INSTRUCTOR’S MANUAL FOR

Volume 2: Presentation Material

Behrooz Parhami
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA
E-mail: parhami@ece.ucsb.edu

© Oxford University Press, Fall 2001
| Part I: Number Representation | 1. Numbers and Arithmetic
2. Representing Signed Numbers
3. Redundant Number Systems
4. Residue Number Systems |
|---|---|
| Part II: Addition / Subtraction | 5. Basic Addition and Counting
6. Carry-Lookahead Adders
7. Variations in Fast Adders
8. Multioperand Addition |
| Part III: Multiplication | 9. Basic Multiplication Schemes
10. High-Radix Multipliers
11. Tree and Array Multipliers
12. Variations in Multipliers |
| Part IV: Division | 13. Basic Division Schemes
14. High-Radix Dividers
15. Variations in Dividers
16. Division by Convergence |
| Part V: Real Arithmetic | 17. Floating-Point Representations
18. Floating-Point Operations
19. Errors and Error Control
20. Precise and Certifiable Arithmetic |
22. The CORDIC Algorithms
23. Variations in Function Evaluation
24. Arithmetic by Table Lookup |
| Part VII: Implementation Topics | 25. High-Throughput Arithmetic
26. Low-Power Arithmetic
27. Fault-Tolerant Arithmetic
28. Past, Present, and Future |

This instructor’s manual is for

Computer Arithmetic: Algorithms and Hardware Designs, by Behrooz Parhami
For information and errata, see http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm

All rights reserved for the author. No part of this instructor’s manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission. Contact the author at:
ECE Dept., Univ. of California, Santa Barbara, CA 93106-9560, USA (parhami@ece.ucsb.edu)
Preface to the Instructor’s Manual

This instructor’s manual consists of two volumes. Volume 1 presents solutions to selected problems and includes additional problems (many with solutions) that did not make the cut for inclusion in the text Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, 2000) or that were designed after the book went to print. Volume 2 contains enlarged versions of the figures and tables in the text as well as additional material, presented in a format that is suitable for use as transparency masters.

The fall 2001 edition Volume 1, which consists of the following parts, is available to qualified instructors through the publisher:

Volume 1
Part I Selected solutions and additional problems
Part II Question bank, assignments, and projects

The fall 2001 edition of Volume 2, which consists of the following parts, is available as a large file in postscript format through the book’s Web page:

Volume 2
Parts I-VII Lecture slides and other presentation material

The book’s Web page, given below, also contains an errata and a host of other material (please note the upper-case “F” and “P” and the underscore symbol after “text” and “comp”):

http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm

The author would appreciate the reporting of any error in the textbook or in this manual, suggestions for additional problems, alternate solutions to solved problems, solutions to other problems, and sharing of teaching experiences. Please e-mail your comments to

parhami@ece.ucsb.edu

or send them by regular mail to the author’s postal address:

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Contributions will be acknowledged to the extent possible.

Behrooz Parhami
Santa Barbara, Fall 2001
Table of Contents

Part I Number Representation
 1 Numbers and Arithmetic
 2 Representing Signed Numbers
 3 Redundant Number Systems
 4 Residue Number Systems

Part II Addition/Subtraction
 5 Basic Addition and Counting
 6 Carry-Lookahead Adders
 7 Variations in Fast Adders
 8 Multioperand Addition

Part III Multiplication
 9 Basic Multiplication Schemes
 10 High-Radix Multipliers
 11 Tree and Array Multipliers
 12 Variations in Multipliers

Part IV Division
 13 Basic Division Schemes
 14 High-Radix Dividers
 15 Variations in Dividers
 16 Division by Convergence

Part V Real Arithmetic
 17 Floating-Point Representations
 18 Floating-Point Operations
 19 Errors and Error Control
 20 Precise and Certifiable Arithmetic

Part VI Function Evaluation
 21 Square-Rooting Methods
 22 The CORDIC Algorithms
 23 Variations in Function Evaluation
 24 Arithmetic by Table Lookup

Part VII Implementation Topics
 25 High-Throughput Arithmetic
 26 Low-Power Arithmetic
 27 Fault-Tolerant Arithmetic
 28 Past, Present, and Future
Part I Number Representation

Part Goals
Review fixed-point number systems
(floating-point covered in Part V)
Learn how to handle signed numbers
Discuss some unconventional methods

Part Synopsis
Number representation is a key element affecting hardware cost and speed
Conventional, redundant, residue systems
Intermediate vs endpoint representations
Limits of fast arithmetic

Part Contents
Chapter 1 Numbers and Arithmetic
Chapter 2 Representing Signed Numbers
Chapter 3 Redundant Number Systems
Chapter 4 Residue Number Systems
1 Numbers and Arithmetic

Chapter Goals
Define scope and provide motivation
Set the framework for the rest of the book
Review positional fixed-point numbers

Chapter Highlights
What goes on inside your calculator?
Ways of encoding numbers in k bits
Radix and digit set: conventional, exotic
Conversion from one system to another

Chapter Contents
1.1 What is Computer Arithmetic?
1.2 A Motivating Example
1.3 Numbers and Their Encodings
1.4 Fixed-Radix Positional Number Systems
1.5 Number Radix Conversion
1.6 Classes of Number Representations
1.1 What Is Computer Arithmetic?

Pentium Division Bug (1994-95): Pentium’s radix-4 SRT algorithm occasionally produced an incorrect quotient
First noted in 1994 by T. Nicely who computed sums of reciprocals of twin primes:
\[\frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \ldots + \frac{1}{p} + \frac{1}{(p+2)} + \ldots\]

Worst-case example of division error in Pentium:

\[c = \frac{4195835}{3145727} = \frac{1.33382044\ldots}{1.33373906\ldots}\]

Correct quotient circa 1994 Pentium double FLP value; accurate to only 14 bits (worse than single!)

Humor, circa 1995

Top Ten New Intel Slogans for the Pentium:

9.999 997 325 It’s a FLAW, dammit, not a bug
8.999 916 336 It’s close enough, we say so
7.999 941 461 Nearly 300 correct opcodes
6.999 983 153 You don’t need to know what’s inside
5.999 983 513 Redefining the PC — and math as well
4.999 999 902 We fixed it, really
3.999 824 591 Division considered harmful
2.999 152 361 Why do you think it’s called “floating” point?
1.999 910 351 We’re looking for a few good flaws
0.999 999 999 The errata inside
<table>
<thead>
<tr>
<th>Hardware (our focus in this book)</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of efficient digital circuits for primitive and other arithmetic operations such as $+, -, \times, \div, \sqrt{}$, log, sin, and cos</td>
<td>Numerical methods for solving systems of linear equations, partial differential equations, etc.</td>
</tr>
<tr>
<td>Issues: Algorithms</td>
<td>Issues: Algorithms</td>
</tr>
<tr>
<td>Error analysis</td>
<td>Error analysis</td>
</tr>
<tr>
<td>Speed/cost tradeoffs</td>
<td>Computational complexity</td>
</tr>
<tr>
<td>Hardware implementation</td>
<td>Programming</td>
</tr>
<tr>
<td>Testing, verification</td>
<td>Testing, verification</td>
</tr>
</tbody>
</table>

General-Purpose
- Flexible data paths
- Fast primitive operations like $+, -, \times, \div, \sqrt{}$
- Benchmarking

Special-Purpose
- Tailored to application
- Areas such as:
 - Digital filtering
 - Image processing
 - Radar tracking

Fig. 1.1 **The scope of computer arithmetic.**
1.2 A Motivating Example

Using a calculator with \(\sqrt{\cdot} \), \(x^2 \), and \(x^y \) functions, compute:

\[
u = \sqrt{\sqrt{\ldots \sqrt{2}}} \quad = \quad 1.000\,677\,131 \quad \text{“1024th root of 2”}
\]

\[
v = 2^{1/1024} \quad = \quad 1.000\,677\,131
\]

Save \(u \) and \(v \); If you can’t, recompute when needed.

\[
x = (((u^2)^2)\ldots)^2 \quad = \quad 1.999\,999\,963
\]

\[
x' = u^{1024} \quad = \quad 1.999\,999\,973
\]

\[
y = (((v^2)^2)\ldots)^2 \quad = \quad 1.999\,999\,983
\]

\[
y' = v^{1024} \quad = \quad 1.999\,999\,994
\]

Perhaps \(v \) and \(u \) are not really the same value.

\[
w = v - u = 1 \times 10^{-11} \quad \text{Nonzero due to hidden digits}
\]

\[
(u - 1) \times 1000 \quad = \quad 0.677\,130\,680 \quad \text{[Hidden \ldots (0) 68]}
\]

\[
(v - 1) \times 1000 \quad = \quad 0.677\,130\,690 \quad \text{[Hidden \ldots (0) 69]}
\]

A simple analysis:

\[
v^{1024} = (u + 10^{-11})^{1024} \approx u^{1024} + 1024 \times 10^{-11} u^{1023}
\]

\[
\approx u^{1024} + 2 \times 10^{-8}
\]
Finite Precision Can Lead to Disaster

Example: Failure of Patriot Missile (1991 Feb. 25)

Source http://www.math.psu.edu/dna/455.f96/disasters.html

American Patriot Missile battery in Dharan, Saudi Arabia, failed to intercept incoming Iraqi Scud missile. The Scud struck an American Army barracks, killing 28.

Cause, per GAO/IMTEC-92-26 report: “software problem” (inaccurate calculation of the time since boot)

Specifics of the problem: time in tenths of second as measured by the system’s internal clock was multiplied by 1/10 to get the time in seconds.

