be no dc current.

But if, during crossing the region of narrowest gap, aroundt = tπ = π/ωJ, the QP makes a transition to
the next higher band(m = +1/2), the current will not reverse following the transition. Instead, it will only
dip to zero, and then recover to a positive value, at least untilt = 2tπ (Fig. 3). The net result is that this
time interval fromt = tπ to t = 2tπ will make both a dc contribution to the overall current, and a strong ac
contribution at 2ωJ, twice the Josephson frequency!

What happens subsequently depends on the details of the Andreev band structure, which in turn depends
strongly on the lengthL of the weak link (see Section6 below).

In weak links that are sufficiently short that there is no higher Andreev band inside the Andreev well
(E < 1) at ϕ = π , there will probably be a high probability of ejection of the QP from the Andreev
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Fig. 3. A, ‘Andreev ladder’ for a QP starting at the point marked•, and making a succession of interband transitions (circles). B, Current
contribution versus time if the QP stayed within its initial Andreev band. C, Current contribution versus time in the presence of the
interband transitions shown in A. The rounding of the current minima occurs because the transition is not abrupt at phase multiples
of π , but takes place over a finite phase range (see Fig.2). The current amplitude decreases as the bands get narrower. The timetπ is
defined astπ = π/ωJ, one-half the canonical Josephson period.

well into the downstream superconducting bank, and only a low probability for the QP to stay in the band
and return to lower energy. This is the case especially favorable for a strong 2ωJ current component. The
subsequent return to lower energies would largely cancel the 2ωJ and only leave aωJ component in that
fraction of events where the QP would not be ejected.

The opposite limit of a long weak link with a large number of Andreev bands, is somewhat different. If the
interband transition probability is high, the QP, upon reachingϕ = 2π , is likely to make another transition
to the next higher band(m = 3/2). The contribution of a dc current plus an ac current at 2ωJ would then
continue. For a sufficiently long weak link, with many Andreev bands, one might visualize a (low-probability)
extreme limit of an unbroken sequence of upward transitions (anAndreev ladder) wheneverϕ crosses a
multiple ofπ , until the QP is finally ejected from the Andreev well into one of the superconducting banks.
Under these extreme idealized assumptions, there might in fact be no significant current contribution atωJ
itself during the process of ‘climbing up the Andreev ladder’.

However, the appearance of a strong 2ωJ component in this limit would be counteracted by the following.
A near-100% transition probability would require the near absence of gaps between the Andreev bands.
This, in turn, would imply a reduction of theE(ϕ) relation to the simple near-linear form (2). But for a linear
relation, the current would be a pure dc current, without any ac current atany frequency, at least not from
the lower Andreev bands. The principal exception would occur for the highest Andreev band, where the
ejection from the Andreev well occurs periodically inϕ, implying a weak ac Josephson current contribution.
Such a weak ac Josephson current, presumably due to this remaining periodicity, is readily visible in the
calculations by Jacobset al. [17].

On balance, the occurrence of a 2ωJ current component therefore requires a transition probability that is
neither too large nor too small. But this also complicates a quantitative determination of the strength of the
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2ωJ current component, requiring an analysis of the current frequency spectrum resulting from a probabilistic
mixture of (i) upward transitions, (ii) no transitions, and (iii) even downward transitions. As a result, the
frequency spectrum of the Josephson current will be more complex; it will still contain the fundamental
Josephson frequencyωJ associated withπ -crossings without interband transitions. But there will always
be a strong component at 2ωJ associated with those crossings where transitions take place. Furthermore,
inasmuch as the current is no longer strictly periodic in time, its frequency spectrum will be continuous
rather than discrete, with significant broadening of the peaks atωJ and 2ωJ, especially the latter. Such a
broadening is clearly visible in the experimental data [3, 4]; an analysis of this broadening might provide
important clues concerning the details of the QP dynamics.

I have not attempted a quantitative treatment of the consequences of the probabilistic mixture of transitions;
I will return to this question below, in theDiscussionsection of this paper.

Before closing the topic of the 2ωJ current, the following remark is in order. An essential ingredient in
the occurrence of a net 2ωJ current is the QP ejection into the superconducting banks once the QP energy
reaches the pair potential1 at the top of the Andreev well. If no such ejection took place (nor any inelastic
collisions), any QP reaching one of the higher rungs of the Andreev ladder would ultimately have to climb
back down on the ladder. The interband Josephson current associated with this downward climb is opposite
to that with the upward climb. If both upward and downward climb were equally frequent, there would be no
net interband current atany frequency, not even a dc contribution. In reality, some of the QPs climbing up
the ladder will eventually reach the energy1 at the top of the ladder, at which point they are ejected into one
of the superconducting banks, with no compensating current due to a downward climb afterwards. It is only
because of the existence of QP ejection (and inelastic scattering, which has a similar effect) that there will be
a dc current, and along with it an ac current at twice the Josephson frequency.