Internal registers were 24 bits wide

\[\frac{1}{10} = 0.0001\ 1001\ 1001\ 1001\ 1001\ 100 \text{ (chopped to 24 b)} \]

Error \(\approx 0.1100\ 1100 \times 2^{-23} \approx 9.5 \times 10^{-8} \)

Error in 100-hr operation period

\(\approx 9.5 \times 10^{-8} \times 100 \times 60 \times 60 \times 10 = 0.34 \text{ s} \)

Distance traveled by Scud = (0.34 s) \times (1676 m/s) \approx 570 \text{ m}

This put the Scud outside the Patriot’s “range gate”

Ironically, the fact that the bad time calculation had been improved in some (but not all) code parts contributed to the problem, since it meant that inaccuracies did not cancel out.
Finite Range Can Lead to Disaster

Example: Explosion of Ariane Rocket (1996 June 4)
Source http://www.math.psu.edu/dna/455.f96/disasters.html

Unmanned Ariane 5 rocket
launched by the European Space Agency
veered off its flight path, broke up, and exploded
only 30 seconds after lift-off (altitude of 3700 m)

The $500 million rocket (with cargo) was on its 1st voyage
after a decade of development costing $7 billion

Cause: “software error in the inertial reference system”

Specifics of the problem: a 64 bit floating point number
relating to the horizontal velocity of the rocket
was being converted to a 16 bit signed integer

An SRI* software exception arose during conversion
because the 64-bit floating point number
had a value greater than what could be represented
by a 16-bit signed integer (max 32 767)

*SRI stands for Système de Référence Inertielle
or Inertial Reference System
1.3 Numbers and Their Encodings

Numbers versus their representations (*numerals*)

The number “twenty-seven” can be represented in different ways using numerals or *numeration systems*:

- sticks or *unary code*
- \(27\) radix-10 or *decimal code*
 \((27)_{ten}\)
- \(11011\) radix-2 or *binary code*
 \((11011)_{two}\)
- XXVII Roman numerals

Encoding of digit sets as binary strings: BCD example

<table>
<thead>
<tr>
<th>Digit</th>
<th>BCD representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
</tr>
</tbody>
</table>
Encoding of numbers in 4 bits:

- **Unsigned integer**
- **Signed integer**
- **Fixed point, 3+1**
- **Signed fraction**
- **2's-compl fraction**
- **Floating point**
- **Logarithmic**

![Diagram showing different encoding methods for numbers with 4 bits.](image)

Fig. 1.2 Some of the possible ways of assigning 16 distinct codes to represent numbers.
1.4 Fixed-Radix Positional Number Systems

\[(x_{k-1}x_{k-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-l})_r = \sum_{i=-l}^{k-1} x_i r^i\]

One can generalize to:

arbitrary radix (not necessarily integer, positive, constant)
arbitrary digit set, usually \([-\alpha, -\alpha+1, \ldots, \beta-1, \beta] = [-\alpha, \beta]\)

Example 1.1. Balanced ternary number system:
radix \(r = 3\), digit set = \([-1, 1]\)

Example 1.2. Negative-radix number systems:
radix \(-r\), \(r \geq 2\), digit set = \([0, r-1]\)

The special case with radix \(-2\) and digit set \([0, 1]\) is known as the negabinary number system

Example 1.3. Digit set \([-4, 5]\) for \(r = 10\):
\((3 \ -1 \ 5)_{ten}\) represents \(295 = 300 - 10 + 5\)

Example 1.4. Digit set \([-7, 7]\) for \(r = 10\):
\((3 \ -1 \ 5)_{ten} = (3 \ 0 \ -5)_{ten} = (1 \ -7 \ 0 \ -5)_{ten}\)

Example 1.7. Quater-imaginary number system:
radix \(r = 2j\), digit set \([0, 3]\).
1.5 Number Radix Conversion

\[u = w \cdot v \]

\[= (x_{k-1} x_{k-2} \cdots x_1 x_0 \cdot x_{-1} x_{-2} \cdots x_{-l})_r \quad \text{Old} \]

\[= (x_{K-1} x_{K-2} \cdots x_1 x_0 \cdot X_{-1} X_{-2} \cdots X x_{-L})_R \quad \text{New} \]

Radix conversion: arithmetic in the old radix \(r \)

Converting whole part \(w \):

<table>
<thead>
<tr>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Therefore, \((105)_{\text{ten}} = (410)_{\text{five}} \)

Converting fractional part \(v \):

<table>
<thead>
<tr>
<th>Whole Part</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>.486</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.430</td>
</tr>
<tr>
<td>2</td>
<td>.150</td>
</tr>
<tr>
<td>0</td>
<td>.750</td>
</tr>
<tr>
<td>3</td>
<td>.750</td>
</tr>
<tr>
<td>3</td>
<td>.750</td>
</tr>
</tbody>
</table>

Therefore, \((105.486)_{\text{ten}} \approx (410.22033)_{\text{five}} \)
Radix conversion: arithmetic in the new radix R

Converting the whole part w

$$(((2 \times 5) + 2) \times 5 + 0) \times 5 + 3) \times 5 + 3$$

Fig. 1.A Horner’s rule used to convert $(22033)_{\text{five}}$ to decimal.

Converting fractional part v: $(410.22033)_{\text{five}} = (105.?)_{\text{ten}}$

$$(0.22033)_{\text{five}} \times 5^5 = (22033)_{\text{five}} = (1518)_{\text{ten}}$$

$$1518 / 5^5 = 1518 / 3125 = 0.48576$$

Therefore, $(410.22033)_{\text{five}} = (105.48576)_{\text{ten}}$

Fig. 1.3 Horner’s rule used to convert $(0.22033)_{\text{five}}$ to decimal.
1.6 Classes of Number Representations

Integers (fixed-point), unsigned: Chapter 1

Integers (fixed-point), signed

signed-magnitude, biased, complement: Chapter 2

signed-digit: Chapter 3
 (but the key point of Chapter 3 is
 use of redundancy for faster arithmetic,
 not how to represent signed values)

residue number system: Chapter 4
 (again, the key to Chapter 4 is
 use of parallelism for faster arithmetic,
 not how to represent signed values)

Real numbers, floating-point: Chapter 17
 covered in Part V, just before real-number arithmetic

Real numbers, exact: Chapter 20
 continued-fraction, slash, ... (for error-free arithmetic)
2 Representing Signed Numbers

Chapter Goals
Learn different encodings of the sign info
Discuss implications for arithmetic design

Chapter Highlights
Using sign bit, biasing, complementation
Properties of 2’s-complement numbers
Signed vs unsigned arithmetic
Signed numbers, positions, or digits

Chapter Contents
2.1 Signed-Magnitude Representation
2.2 Biased Representations
2.3 Complement Representations
2.4 Two’s- and 1’s-Complement Numbers
2.5 Direct and Indirect Signed Arithmetic
2.6 Using Signed Positions or Signed Digits
When Numbers Go into the Red!

“This can’t be right ... It goes into the red.”
2.1 Signed-Magnitude Representation

Fig. 2.1 Four-bit signed-magnitude number representation system for integers.

Fig. 2.2 Adding signed-magnitude numbers using precomplementation and postcomplementation.
2.2 Biased Representations

![Diagram of a four-bit biased integer number representation system with a bias of 8.](image)

Fig. 2.3 Four-bit biased integer number representation system with a bias of 8.

Addition/subtraction of biased numbers

\[
\begin{align*}
 x + y + \text{bias} &= (x + \text{bias}) + (y + \text{bias}) - \text{bias} \\
 x - y + \text{bias} &= (x + \text{bias}) - (y + \text{bias}) + \text{bias}
\end{align*}
\]

A power-of-2 (or \(2^a - 1\)) bias simplifies the above

Comparison of biased numbers:

- compare like ordinary unsigned numbers
- find true difference by ordinary subtraction
2.3 Complement Representations

![Diagram of Complement Representations](image)

Fig. 2.4 Complement representation of signed integers.

Table 2.1 Addition in a complement number system with complementation constant \(M \) and range \([-N, +P]\)

<table>
<thead>
<tr>
<th>Desired operation</th>
<th>Computation to be performed mod (M)</th>
<th>Correct result with no overflow</th>
<th>Overflow condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>((+x) + (+y))</td>
<td>(x + y)</td>
<td>(x + y)</td>
<td>(x + y > P)</td>
</tr>
<tr>
<td>((+x) + (–y))</td>
<td>(x + (M – y))</td>
<td>(x – y) if (y \leq x)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M – (y – x)) if (y > x)</td>
<td></td>
</tr>
<tr>
<td>((–x) + (+y))</td>
<td>((M – x) + y)</td>
<td>(y – x) if (x \leq y)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M – (x – y)) if (x > y)</td>
<td></td>
</tr>
<tr>
<td>((–x) + (–y))</td>
<td>((M – x) + (M – y))</td>
<td>(M – (x + y))</td>
<td>(x + y > N)</td>
</tr>
</tbody>
</table>
Example -- complement system for fixed-point numbers:

complementation constant $M = 12.000$
fixed-point number range $[-6.000, +5.999]$
represent -3.258 as $12.000 - 3.258 = 8.742$

Auxiliary operations for complement representations
complementation or change of sign (computing $M - x$)
computations of residues mod M

Thus M must be selected to simplify these operations

Two choices allow just this for fixed-point radix-r arithmetic
with k whole digits and l fractional digits

Radix complement $M = r^k$

Digit complement $M = r^k - ulp$
(diminished radix complement)

ulp (unit in least position) stands for r^{-l}
it allows us to forget about l even for nonintegers
2.4 Two’s- and 1’s-Complement Numbers

Two’s complement = radix complement system for \(r = 2 \)

\[2^k - x = [(2^k - ulp) - x] + ulp = x^{compl} + ulp \]

Range of representable numbers in with \(k \) whole bits:

from \(-2^{k-1}\) to \(2^{k-1} - ulp\)

Fig. 2.5 Four-bit 2’s-complement number representation system for integers.

Range/precision extension for 2’s-complement numbers

\[\cdots x_{k-1}x_{k-1}x_{k-1}x_{k-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-l}000 \cdots \]

\(\leftarrow \) Sign extension \(\rightarrow \) Sign bit Extension
One's complement = digit complement system for $r = 2$

$$(2^k - ulp) - x = x^{compl}$$

Mod-$(2^k - ulp)$ operation is done via end-around carry

$$(x + y) - (2^k - ulp) = x - y - 2^k + ulp$$

Range of representable numbers with k whole bits:

from -2^{k-1} to $2^{k-1} - ulp$

Fig. 2.6 Four-bit 1's-complement number representation system for integers.
Table 2.2 Comparing radix- and digit-complement number representation systems

<table>
<thead>
<tr>
<th>Feature/Property</th>
<th>Radix complement</th>
<th>Digit complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry ((P = N?))</td>
<td>Possible for odd (r) (radices of practical interest are even)</td>
<td>Possible for even (r)</td>
</tr>
<tr>
<td>Unique zero?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Complementation</td>
<td>Complement all digits and add (ulp)</td>
<td>Complement all digits</td>
</tr>
<tr>
<td>Mod-(M) addition</td>
<td>Drop the carry-out</td>
<td>End-around carry</td>
</tr>
</tbody>
</table>

Fig. 2.7 Adder/subtractor architecture for two’s-complement numbers.
2.5 Direct and Indirect Signed Arithmetic

![Diagram showing direct and indirect signed arithmetic operations](image)

Fig. 2.8 Direct vs indirect operation on signed numbers.

Advantage of direct signed arithmetic
usually faster (not always)

Advantages of indirect signed arithmetic
can be simpler (not always)
allows sharing of signed/unsigned hardware
when both operation types are needed
2.6 Using Signed Positions or Signed Digits

A very important property of 2’s-complement numbers that is used extensively in computer arithmetic:

\[x = (1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0)_{\text{two's-compl}} \]
\[-2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0 \]
\[-128 + 32 + 4 + 2 = -90 \]

Check:

\[x = (1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0)_{\text{two's-compl}} \]
\[-x = (0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0)_{\text{two}} \]
\[-2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0 \]
\[64 + 16 + 8 + 2 = 90 \]

Fig. 2.9 Interpreting a 2’s-complement number as having a negatively weighted most-significant digit.

Generalization: associate a sign with each digit position

\[\lambda = (\lambda_{k-1} \lambda_{k-2} \ldots \lambda_1 \lambda_0 . \lambda_{-1} \lambda_{-2} \ldots \lambda_{-l}) \quad \lambda_i \in \{-1, 1\} \]

\[(x_{k-1} x_{k-2} \ldots x_1 x_0 . x_{-1} x_{-2} \ldots x_{-l})_{r, \lambda} = \sum_{i=-l}^{k-1} \lambda_i x_i r^i \]

\[\lambda = 1 \ 1 \ 1 \ldots \ 1 \ 1 \ 1 \ 1 \ \text{positive-radix} \]
\[\lambda = -1 \ 1 \ 1 \ldots \ 1 \ 1 \ 1 \ 1 \ \text{two’s-complement} \]
\[\lambda = \ldots -1 \ 1 \ -1 \ 1 \ \text{negative-radix} \]
Signed digits: associate signs not with digit positions but with the digits themselves

Original digits in [0, 3]

Rewritten digits in [-1, 2]

Transfer digits in [0, 1]

Sum digits in [-1, 3]

Rewritten digits in [-1, 2]

Transfer digits in [0, 1]

Sum digits in [-1, 3]

Fig. 2.10 Converting a standard radix-4 integer to a radix-4 integer with the non-standard digit set [-1, 2].

Original digits in [0, 3]

Interim digits in [-2, 1]

Transfer digits in [0, 1]

Sum digits in [-2, 2]

Fig. 2.11 Converting a standard radix-4 integer to a radix-4 integer with the non-standard digit set [-2, 2].
3 Redundant Number Systems

Chapter Goals
Explore the advantages and drawbacks of using more than \(r \) digit values in radix \(r \)

Chapter Highlights
Redundancy eliminates long carry chains
Redundancy takes many forms: tradeoffs
Conversions between redundant and nonredundant representations
Redundancy used for end values too?

Chapter Contents
3.1 Coping with the Carry Problem
3.2 Redundancy in Computer Arithmetic
3.3 Digit Sets and Digit-Set Conversions
3.4 Generalized Signed-Digit Numbers
3.5 Carry-Free Addition Algorithms
3.6 Conversions and Support Functions
3.1 Coping with the Carry Problem

The carry problem can be dealt with in several ways:
1. Limit carry propagation to within a small number of bits
2. Detect end of propagation; don’t wait for worst case
3. Speed up propagation via lookahead etc.
4. Ideal: Eliminate carry propagation altogether!

\[
\begin{array}{cccccccc}
5 & 7 & 8 & 2 & 4 & 9 \\
+ & 6 & 2 & 9 & 3 & 8 & 9 \\
\hline
11 & 9 & 17 & 5 & 12 & 18 \\
\end{array}
\]
Operand digits in [0, 9]

\[
\begin{array}{cccccccc}
\text{Position sums in [0, 18]}
\end{array}
\]

But how can we extend this beyond a single addition?

\[
\begin{array}{cccccccccccc}
11 & 9 & 17 & 10 & 12 & 18 \\
+ & 6 & 12 & 9 & 10 & 8 & 18 \\
\hline
17 & 21 & 26 & 20 & 20 & 36 \\
\mid & | & | & | & | & | \\
7 & 11 & 16 & 0 & 10 & 16 \\
\mid / / / / / / / \\
1 & 1 & 1 & 2 & 1 & 2 \\
\hline
1 & 8 & 12 & 18 & 1 & 12 & 16 \\
\end{array}
\]
Interim sums in [0, 16]
Transfer digits in [0, 2]

\[
\begin{array}{cccccccc}
\text{Sum digits in [0, 18]}
\end{array}
\]

Fig. 3.1 Adding radix-10 numbers with digit set [0, 18].
Position sum decomposition $[0, 36] = 10 \times [0, 2] + [0, 16]$

Absorption of transfer digit $[0, 16] + [0, 2] = [0, 18]$

So, redundancy helps us achieve carry-free addition

But how much redundancy is actually needed?

\[
\begin{array}{cccccc}
11 & 10 & 7 & 11 & 3 & 8 \\
+ & 7 & 2 & 9 & 10 & 9 & 8 \\
\hline
18 & 12 & 16 & 21 & 12 & 16 \\
\end{array}
\]

Operand digits in $[0, 11]$

\[
\begin{array}{cccccc}
18 & 12 & 16 & 21 & 12 & 16 \\
\hline
1 & 1 & 1 & 2 & 1 & 1 \\
\end{array}
\]

Position sums in $[0, 22]$

Interim sums in $[0, 9]$

Transfer digits in $[0, 2]$

\[
\begin{array}{cccccc}
1 & 9 & 3 & 8 & 2 & 3 & 6 \\
\end{array}
\]

Sum digits in $[0, 11]$

Fig. 3.3 Adding radix-10 numbers with digit set $[0, 11]$.

Fig. 3.2 Ideal and practical carry-free addition schemes.

(a) Ideal single-stage carry-free.

(b) Two-stage carry-free.

(c) Single-stage with lookahead.
3.2 Redundancy in Computer Arithmetic

Oldest example of redundancy in computer arithmetic is the stored-carry representation (carry-save addition):

\[
\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 0 \\
\hline
0 & 1 & 2 & 1 & 1 & 1 \\
\end{array}
\text{Position sums in } [0, 2]
\]

\[
\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 0 \\
\hline
0 & 2 & 3 & 2 & 1 & 2 \\
\end{array}
\text{Position sums in } [0, 3]
\]

\[
\begin{array}{cccccc}
0 & 0 & 1 & 0 & 1 & 0 \\
\hline
0 & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\text{Interim sums in } [0, 1]
\]

\[
\begin{array}{cccccc}
1 & 1 & 2 & 0 & 2 & 0 \\
+ & 0 & 0 & 1 & 0 & 1 \\
\hline
1 & 1 & 3 & 0 & 3 & 1 \\
\end{array}
\text{Position sums in } [0, 3]
\]

\[
\begin{array}{cccccc}
1 & 1 & 1 & 0 & 1 & 1 \\
\hline
0 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\text{Interim sums in } [0, 1]
\]

\[
\begin{array}{cccccc}
1 & 2 & 1 & 1 & 1 & 1 \\
\end{array}
\text{Sum digits in } [0, 2]
\]

Fig. 3.4 Addition of 4 binary numbers, with the sum obtained in stored-carry form.
Possible 2-bit encoding for binary stored-carry digits:

- 0 represented as 0 0
- 1 represented as 0 1 or 1 0
- 2 represented as 1 1

Fig. 3.5 Carry-save addition using an array of independent binary full adders.
3.3 Digit Sets and Digit-Set Conversions

Example 3.1: Convert from digit set \([0, 18]\) to the digit set \([0, 9]\) in radix 10.

\[
\begin{align*}
11 & 9 & 17 & 10 & 12 & 18 & \text{Rewrite 18 as } 10 \text{ (carry 1)} + 8 \\
11 & 9 & 17 & 10 & 13 & 8 & 13 = 10 \text{ (carry 1)} + 3 \\
11 & 9 & 17 & 11 & 3 & 8 & 11 = 10 \text{ (carry 1)} + 1 \\
11 & 9 & 18 & 1 & 3 & 8 & 18 = 10 \text{ (carry 1)} + 8 \\
11 & 10 & 8 & 1 & 3 & 8 & 10 = 10 \text{ (carry 1)} + 0 \\
12 & 0 & 8 & 1 & 3 & 8 & 12 = 10 \text{ (carry 1)} + 2 \\
1 & 2 & 0 & 8 & 1 & 3 & 8 & \text{Answer; all digits in } [0, 9]
\end{align*}
\]

Example 3.2: Convert from digit set \([0, 2]\) to digit set \([0, 1]\) in radix 2.

\[
\begin{align*}
1 & 1 & 2 & 0 & 2 & 0 & \text{Rewrite 2 as } 2 \text{ (carry 1)} + 0 \\
1 & 1 & 2 & 1 & 0 & 0 & 2 = 2 \text{ (carry 1)} + 0 \\
1 & 2 & 0 & 1 & 0 & 0 & 2 = 2 \text{ (carry 1)} + 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 2 = 2 \text{ (carry 1)} + 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & \text{Answer; all digits in } [0, 1]
\end{align*}
\]