4.2. Shapiro steps

As was pointed out already in the experimental papers [2–4], an ac Josephson current contribution at
2ωJ will cause Shapiro steps to occur at one-half the canonical Josephson voltage, as is indeed observed.
Furthermore, Lehnertet al. [3, 4] made the key observation that, by varying the drive frequency over a wide
range, the half-integer steps become more pronounced with increasing frequency. Inasmuch as a higher drive
frequency shifts the step voltage to higher values, such a dependence is exactly what our simple theory would
predict: according to (12), an increase in bias voltage increases the transition probability to higher bands, and
with a strong 2ωJ current being a consequence of interband transitions, the observed result follows naturally.
The same conclusion was already drawn by Argaman, by a slightly different, but ultimately related argument.

5. Temperature dependence

As stated in theIntroduction, perhaps the most remarkable observations of DL was that of the drastic
difference in the temperature dependence of the two kinds of Shapiro steps [2–4]. This observation, already
explained by Argaman’s nonequilibrium theory, also finds a very natural explanation in our treatment.

At T = 0, and in the absence of a voltage bias, the Andreev bands above the chemical potential are empty,
while those below the chemical potential are fully occupied. The current contributions from the different full
bands do not cancel, but lead to a net Josephson current of the familiar formI = Ie·sinϕ, with the possibility
of higher harmonics. The latter should be negligible in the limit of long weak links.

With increasing temperature, quasiparticles are transferred from negative-energy states to positive-energy
‘mirror’ states, which carry a current opposite to that of the negative-energy states, partially canceling
the current contributed by the latter. The net result is a decrease in the critical currentIc with increasing
temperature, roughly exponential in the temperature [12]. The longer the weak link, the more rapid the
decrease.
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When a voltage bias is applied, we must distinguish the current contributions from QPs that remain in
their band and those that undergo interband transitions and climb up the Andreev ladder. In the absence of
interband transitions, the net thermal occupation of each Andreev band would remain largely unchanged by
applying a small voltage bias, especially at temperatures where the thermal energykT is significantly above
the width of the bands. The only difference is that now the Josephson current becomes an ac current, but its
amplitudeIc remains essentially equal to the dc critical current appropriate to the temperature that is present.
Which of course means that the ac Josephson current at the fundamental Josephson frequency decreases
rapidly with increasing temperature—as do the fundamental Shapiro steps.

The situation is quite different for those QPs that undergo interband transitions and climb up the Andreev
ladder, to bands that would have only a small thermal occupation probability. The occupation of these bands
is then determined much more by the interband transition probability than by the temperature. Inasmuch as
it is the interband transitions that cause a strong ac current contribution at twice the Josephson frequency, it
follows naturally that the 2ωJ current should fall off less rapidly with increasing temperature. The dominant
effect of increasing temperature should be the decrease of the gap parameter1 of the superconducting
electrodes.

6. Length dependence

We have so far ignored the effect of the interelectrode separationL on the device behavior. This effect is
substantial, with important consequences, especially for the number of Andreev bands within the Andreev
well, their widths, and that of the gaps between bands.

For reference, consider first the barrier-free limit discussed earlier, with the simpleE − ϕ relation (2). At
ϕ = 0 the total number of states with energies 0< E < 1 is easily found to be given by

N(0) = 2 · int

(
1

Ec

)
+ 2, (13a)

where int(x) is the largest integer smaller thanx. At ϕ = ±π , one obtains

N(π) = 2 · int

(
1

Ec
+

1

2

)
+ 1, (13b)

Note thatN(0) is an even number, whileN(π) is odd, differing fromN(0) by ±1. However, these simple
relations apply only to the case of vanishing Andreev gaps. In the presence of gaps, the top bands might get
pushed out of the well, whereas the next lower bands might get pushed deeper into the well.