Another way: Decompose the carry-save number into two numbers and add them:

\[
\begin{align*}
1 & 1 & 1 & 0 & 1 & 0 & \text{First number: ”Sum” bits} \\
+ & 0 & 0 & 1 & 0 & 1 & \text{Second number: ”Carry” bits} \\
\hline
1 & 0 & 0 & 0 & 1 & 0 & 0 & \text{Sum of the two numbers}
\end{align*}
\]
Example 3.3: Convert from digit set [0, 18]
to the digit set [–6, 5] in radix 10
(same as Example 3.1, but with an asymmetric target digit set)

\[
\begin{array}{cccccc}
11 & 9 & 17 & 10 & 12 & 18 \\
11 & 9 & 17 & 10 & 14 & \text{Rewrite 18 as 20 (carry 2) – 2} \\
11 & 9 & 17 & 11 & 4 & \text{14 = 10 (carry 1) + 4 or 20 – 6} \\
11 & 9 & 18 & 1 & 4 & \text{11 = 10 (carry 1) + 1} \\
11 & 11 & \text{1} & 4 & \text{18 = 20 (carry 1) + –2} \\
12 & \text{1} & \text{1} & 4 & \text{11 = 10 (carry 1) + 1} \\
1 & \text{2} & \text{1} & \text{1} & \text{12 = 10 (carry 1) + 2} \\
1 & 2 & 1 & –2 & 1 & 4 & \text{Answer; all digits in [0, 9]}
\end{array}
\]

Example 3.4: Convert from digit set [0, 2]
to digit set [–1, 1] in radix 2
(same as Example 3.2, but with the target digit set [–1, 1] instead of [0, 1])

Carry-free conversion:

\[
\begin{array}{cccccc}
1 & 1 & 2 & 0 & 2 & 0 \\
\text{–1} & \text{–1} & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\hline
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]
3.4 Generalized Signed-Digit Numbers

Radix r

Digit set $[-\alpha, \beta]$ feasibility requirement $\alpha + \beta + 1 \geq r$

Redundancy index $\rho = \alpha + \beta + 1 - r$

Fig. 3.6 A taxonomy of redundant and non-redundant positional number systems.
Binary vs multivalue-logic encoding of GSD digit sets

\(x_i \) 1 -1 0 -1 0 BSD representation of +6
\((s,v) \) 01 11 00 11 00 Sign & value encoding
2’s-compl 01 10 00 10 00 2-bit 2’s-complement
\((n,p) \) 01 10 00 10 00 Negative & positive flags
\((n,z,p) \) 001 100 010 100 010 1-out-of-3 encoding

Fig. 3.7 Four encodings for the BSD digit set \([-1, 1]\).

The hybrid example in Fig. 3.8, with a regular pattern of binary (B) and BSD positions, can be viewed as an implementation of a GSD system with

\(r = 8 \) Three positions form one digit
digit set \([-4, 7]\) -1 0 0 to 1 1 1

<table>
<thead>
<tr>
<th>BSD</th>
<th>B</th>
<th>B</th>
<th>BSD</th>
<th>B</th>
<th>BSD</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
\[p_i \]
\[w_i \]
\[t_{i+1} \]
\[s_i \]

Fig. 3.8 Example of addition for hybrid signed-digit numbers.
3.5 Carry-Free Addition Algorithms

Carry-free addition of GSD numbers
Compute the position sums $p_i = x_i + y_i$
Divide p_i into a transfer t_{i+1} and interim sum $w_i = p_i - rt_{i+1}$
Add incoming transfers to get the sum digits $s_i = w_i + t_i$

If the transfer digits t_i are in $[-\lambda, \mu]$, we must have:

$$-\alpha + \lambda \leq p_i - rt_{i+1} \leq \beta - \mu$$

Smallest interim sum if a transfer of $-\lambda$ is to be absorbable
Largest interim sum if a transfer of μ is to be absorbable

These constraints lead to

$$\lambda \geq \frac{\alpha}{r - 1} \quad \mu \geq \frac{\beta}{r - 1}$$
Constants $C_{-\lambda} \quad C_{-\lambda+1} \quad C_{-\lambda+2} \ldots \quad C_0 \quad C_1 \ldots \quad C_{\mu-1} \quad C_\mu \quad C_{\mu+1}$

p_i range $[-\infty) \quad [----) \quad [---) \ldots \quad [---) \quad [---) \ldots [---) \quad [----) \ldots [---)$

t_{i+1} chosen $-\lambda \quad -\lambda+1 \quad -\lambda+2 \quad 0 \quad 1 \quad \mu-1 \quad \mu$

Fig. 3.9 Choosing the transfer digit t_{i+1} based on comparing the interim sum p_i to the comparison constants C_j.

Example 3.5: $r = 10$, digit set $[-5, 9]$ lead to $\lambda \geq 5/9$, $\mu \geq 1$

Choose the minimal values:

$\lambda_{\text{min}} = \mu_{\text{min}} = 1$ \hspace{1cm} i.e., transfer digits are in $[-1, 1]$

$\lambda_{\text{min}} = C_{-1} \quad -4 \leq C_0 \leq -1 \quad 6 \leq C_1 \leq 9 \quad C_2 = +\infty$

Deriving range of C_1: The position sum p_i is in $[-10, 18]$

We can set t_{i+1} to 1 for p_i values as low as 6

We must transfer 1 for p_i values of 9 or more

For $p_i \geq C_1$, where $6 \leq C_1 \leq 9$, we choose $t_{i+1} = 1$

For $p_i < C_0$, we choose $t_{i+1} = -1$, where $-4 \leq C_0 \leq -1$

In all other cases, $t_{i+1} = 0$

If p_i is given as a 6-bit 2’s-complement number $abcdef$, good choices for the constants are $C_0 = -4$, $C_1 = 8$

The logic expressions for the signals g_1 and g_{-1}:

$$g_{-1} = a (\overline{c} + \overline{d}) \quad \text{generate a transfer of } -1$$

$$g_1 = \overline{a} (b + c) \quad \text{generate a transfer of } 1$$
\[
\begin{array}{cccccccc}
3 & -4 & 9 & -2 & 8 & x_i & \text{in } [-5, 9] \\
+ & 8 & -4 & 9 & 8 & 1 & y_i & \text{in } [-5, 9] \\
\hline
11 & -8 & 18 & 6 & 9 & p_i & \text{in } [-10, 18] \\
\hline
\mid & \mid & \mid & \mid & \mid & \mid & \\
1 & 2 & 8 & 6 & -1 & w_i & \text{in } [-4, 8] \\
\mid & \mid & \mid & \mid & \mid & \mid & \\
1 & -1 & 1 & 0 & 1 & t_{i+1} & \text{in } [-1, 1] \\
\hline
1 & 0 & 3 & 8 & 7 & -1 & s_i & \text{in } [-5, 9]
\end{array}
\]

Fig. 3.10 Adding radix-10 numbers with digit set [-5, 9].

The preceding carry-free addition algorithm is applicable if
\[r > 2, \ \rho \geq 3 \]
\[r > 2, \ \rho = 2, \ \alpha \neq 1, \ \beta \neq 1 \]

In other words, it is inapplicable for
\[r = 2 \]
\[\rho = 1 \]
\[\rho = 2 \text{ with } \alpha = 1 \text{ or } \beta = 1 \]

Fortunately, in such cases, a limited-carry algorithm is always applicable
(a) Three-stage carry estimate. (b) Three-stage repeated-carry. (c) Two-stage parallel-carries

Fig. 3.11 Some implementations for limited-carry addition.

\[
\begin{array}{cccc}
1 & -1 & 0 & -1 \\
+ & 0 & -1 & -1 & 0 & 1 \\
\hline
1 & -2 & -1 & -1 & 1 \\
\end{array}
\]

\[
x_i \text{ in } [-1, 1] \\
y_i \text{ in } [-1, 1] \\
p_i \text{ in } [-2, 2] \\
\]

\[
e_i \text{ in } \{\text{low:}[-1, 0], \text{high:}[0, 1]\} \\
w_i \text{ in } [-1, 1] \\
t_{i+1} \text{ in } [-1, 1] \\
s_i \text{ in } [-1, 1] \\
\]

Fig. 3.12 Limited-carry addition of radix-2 numbers with digit set [-1, 1] using carry estimates. A position sum \(-1\) is kept intact when the incoming transfer is in [0, 1], whereas it is rewritten as 1 with a carry of \(-1\) for incoming transfer in [-1, 0]. This guarantees that \(t_i \neq w_i\) and thus \(-1 \leq s_i \leq 1\).
Fig. 3.13 Limited-carry addition of radix-2 numbers with the digit set \([0, 3]\) using carry estimates. A position sum of 1 is kept intact when incoming transfer is in \([0, 2]\), whereas it is rewritten as \(-1\) with a carry of 1 if incoming transfer is in \([1, 3]\).
3.6 Conversions and Support Functions

BSD-to-binary conversion example

1 \(-1\) 0 \(-1\) 0 BSD representation of +6
1 0 0 0 0 Positive part (1 digits)
0 1 0 1 0 Negative part (\(-1\) digits)
0 0 1 1 0 Difference = conversion result

Zero test: zero has a unique code under some conditions

Sign test: needs carry propagation

\[
x_{k-1} \ x_{k-2} \ \cdots \ x_1 \ x_0
\]
\[
+ \ y_{k-1} \ y_{k-2} \ \cdots \ y_1 \ y_0
\]
\[
p_{k-1} \ p_{k-2} \ \cdots \ p_1 \ p_0
\]
\[
\left| \begin{array}{c|c|c|c|c|c|}
 w_{k-1} & w_{k-2} & \cdots & w_1 & w_0 \\
 / & / & \cdots & / & / \\
\end{array} \right|
\]
\[
t_k \ t_{k-1} \ \cdots \ t_2 \ t_1
\]
\[
\left| \begin{array}{c|c|c|c|c|c|}
 s_{k-1} & s_{k-2} & \cdots & s_1 & s_0 \\
\end{array} \right|
\]
\[\text{k-digit GSD operands}\]
\[\text{Position sums}\]
\[\text{Interim sum digits}\]
\[\text{Transfer digits}\]
\[\text{k-digit apparent sum}\]

Fig. 3.16. Overflow and its detection in GSD arithmetic.
4 Residue Number Systems

Chapter Goals
Study a way of encoding large numbers as a collection of smaller numbers to simplify and speed up some operations

Chapter Highlights
RNS moduli, range, & arithmetic ops
Many sets of moduli possible: tradeoffs
Conversions between RNS and binary
The Chinese remainder theorem
Why are RNS applications limited?

Chapter Contents
4.1 RNS Representation and Arithmetic
4.2 Choosing the RNS Moduli
4.3 Encoding and Decoding of Numbers
4.4 Difficult RNS Arithmetic Operations
4.5 Redundant RNS Representations
4.6 Limits of Fast Arithmetic in RNS
4.1 RNS Representation and Arithmetic

Chinese puzzle, 1500 years ago:
What number has the remainders of 2, 3, and 2 when divided by the numbers 7, 5, and 3, respectively?

Pairwise relatively prime moduli: \(m_{k-1} > \cdots > m_1 > m_0 \)
The residue \(x_i \) of \(x \) wrt the \(i \)th modulus \(m_i \) is akin to a digit:
\[
x_i = x \mod m_i = \langle x \rangle_{m_i}
\]
RNS representation contains a list of \(k \) residues or digits:
\[
x = (2 \mid 3 \mid 2)_{\text{RNS}(7\mid5\mid3)}
\]
Default RNS for this chapter \(\text{RNS}(8 \mid 7 \mid 5 \mid 3) \)

The product \(M \) of the \(k \) pairwise relatively prime moduli is the *dynamic range*
\[
M = m_{k-1} \times \cdots \times m_1 \times m_0
\]
For \(\text{RNS}(8 \mid 7 \mid 5 \mid 3) \), \(M = 8 \times 7 \times 5 \times 3 = 840 \)

Negative numbers: Complement representation with complementation constant \(M \)
\[
\langle -x \rangle_{m_i} = \langle M - x \rangle_{m_i}
\]
\[
21 = (5 \mid 0 \mid 1 \mid 0)_{\text{RNS}}
\]
\[
-21 = (8 - 5 \mid 0 \mid 5 - 1 \mid 0)_{\text{RNS}} = (3 \mid 0 \mid 4 \mid 0)_{\text{RNS}}
\]
Here are some example numbers in RNS(8 | 7 | 5 | 3):

(0 | 0 | 0 | 0)_{RNS} \quad \text{Represents 0 or 840 or \ldots}
(1 | 1 | 1 | 1)_{RNS} \quad \text{Represents 1 or 841 or \ldots}
(2 | 2 | 2 | 2)_{RNS} \quad \text{Represents 2 or 842 or \ldots}
(0 | 1 | 3 | 2)_{RNS} \quad \text{Represents 8 or 848 or \ldots}
(5 | 0 | 1 | 0)_{RNS} \quad \text{Represents 21 or 861 or \ldots}
(0 | 1 | 4 | 1)_{RNS} \quad \text{Represents 64 or 904 or \ldots}
(2 | 0 | 0 | 2)_{RNS} \quad \text{Represents \(-70\) or 770 or \ldots}
(7 | 6 | 4 | 2)_{RNS} \quad \text{Represents \(-1\) or 839 or \ldots}

Any RNS can be viewed as a weighted representation. For RNS(8 | 7 | 5 | 3), the weights of the 4 positions are:

105 120 336 280

Example: (1 | 2 | 4 | 0)_{RNS} represents the number
\langle 105 \times 1 + 120 \times 2 + 336 \times 4 + 280 \times 0 \rangle_{840} = \langle 1689 \rangle_{840} = 9

Fig. 4.1 Binary-coded format for RNS(8 | 7 | 5 | 3).
RNS Arithmetic

\((5 \mid 5 \mid 0 \mid 2)_{RNS}\) Represents \(x = +5\)

\((7 \mid 6 \mid 4 \mid 2)_{RNS}\) Represents \(y = -1\)

\((4 \mid 4 \mid 4 \mid 1)_{RNS}\) \(x + y : \langle 5 + 7 \rangle_8 = 4, \langle 5 + 6 \rangle_7 = 4,\) etc.

\((6 \mid 6 \mid 1 \mid 0)_{RNS}\) \(x - y : \langle 5 - 7 \rangle_8 = 6, \langle 5 - 6 \rangle_7 = 6,\) etc.

(alternatively, find \(-y\) and add to \(x\))

\((3 \mid 2 \mid 0 \mid 1)_{RNS}\) \(x \times y : \langle 5 \times 7 \rangle_8 = 3, \langle 5 \times 6 \rangle_7 = 2,\) etc.

![Fig. 4.2](image)

Fig. 4.2 The structure of an adder, subtractor, or multiplier for RNS(8 | 7 | 5 | 3).
4.2 Choosing the RNS moduli

Target range: Decimal values [0, 100 000]

Pick prime numbers in sequence:

\[m_0 = 2, \ m_1 = 3, \ m_2 = 5, \text{ etc. After adding } m_5 = 13: \]

- \(\text{RNS}(13 \ | \ 11 \ | \ 7 \ | \ 5 \ | \ 3 \ | \ 2) \quad M = 30\ 030 \quad \text{Inadequate} \)
- \(\text{RNS}(17 \ | \ 13 \ | \ 11 \ | \ 7 \ | \ 5 \ | \ 3 \ | \ 2) \quad M = 510\ 510 \quad \text{Too large} \)
- \(\text{RNS}(17 \ | \ 13 \ | \ 11 \ | \ 7 \ | \ 3 \ | \ 2) \quad M = 102\ 102 \quad \text{Just right!} \)

\[5 + 4 + 4 + 3 + 2 + 1 = 19 \text{ bits} \]

Combine pairs of moduli 2 & 13 and 3 & 7:
- \(\text{RNS}(26 \ | \ 21 \ | \ 17 \ | \ 11) \quad M = 102\ 102 \)

Include powers of smaller primes before moving to larger primes:

- \(\text{RNS}(2^2 \ | \ 3) \quad M = 12 \)
- \(\text{RNS}(3^2 \ | \ 2^3 \ | \ 7 \ | \ 5) \quad M = 2520 \)
- \(\text{RNS}(11 \ | \ 3^2 \ | \ 2^3 \ | \ 7 \ | \ 5) \quad M = 27\ 720 \)
- \(\text{RNS}(13 \ | \ 11 \ | \ 3^2 \ | \ 2^3 \ | \ 7 \ | \ 5) \quad M = 360\ 360 \quad \text{Too large} \)
- \(\text{RNS}(15 \ | \ 13 \ | \ 11 \ | \ 2^3 \ | \ 7) \quad M = 120\ 120 \)

\[4 + 4 + 4 + 3 + 3 = 18 \text{ bits} \]
Maximize the size of the even modulus within the 4-bit residue limit:

\[\text{RNS}(2^4 \mid 13 \mid 11 \mid 3^2 \mid 7 \mid 5) \quad M = 720 \quad \text{Too large} \]

Can remove 5 or 7

Restrict the choice to moduli of the form \(2^a\) or \(2^a - 1\):

\[\text{RNS}(2^{a_k - 2} \mid 2^{a_k - 2} - 1 \mid \ldots \mid 2^{a_1 - 1} \mid 2^{a_0 - 1}) \]

Such “low-cost” moduli simplify both the complementation and modulo operations

\(2^{a_i}\) and \(2^{a_j}\) are relatively prime iff \(a_i\) and \(a_j\) are relatively prime.

\[\begin{align*}
\text{RNS}(2^3 \mid 2^3 - 1 \mid 2^2 - 1) & \quad \text{basis: 3, 2} \quad M = 168 \\
\text{RNS}(2^4 \mid 2^4 - 1 \mid 2^3 - 1) & \quad \text{basis: 4, 3} \quad M = 1680 \\
\text{RNS}(2^5 \mid 2^5 - 1 \mid 2^3 - 1 \mid 2^2 - 1) & \quad \text{basis: 5, 3, 2} \quad M = 20832 \\
\text{RNS}(2^5 \mid 2^5 - 1 \mid 2^4 - 1 \mid 2^4 - 1) & \quad \text{basis: 5, 4, 3} \quad M = 104160
\end{align*} \]

Comparison

\[\begin{align*}
\text{RNS}(15 \mid 13 \mid 11 \mid 2^3 \mid 7) & \quad 18 \text{ bits} \quad M = 120120 \\
\text{RNS}(2^5 \mid 2^5 - 1 \mid 2^4 - 1 \mid 2^3 - 1) & \quad 17 \text{ bits} \quad M = 104160
\end{align*} \]
4.3 Encoding and Decoding of Numbers

Conversion from binary/decimal to RNS

\[
\langle (y_{k-1} \cdots y_1y_0)_{\text{two}} \rangle_{m_i} = \langle 2^{k-1} y_{k-1} \rangle_{m_i} + \cdots + \langle 2 y_1 \rangle_{m_i} + \langle y_0 \rangle_{m_i} \rangle_{m_i}
\]

Table 4.1 Residues of the first 10 powers of 2

<table>
<thead>
<tr>
<th>i</th>
<th>(2^i)</th>
<th>(\langle 2^i \rangle_7)</th>
<th>(\langle 2^i \rangle_5)</th>
<th>(\langle 2^i \rangle_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

High-radix version (processing 2 or more bits at a time) is also possible
Conversion from RNS to mixed-radix

\(\text{MRS}(m_{k-1} | \cdots | m_2 | m_1 | m_0) \) is a \(k \)-digit positional system with position weights

\[m_{k-2} \cdots m_2 m_1 m_0 \cdots m_2 m_1 m_0 m_1 m_0 m_0 1 \]

and digit sets

\[[0, m_{k-1}-1] \cdots [0, m_3-1] [0, m_2-1] [0, m_1-1] [0, m_0-1] \]

\(0 | 3 | 1 | 0 \) \(\text{MRS}(8|7|5|3) = 0 \times 105 + 3 \times 15 + 1 \times 3 + 0 \times 1 = 48 \)

RNS-to-MRS conversion problem:

\[y = (x_{k-1} | \cdots | x_2 | x_1 | x_0)_{\text{RNS}} = (z_{k-1} | \cdots | z_2 | z_1 | z_0)_{\text{MRS}} \]

Mixed-radix representation allows us to compare the magnitudes of two RNS numbers or to detect the sign of a number.