For comparison with available experimental date, it is instructive to apply these considerations to the
devices studied by Lehnertet al. [3, 4]. These devices had high electron sheet concentrations in the upper-
1012 cm−2 range. If one takes the strong nonparabolicity of InAs into account, such concentrations imply a
Fermi velocity of about 1× 108 cm s−1 [18]. If one naively uses this value, along with Lehnert’s electrode
separationL = 1.2 µm, one estimatesEc ≈ 1.7 meV, a value larger than the pair potential1 = 1.5 meV
appropriate for high-purity Nb at low temperatures. This would imply two positive-E Andreev bands at
ϕ = 0 and three atϕ = π . The development of a significant gap between the Andreev bands would probably
push the uppermost of these bands above1, leaving just one band atϕ = 0 and two atϕ = π .

Evidently, even though the experimental devices studied by Lehnertet al. are long by comparison with the
conventional superconducting coherence length, they are not long in Kulik’s sense, of having a large number
of Andreev bands confined to the Andreev well.

However, the above estimate is almost certainly too naive, and may overstate the case: the model presented
here is one-dimensional, but real devices are at least two-dimensional. Even in a true 2D quantum well, there
is an angular distribution of velocities, and what matters would be the component of the Fermi velocity in
the direction of current flow, which varies from its maximum value down to zero. Furthermore, because
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of the high electron sheet concentrations employed, at least one higher 1D subband was occupied in these
quantum wells. This further increases the uncertainty about which Fermi velocity to use. To allow for the
two-dimensional nature of the transport, one might have to view the devices as a parallel combination of
multiple channels with a continuous distribution of Fermi velocities from 1× 108 cm s−1 down. This would
presumably call for an extension of our treatment along the lines of the work of Schüssler and K̈ummel [19],
greatly losing the simplicity of the present treatment in the process. I have not attempted such a treatment.

Regardless of these uncertainties, one as-yet-untested prediction of this model can be made: just as the
half-voltage Shapiro steps decrease less rapidly with increasing temperature than the normal steps, we would
also expect them to decrease less rapidly with increasing lengthL: with increasing length, both the energy
Ec and the Andreev gaps widthsEG should decrease. But for a fixed bias voltage, like the voltage associated
with the Shapiro steps for a fixed drive frequency, the relation (12) then implies a larger transition probability,
with its beneficial effect on the half-voltage Shapiro steps. Such an effect may already have been present in
Lehnert’s devices, which had an unusually large electrode separation of about 1.2µm, much larger than what
has been employed in most work with quantum well based weak links. This evidently calls for more detailed
research on the length dependence of weak links, especially on devices with even larger electrode separations.

7. Discussion: open issues

We have presented an elementary treatment of QP transport in long ballistic weak links under the influence
of a weak voltage bias, but sufficiently strong to cause nonnegligible QP transfers out of each Andreev band
into successively higher bands. The treatment gives a unified description of both the conventional equilibrium
ac Josephson current with a fundamental oscillation frequencyωJ, and of the nonequilibrium current with
twice that frequency. In particular, it gives a natural explanation of the different temperature dependences of
the two currents.

However, the model presented here is a ‘bare-bones’ model, neglecting essentially all complications whose
inclusion is not essential to the limited purpose of giving aqualitativeexplanation of the basic experimental
facts. A more quantitative comparison with actual observation obviously calls for an elaboration of several
of the aspects of the model, an elaboration that has not been undertaken yet.

We have discussed already the need for going beyond a one-dimensional model. In the following, we
address several scattering-related issues.

7.1. Basic scattering

We have also pointed out earlier the need for including the probabilistic competition between normal
and Andreev reflections caused by the probabilistic nature of interband transitions. A simple rate equation
treatment for this competition, in a somewhat different context, was given already before KS, in 1983, by
Octavioet al. [20]. Unfortunately, that treatment does not address the question of the phase preservation so
important for the understanding of the ac Josephson effect under these conditions.

We have completely neglectedinelasticscattering in the present work. It should have consequences similar
to the effects of QP ejection from the Andreev well; the question is: how important is it? Working with
samples of somewhat lower electron concentration than the UCSB samples, Morpurgo has estimated the
inelastic mean free path as about 15µm at 1.7 K [21]; similar values are obtained by performing a similar
analysis on (unpublished) data by Thomas [18]. While these estimates suggest that inelastic scattering indeed
plays only a role less than QP ejection in the comparatively short devices investigated by DL, it is by no means
negligible weak, and its importance would increase in devices with larger electrode separation and/or smaller
Fermi velocities. We consider the much longer inelastic mean free paths assumed in the theoretical work of
Gunsenheimer and Zaikin [22] as unrealistically large, at least for the InAs coupling medium of interest here.
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7.2. Diffusive Andreev scattering