Example: 48 versus 45

RNS representations

\(0 | 6 | 3 | 0 \) \(\text{RNS} \) vs \(5 | 3 | 0 | 0 \) \(\text{RNS} \)

\(000 | 110 | 011 | 00 \) \(\text{RNS} \) vs \(101 | 011 | 000 | 00 \) \(\text{RNS} \)

Equivalent mixed-radix representations

\(0 | 3 | 1 | 0 \) \(\text{MRS} \) vs \(0 | 3 | 0 | 0 \) \(\text{MRS} \)

\(000 | 011 | 001 | 00 \) \(\text{MRS} \) vs \(000 | 011 | 000 | 00 \) \(\text{MRS} \)
Theorem 4.1 (The Chinese remainder theorem)
The magnitude of an RNS number can be obtained from:

\[x = (x_{k-1} | \cdots | x_2 | x_1 | x_0)_{RNS} = \left\langle \sum_{i=0}^{k-1} M_i \langle \alpha_i x_i \rangle_{m_i} \right\rangle_M \]

where, by definition, \(M_i = M/m_i \) and \(\alpha_i = \langle M_i^{-1} \rangle_{m_i} \) is the multiplicative inverse of \(M_i \) with respect to \(m_i \)

Table 4.2 Values needed in applying the Chinese remainder theorem to RNS(8 | 7 | 5 | 3)

<table>
<thead>
<tr>
<th>i</th>
<th>(m_i)</th>
<th>(x_i)</th>
<th>(\langle M_i \langle \alpha_i x_i \rangle_{m_i} \rangle_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>560</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4 Difficult RNS Arithmetic Operations

Sign test and magnitude comparison are difficult

Example: of the following RNS(8 | 7 | 5 | 3) numbers

which, if any, are negative?
which is the largest?
which is the smallest?

Assume a range of [–420, 419]

\[
\begin{align*}
 a &= (0 \mid 1 \mid 3 \mid 2)_{RNS} \\
 b &= (0 \mid 1 \mid 4 \mid 1)_{RNS} \\
 c &= (0 \mid 6 \mid 2 \mid 1)_{RNS} \\
 d &= (2 \mid 0 \mid 0 \mid 2)_{RNS} \\
 e &= (5 \mid 0 \mid 1 \mid 0)_{RNS} \\
 f &= (7 \mid 6 \mid 4 \mid 2)_{RNS}
\end{align*}
\]

Answer:

\[
\begin{align*}
 d < c < f < a < e < b \\
 -70 < -8 < -1 < 8 < 21 < 64
\end{align*}
\]
Approximate CRT decoding: Divide both sides of the CRT equality by M, to get the scaled value of x in $[0, 1)$:

$$
x/M = (x_{k-1} | \ldots | x_2 | x_1 | x_0)_{\text{RNS}}/M = \left\langle \sum_{i=0}^{k-1} m_i^{-1} \langle \alpha_i x_i \rangle_{m_i} \right\rangle_1
$$

Terms are added modulo 1, meaning that the whole part of each result is discarded and the fractional part is kept.

Table 4.3 Values needed in applying approximate CRT decoding to RNS(8 | 7 | 5 | 3)

<table>
<thead>
<tr>
<th>i</th>
<th>m_i</th>
<th>x_i</th>
<th>$m_i^{-1} \langle \alpha_i x_i \rangle_{m_i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>.0000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.3750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>.5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>.6250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>.7500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>.8750</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>0</td>
<td>.0000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.1429</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.2857</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.4286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>.5714</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>.7143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>.8571</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>.0000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.4000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.8000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>.6000</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>.0000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.3333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.6667</td>
<td></td>
</tr>
</tbody>
</table>
Example: Use approximate CRT decoding to determine the larger of the two numbers

\[x = (0 \mid 6 \mid 3 \mid 0)_{\text{RNS}} \quad y = (5 \mid 3 \mid 0 \mid 0)_{\text{RNS}} \]

Reading values from Table 4.3, we get:

\[x/M \cong \langle.0000 + .8571 + .2000 + .0000 \rangle_1 \cong .0571 \]

\[y/M \cong \langle.6250 + .4286 + .0000 + .0000 \rangle_1 \cong .0536 \]

Thus, \(x > y \), subject to approximation errors.
Errors are no problem here because each entry has a maximum error of 0.00005, for a total of at most 0.0002

RNS general division

Use an algorithm that has built-in tolerance to imprecision

Example — SRT algorithm (\(s \) is the partial remainder)

\[s < 0 \quad \text{quotient digit} = -1 \]

\[s \cong 0 \quad \text{quotient digit} = 0 \]

\[s > 0 \quad \text{quotient digit} = 1 \]

The partial remainder is decoded approximately
The BSD quotient is converted to RNS on the fly
4.5 Redundant RNS Representations

The mod-m_i residue need not be restricted to $[0, m_i - 1]$ (just as radix-r digits need not be limited to $[0, r - 1]$)

![Adder design for 4-bit mod-13 pseudoresidues.](image)

Figure 4.3 Adder design for 4-bit mod-13 pseudoresidues.

![A modulo-m multiply-add cell that accumulates the sum into a double-length redundant pseudoresidue.](image)

Figure 4.4 A modulo-m multiply-add cell that accumulates the sum into a double-length redundant pseudoresidue.
4.6 Limits of Fast Arithmetic in RNS

Theorem 4.2: The ith prime p_i is asymptotically $i \ln i$

Theorem 4.3: The number of primes in $[1, n]$ is asymptotically $n/\ln n$

Theorem 4.4: The product of all primes in $[1, n]$ is asymptotically e^n.

Table 4.4 The ith prime p_i and the number of primes in $[1, n]$ versus their asymptotic approximations

<table>
<thead>
<tr>
<th>i</th>
<th>p_i</th>
<th>$i \ln i$</th>
<th>Error (%)</th>
<th>n</th>
<th>No of primes</th>
<th>$n/\ln n$</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.000</td>
<td>100</td>
<td>5</td>
<td>2</td>
<td>3.107</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.386</td>
<td>54</td>
<td>10</td>
<td>4</td>
<td>4.343</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3.296</td>
<td>34</td>
<td>15</td>
<td>6</td>
<td>5.539</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>5.545</td>
<td>21</td>
<td>20</td>
<td>8</td>
<td>6.676</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>8.047</td>
<td>27</td>
<td>25</td>
<td>9</td>
<td>7.767</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>23.03</td>
<td>21</td>
<td>30</td>
<td>10</td>
<td>8.820</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>47</td>
<td>40.62</td>
<td>14</td>
<td>40</td>
<td>12</td>
<td>10.84</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>71</td>
<td>59.91</td>
<td>16</td>
<td>50</td>
<td>15</td>
<td>12.78</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>113</td>
<td>102.0</td>
<td>10</td>
<td>100</td>
<td>25</td>
<td>21.71</td>
<td>13</td>
</tr>
<tr>
<td>40</td>
<td>173</td>
<td>147.6</td>
<td>15</td>
<td>200</td>
<td>46</td>
<td>37.75</td>
<td>18</td>
</tr>
<tr>
<td>50</td>
<td>229</td>
<td>195.6</td>
<td>15</td>
<td>500</td>
<td>95</td>
<td>80.46</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>521</td>
<td>460.5</td>
<td>12</td>
<td>1000</td>
<td>170</td>
<td>144.8</td>
<td>15</td>
</tr>
</tbody>
</table>
Theorem 4.5: It is possible to represent all k-bit binary numbers in RNS with $O(k / \log k)$ moduli such that the largest modulus has $O(\log k)$ bits.

Implication: a fast adder would need $O(\log \log k)$ time.

Theorem 4.6: The numbers $2^a - 1$ and $2^b - 1$ are relatively prime iff a and b are relatively prime.

Theorem 4.7: The sum of the first i primes is asymptotically $O(i^2 \ln i)$.

Theorem 4.8: It is possible to represent all k-bit binary numbers in RNS with $O(\sqrt{k / \log k})$ low-cost moduli of the form $2^a - 1$ such that the largest modulus has $O(\sqrt{k \log k})$ bits.

Implication: a fast adder would need $O(\log k)$ time, thus offering little advantage over standard binary.
Part II Addition/Subtraction

Part Goals
Review basic adders & the carry problem
Learn how to speed up carry propagation
Discuss speed/cost tradeoffs in adders

Part Synopsis
Addition is a fundamental operation
(arithmetic and address calculations)
Also a building block for other operations
Subtraction = negation + addition
Carry speedup: lookahead, skip, select, ...
Two-operand vs multioperand addition

Part Contents
Chapter 5 Basic Addition and Counting
Chapter 6 Carry-Lookahead Adders
Chapter 7 Variations in Fast Adders
Chapter 8 Multioperand Addition
5 Basic Addition and Counting

Chapter Goals
Study the design of ripple-carry adders, discuss why their latency is unacceptable, and set the foundation for faster adders.

Chapter Highlights
Full-adders are versatile building blocks
Worst-case carry chain in \(k \)-bit addition has an average length of \(\log_2 k \)
Fast asynchronous adders are simple
Counting is relatively easy to speed up

Chapter Contents
5.1 Bit-Serial and Ripple-Carry Adders
5.2 Conditions and Exceptions
5.3 Analysis of Carry Propagation
5.4 Carry Completion Detection
5.5 Addition of a Constant: Counters
5.6 Manchester Carry Chains and Adders
5.1 Bit-serial and ripple-carry adders

Single-bit half-adder (HA)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 5.A Truth table and symbol for a binary half-adder.

Fig. 5.1 Three implementations of a half-adder.
Single-bit full-adder (FA)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 5.B Truth table and symbol for binary full-adder.

\[
\begin{align*}
 s &= x \oplus y \oplus c_{in} \quad \text{(odd parity function)} \\
 &= xy c_{in} + \overline{x} \overline{y} c_{in} + \overline{x} y c_{in} + x \overline{y} c_{in} \\
 c_{out} &= xy + xc_{in} + yc_{in} \quad \text{(majority function)}
\end{align*}
\]
Fig. 5.2 Possible designs for a full-adder in terms of half-adders, logic gates, and CMOS transmission gates.

Fig. 5.C CMOS transmission gate and its use in a 2-to-1 mux.
Fig. 5.3 \textit{Using full-adders in building bit-serial and ripple-carry adders.}

Fig. 5.4 \textit{The layout of a 4-bit ripple-carry adder in CMOS implementation [Puck94].}
\[T_{\text{ripple-add}} = T_{\text{FA}}(x, y \rightarrow c_{\text{out}}) + (k - 2) \times T_{\text{FA}}(c_{\text{in}} \rightarrow c_{\text{out}}) + T_{\text{FA}}(c_{\text{in}} \rightarrow s) \]

Fig. 5.5 Critical path in a \(k \)-bit ripple-carry adder.

Fig. 5.6 Four-bit binary adder used to realize the logic function \(f = w + xyz \) and its complement.
5.2 Conditions and exceptions

In an ALU, it is customary to provide information about certain outcomes during addition or other operations.

Flag bits within a condition/exception register:
- c_{out}: a carry-out of 1 is produced
- overflow: the output is not the correct sum
- negative: indicating that the addition result is negative
- zero: indicating that the addition result is zero

\[
\text{overflow}_{2\text{’s-compl}} = x_{k-1} y_{k-1} \bar{s}_{k-1} + \bar{x}_{k-1} y_{k-1} s_{k-1}
\]
\[
\text{overflow}_{2\text{’s-compl}} = c_k \oplus c_{k-1} = c_k \bar{c}_{k-1} + \bar{c}_k c_{k-1}
\]

Fig. 5.7 Two’s-complement adder with provisions for detecting conditions and exceptions.
5.3 Analysis of carry propagation

<table>
<thead>
<tr>
<th>Bit #</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c_{out}</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>c_{in}</td>
</tr>
</tbody>
</table>

Carry chains and their lengths

Fig. 5.8 Example addition and its carry propagation chains.

Fig. 5.C Positions with known incoming carries.
Given binary numbers with random bit values, for each position i we have:

- Probability of carry generation = $1/4$
- Probability of carry annihilation = $1/4$
- Probability of carry propagation = $1/2$

Average length of the longest carry chain

The probability that carry generated at position i propagates to position $j - 1$ and stops at position j ($j > i$)

$$2^{-(j-1-i)} \times 1/2 = 2^{-(j-i)}$$

Expected length of the carry chain that starts at position i

$$2 - 2^{-(k-i-1)}$$

Average length of the longest carry chain in k-bit addition is less than $\log_2 k$; it is $\log_2(1.25k)$ per experimental results

Analogy (order statistics)

Roll a die: Outcome in [1, 6], expected outcome = 3.5

Roll a pair of dice:

- What is the expected value of the larger outcome?

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>11</th>
<th>9</th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger outcome</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Expected outcome</td>
<td>$161 / 36 = 4.472$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4 Carry Completion Detection

\[(b_i, c_i) = \begin{cases}
00 & \text{Carry not yet known} \\
01 & \text{Carry known to be 1} \\
10 & \text{Carry known to be 0}
\end{cases}\]

From other bit positions

Fig. 5.9 The carry network of an adder with two-rail carries and carry completion detection logic.
5.4 Addition of a Constant: Counters

Fig. 5.10 An up (down) counter built of a register, an incrementer (decrementer), and a multiplexer.

Fig. 5.11 Four-bit asynchronous up counter built only of negative-edge-triggered T flip-flops.

Fig. 5.12 Fast three-stage up counter.
5.6 Manchester Carry Chains and Adders

Sum digit in radix r
\[s_i = (x_i + y_i + c_i) \mod r \]

Special case of radix 2
\[s_i = x_i \oplus y_i \oplus c_i \]

Computing the carries is thus our central problem.
For this, the actual operand digits are not important.
What matters is whether in a given position a carry is

generated, propagated, or annihilated (absorbed)

For binary addition:
\[g_i = x_i \oplus y_i \quad p_i = x_i \oplus y_i \quad a_i = \bar{x_i} \quad \bar{y_i} = x_i + y_i \]

It is also helpful to define a transfer signal:
\[t_i = g_i + p_i = \bar{a_i} = x_i + y_i \]

Using these signals, the carry recurrence is written as
\[c_{i+1} = g_i + c_i p_i = g_i + c_i g_i + c_i p_i = g_i + c_i t_i \]

![Diagram](a) Conceptual representation
![Diagram](b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.
Preview of fast adders

The g_i and $p_i(t_i)$ signals, along with the carry recurrence

$$c_{i+1} = g_i + c_i p_i = g_i + c_i t_i$$

allow us to decouple the problem of designing a fast carry network from details of the number system (radix, digit set).

It does not even matter whether we are adding or subtracting; any carry network can be used as a borrow network by defining the signals to represent borrow generation, borrow propagation, etc.

Fig. 5.D The main part of an adder is the carry network. The rest is just a set of gates to produce the g and p signals and the sum bits.
Carry-ripple adder (already discussed)
 Worst-case allowance or self-timed

Fast adders to be studied in the next two chapters differ in the way they generate the carries:

Carry lookahead (Chapter 6)
 and a variant known as Ling adder

Other fast adders (Chapter 7)
 Carry-skip (single- or multilevel)
 Carry-select
 and its limiting case known as conditional sum
 Hybrid (e.g., lookahead and select)
6 Carry-Lookahead Adders

Chapter Goals
Understand the carry-lookahead method and its many variations used in the design of fast adders

Chapter Highlights
Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem to parallel prefix computation
Implementing fast adders in VLSI

Chapter Contents
6.1. Unrolling the Carry Recurrence
6.2. Carry-Lookahead Adder Design
6.3. Ling Adder and Related Designs
6.4. Carry Determination as Prefix Computation
6.5. Alternative Parallel Prefix Networks
6.6. VLSI Implementation Aspects
6.1 Unrolling the Carry Recurrence

Recall g_i (generate), p_i (propagate), a_i (annihilate/absorb), and t_i (transfer)

\[
g_i = 1 \text{ iff } x_i + y_i \geq r \quad \text{Carry is generated}
\]
\[
p_i = 1 \text{ iff } x_i + y_i = r - 1 \quad \text{Carry is propagated}
\]
\[
t_i = \bar{a}_i = g_i + p_i \quad \text{Carry is not annihilated}
\]

\[
c_i = g_{i-1} + c_{i-1}p_{i-1}
\]
\[
= g_{i-1} + (g_{i-2} + c_{i-2}p_{i-2})p_{i-1}
\]
\[
= g_{i-1} + g_{i-2}p_{i-1} + c_{i-2}p_{i-1} + c_{i-2}p_{i-2}p_{i-1}
\]
\[
= g_{i-1} + g_{i-2}p_{i-1} + g_{i-3}p_{i-2}p_{i-1} + c_{i-3}p_{i-3}p_{i-2}p_{i-1}
\]
\[
= g_{i-1} + g_{i-2}p_{i-1} + g_{i-3}p_{i-2}p_{i-1} + g_{i-4}p_{i-3}p_{i-2}p_{i-1} + c_{i-4}p_{i-4}p_{i-3}p_{i-2}p_{i-1}
\]
\[
= \ldots
\]

Theoretically, we can unroll as far as we want but the number of terms, and literals in each term, increase to the point of being impractical for two-level circuit realization.
Four-bit CLA adder:

\[c_4 = g_3 + g_2p_3 + g_1p_2p_3 + g_0p_1p_2p_3 + c_0p_0p_1p_2p_3\]
\[c_3 = g_2 + g_1p_2 + g_0p_1p_2 + c_0p_0p_1p_2\]
\[c_2 = g_1 + g_0p_1 + c_0p_0p_1\]
\[c_1 = g_0 + c_0p_0\]

Note the use of \(c_4 = g_3 + c_3p_3\) in the following diagram.

Fig. 6.1 Four-bit carry network with full lookahead.
Full carry lookahead is impractical for wide words

The fully unrolled carry equation for c_{31} consists of 32 product terms, the largest of which has 32 literals

Thus, the required ANDs and ORs must be realized by tree networks, leading to increased latency and cost

Two schemes for managing this complexity:

High-radix addition (i.e., radix 2^g)
- increases the latency for generating the auxiliary signals and sum digits
- but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition
- Radix-16 (four digits)
- Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c_4, c_8, and c_{12} are determined first
6.2 Carry-Lookahead Adder Design

\[
\begin{align*}
g_{[i,i+3]} &= g_{i+3} + g_{i+2}p_{i+3} + g_{i+1}p_{i+2}p_{i+3} + g_ip_{i+1}p_{i+2}p_{i+3} \\
p_{[i,i+3]} &= p_i p_{i+1} p_{i+2} p_{i+3}
\end{align*}
\]

Fig. 6.2 Four-bit lookahead carry generator.
Fig. 6.3 Schematic diagram of a 4-bit lookahead carry generator.

Fig. 6.4 Combining of g and p signals of four (contiguous or overlapping) blocks of arbitrary widths into the g and p signals for the overall block $[i_0, j_3]$.