There is an issue concerning the nature of the ARs themselves, especially under oblique incidence: the
naive ‘textbook picture’ of ARs at super/semi interfaces is one of specular retro-reflections in which the
Andreev reflected QP retraces (almost) exactly the trajectory of the incident QP. However, the Groningen
group has recently presented compelling evidence that this is not the case in the Nb/InAs/Nb weak links
studied by them, and that the ARs are in fact diffusive, with the direction of the reflected QP trajectory being
almost random [23–25]. The origin of the diffusive nature of the scattering appears to be technological: in
order to obtain super/semi interfaces of high transparency, oxide barriers must be eliminated, which is done
by in situ low-energy Argon sputter cleaning of the InAs surface just prior to the Nb deposition. While this
procedure has the desired effect of creating a high-transparency interface, it was shown by Magnéeet al.
that it also creates a high concentration of defects inside the InAs [26], which in turn lead to diffusive ARs.
There are many differences between the UCSB devices (including those of DL), and those of the Groningen
group, especially in lithographic dimensions and, to a lesser extent, in the electron sheet concentrations in the
2D electron gas. However, both groups use essentially the same MBE layer structure and interface cleaning
procedure. Hence, the diffusive ARs are almost certainly also present in the UCSB devices, and there can be
no doubt that they must be taken into account in any attempt to understand QP dynamics under bias.

7.3. Intersubband scattering

Finally, there is a puzzling open question concerning the potential role of intersubband scattering, at
least in the UCSB devices. Essentially allpublishedUCSB devices—but apparently none of those of other
groups—employed electron sheet concentrations above 5× 1012 cm−2, up to about 8× 1012 cm−2. This
choice was made deliberately, in response to the observation, made already by Nguyen [27], and confirmed
by Thomas [18], that such high concentrations led to much stronger superconductivity effects than sheet
concentrations in the low 1012 cm−2 range, even in the presence of a significant reduction of mobilities at
the high concentrations.

The highest low-temperature (10–12 K) mobility we have observed was 9.8× 105 cm2 V−1s−1, at a sheet
concentration of 1.5× 1012 cm−2 [27], and values approaching this maximum have been seen repeatedly, at
similar sheet concentrations (see, for example, Blanket al. [28]). By comparison, the mobilities in the more
heavily doped published weak-link samples were between a factor 1/3 and 1/10 lower.

Calculations show that in all samples a significant occupancy of multiple subbands was present, which in
turn implies intersubband scattering (ISBS). Presumably, much of the mobility reduction is caused by ISBS
rather than impurity scattering. This hypothesis is strongly supported by measurements of Nguyen [27] and
of Koester [29] on gated Hall effect samples. Both authors showed that the mobilities, measured as functions
of the sheet concentration, display a maximum at a concentration of about 1.5×1012 cm−2, and drop rapidly
to less than half that value for concentrations significantly exceeding 2× 1012 cm−2. This is precisely what
one would expect for ISBS.

Considering that ISBS betweenuncorrelatedelectrons would be a phase-breaking process, it should be
detrimental to superconductivity and hence to weak-link performance. Yet our experience has not borne this
out: whatever detrimental effects ISBS might have, they are clearly outweighed by the beneficial effects of
the increased sheet concentration.

Ultimately, this observation raises the question of whether the independent particle concept of well-defined
subbands remains, in fact, applicable to structures in which the presence of superconducting electrodes might
introduce a phase correlation between the electrons. Such a phase-correlated interaction might renormalize
the subband. Quite possibly, a hybridization might occur, qualitatively similar to what has been observed in
coupled double quantum wells by Davieset al. [30]. Admittedly, this is, at present, pure speculation, but at
the very least it suggests a closer investigation into the ISBS puzzle.



Superlattices and Microstructures, Vol. 25, No. 5/6, 1999 889

Acknowledgements—The work in the present paper ultimately grew out of a series of long discussions I
had with Professor K̈ummel in 1996 on the question of how the experimentally observed phase phenomena
managed to persist even under conditions of extreme disequilibrium. He also pointed out to me the formal
similarity between Josephson phase dynamics and semiconductork-space dynamics. The interest in the
phase dynamics question was re-awakened by a number of very recent discussions with Professor Klapwijk,
while the latter was on sabbatical at UCSB. Those discussions finally triggered the writing of the present
paper. Numerous discussions with Dr Argaman in the intervening time contributed to my own theoretical
understanding. But even with those theoretical stimulations, the work might never have been done without
the stimulation provided by many discussions with Mr Lehnert and Professor Allen on their anomalous
experimental Shapiro step results.

References
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