© Fall 2001, Oxford University Press

Behrooz Parhami, UC Santa Barbara
Latency through the 16-bit CLA adder consists of finding:

- g and p for individual bit positions (1 gate level)
- g and p signals for 4-bit blocks (2 gate levels)
- block carry-in signals c_4, c_8, and c_{12} (2 gate levels)
- internal carries within 4-bit blocks (2 gate levels)
- sum bits (2 gate levels)

Total latency for the 16-bit adder = 9 gate levels
(compare to 32 gate levels for a 16-bit ripple-carry adder)

$$T_{\text{lookahead-add}} = 4 \log_4 k + 1 \text{ gate levels}$$

$$c_{\text{out}} = x_{k-1} y_{k-1} + s_{k-1} (x_{k-1} + y_{k-1})$$
6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:

\[c_i = g_{i-1} + g_{i-2} t_{i-1} + g_{i-3} t_{i-2} t_{i-1} + g_{i-4} t_{i-3} t_{i-2} t_{i-1} + c_{i-4} t_{i-4} t_{i-3} t_{i-2} t_{i-1} \]

Ling’s modification:
propagate \(h_i = c_i + c_{i-1} \) instead of \(c_i \)

\[h_i = g_{i-1} + g_{i-2} + g_{i-3} t_{i-2} + g_{i-4} t_{i-3} t_{i-2} + h_{i-4} t_{i-4} t_{i-3} t_{i-2} \]

CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs

The advantage of \(h_i \) over \(c_i \) is even greater with wired-OR:

CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once \(h_i \) is known, however, the sum is obtained by a slightly more complex expression compared to \(s_i = p_i \oplus c_i \)

\[s_i = (t_i \oplus h_{i+1}) + h_i g_i t_{i-1} \]

Other designs similar to Ling’s are possible [Dora88]
6.4 Carry Determination as Prefix Computation

Fig. 6.6 Combining of \(g \) and \(p \) signals of two (contiguous or overlapping) blocks \(B' \) and \(B'' \) of arbitrary widths into the \(g \) and \(p \) signals for block \(B \).

The problem of carry determination can be formulated as:

Given \((g_0, p_0) \) \((g_1, p_1) \) \(\cdots \) \((g_{k-2}, p_{k-2}) \) \((g_{k-1}, p_{k-1}) \)

Find \((g_{[0,0]}, p_{[0,0]}) \) \((g_{[0,1]}, p_{[0,1]}) \) \(\cdots \) \((g_{[0,k-2]}, p_{[0,k-2]}) \) \((g_{[0,k-1]}, p_{[0,k-1]}) \)

The desired pairs are found by evaluating all prefixes of

\((g_0, p_0) \& (g_1, p_1) \& \cdots \& (g_{k-2}, p_{k-2}) \& (g_{k-1}, p_{k-1}) \)

Prefix sums analogy:

Given \(x_0 \) \(x_1 \) \(x_2 \) \(\cdots \) \(x_{k-1} \)

Find \(x_0 \) \(x_0+x_1 \) \(x_0+x_1+x_2 \) \(\cdots \) \(x_0+x_1+\cdots+x_{k-1} \)
6.5 Alternative Parallel Prefix Networks

![Diagram](Fig. 6.7 Parallel prefix sums network built of two \(k/2 \)-input networks and \(k/2 \) adders.)

Delay recurrence \(D(k) = D(k/2) + 1 = \log_2 k \)

Cost recurrence \(C(k) = 2C(k/2) + k/2 = (k/2) \log_2 k \)

![Diagram](Fig. 6.8 Parallel prefix sums network built of one \(k/2 \)-input network and \(k - 1 \) adders.)

Delay \(D(k) = D(k/2) + 2 = 2 \log_2 k - 1 \) (\(-2 \) really)

Cost \(C(k) = C(k/2) + k - 1 = 2k - 2 - \log_2 k \)
Fig. 6.A Brent-Kung lookahead carry network (8-digit adder).

Fig. 6.9 Brent-Kung parallel prefix graph for 16 inputs.
Fig. 6.10 Kogge-Stone parallel prefix graph for 16 inputs.

Delay \[D(k) = \log_2 k \]

Cost \[C(k) = (k - 1) + (k - 2) + (k - 4) + \ldots + (k - k/2) \]
\[= k \log_2 k - k + 1 \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Delay</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Div&Conq</td>
<td>\log_2 k</td>
<td>(k/2) \log_2 k</td>
</tr>
<tr>
<td>Kogge-Stone</td>
<td>\log_2 k</td>
<td>k \log_2 k - k + 1</td>
</tr>
<tr>
<td>Brent-Kung</td>
<td>2 \log_2 k - 2</td>
<td>2k - 2 - \log_2 k</td>
</tr>
</tbody>
</table>
B-K: Six levels, 26 cells K-S: Four levels, 49 cells

Hybrid: Five levels, 32 cells

Fig. 6.11 A Hybrid Brent-Kung/Kogge-Stone parallel prefix graph for 16 inputs.
6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers as implemented in the AMD Am29050 CMOS micro. The following description is based on the 64-bit version. In radix-256 addition of 64-bit numbers, only the carries \(c_8, c_{16}, c_{24}, c_{32}, c_{40}, c_{48}, \) and \(c_{56} \) are needed.

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are used to derive \(g \) and \(p \) signals for 4-bit blocks.

![Diagrams of 4-bit Manchester carry chains](image)

Fig. 6.12 Example four-bit Manchester carry chain designs in CMOS technology [Lync92].
These signal pairs, denoted \([0, 3], [4, 7], \ldots\) at the left edge of Fig. 6.13, form the inputs to one 5-bit and three 4-bit MCCs that in turn feed two more MCCs in the third level.

The MCCs in Fig. 6.13 are of the type shown in Fig. 6.12b.

![Diagram of spanning-tree carry-lookahead network](image)

Fig. 6.13 Spanning-tree carry-lookahead network [Lync92]. The 16 MCCs at level 1, that produce generate and propagate signals for 4-bit blocks, are not shown.
7 Variations in Fast Adders

Chapter Goals
Study alternatives to the CLA method for designing fast adders

Chapter Highlights
Many methods besides CLA are available (both competing and complementary)
Best design is technology-dependent (often hybrid rather than pure)
Knowledge of timing allows optimizations

Chapter Contents
7.1 Simple Carry-Skip Adders
7.2 Multilevel Carry-Skip Adders
7.3 Carry-Select Adders
7.4 Conditional-Sum Adder
7.5 Hybrid Adder Designs
7.6 Optimizations in Fast Adders
7.1 Simple Carry-Skip Adders

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple carry-skip adder with 4-bit skip blocks.

Fig. 7.A Road analogy for carry-skip addition.

Assume driving time the same for one city block or one freeway “block” (between two exits)
Skip with fixed-width blocks of b bits

$$T_{\text{fixed-skip-add}} = (b - 1) + 0.5 + (k/b - 2) + (b - 1)$$

in block 0 OR gate skips in last block

$$\cong 2b + k/b - 3.5 \text{ stages}$$

$$\frac{dT_{\text{fixed-skip-add}}}{db} = 2 - k/b^2 = 0 \Rightarrow b^{\text{opt}} = \sqrt{k/2}$$

$$T_{\text{fixed-skip-add}}^{\text{opt}} \cong 2\sqrt{2k} - 3.5$$

Example: $k = 32, b^{\text{opt}} = 4, T_{\text{fixed-skip-add}}^{\text{opt}} = 12.5$ stages

(contrast with 32 stages for a ripple-carry adder)
Skip with variable-width blocks

![Diagram of carry-skip adder with variable-size blocks and three sample carry paths.]

Fig. 7.2 Carry-skip adder with variable-size blocks and three sample carry paths.

Optimal variable-width blocks

\[b \quad b+1 \quad \cdots \quad b+t/2-1 \quad b+t/2-1 \quad \cdots \quad b+1 \quad b \]

The total number of bits in the \(t \) blocks is \(k \):

\[
2[b + (b+1) + \cdots + (b+t/2-1)] = t(b + t/4 - 1/2) = k
\]

\[
b = k/t - t/4 + 1/2
\]

\[
T_{\text{var-skip-add}} = 2(b - 1) + 0.5 + t - 2 = 2k/t + t/2 - 2.5
\]

\[
dT_{\text{var-skip-add}}/dt = -2k/t^2 + 1/2 = 0 \quad \Rightarrow \quad t^{\text{opt}} = 2\sqrt{k}
\]

Optimal number of blocks \(\sqrt{2} \) times that of fixed blocks

\[
T_{\text{var-skip-add}}^{\text{opt}} \cong 2\sqrt{k} - 2.5
\]

Roughly a factor of \(\sqrt{2} \) smaller than for fixed blocks.
7.2 Multilevel carry-skip adders

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

Fig. 7.4 Example of a two-level carry-skip adder.

Fig. 7.5 Two-level carry-skip adder optimized by removing the short-block skip circuits.
Example 7.1
Each of the following operations takes one unit of time:
generation of g_i and p_i, generation of level-i skip signal
from level-($i-1$) skip signals, ripple, skip, and computation
of sum bit once the incoming carry is known
Build the widest possible single-level carry-skip adder with
a total delay not exceeding 8 time units

Max adder width = $1 + 2 + 3 + 4 + 4 + 3 + 1 = 18$ bits

Generalization of Example 7.1:
For a single-level carry-skip adder with total latency of T, where T is even, the block widths are:

1 2 3 . . . $T/2$ $T/2$. . . 4 3 1

This yields a total width of $T^2/4 + T/2 - 2$ bits

When T is odd, the block widths become:

1 2 3 . . . $(T + 1)/2$. . . 4 3 1

This yields a total width of $(T + 1)^2/4 - 2$

Thus, for any T, the total width is $\lfloor (T + 1)^2/4 \rfloor - 2$
Example 7.2
Each of the following operations takes one unit of time: generation of g_i and p_i, generation of level-i skip signal from level-$(i-1)$ skip signals, ripple, skip, and computation of sum bit once the incoming carry is known. Build the widest possible two-level carry-skip adder with a total delay not exceeding 8 time units.

First determine the number of blocks and timing constraints at the second level.

The remaining problem is to build single-level carry-skip adders with $T_{\text{produce}} = \beta$ and $T_{\text{assimilate}} = \alpha$.

Fig. 7.7 Two-level carry-skip adder with a delay of 8 units: (a) Initial timing constraints, (b) Final design.
Table 7.1 Second-level constraints T_{produce} and $T_{\text{assimilate}}$, with associated subblock and block widths, in a two-level carry-skip adder with a total delay of 8 time units (Fig. 7.7)

<table>
<thead>
<tr>
<th>Block</th>
<th>T_{produce}</th>
<th>$T_{\text{assimilate}}$</th>
<th>Number of subblocks</th>
<th>Subblock widths (bits)</th>
<th>Block width (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>α</td>
<td>$\min(\beta-1, \alpha)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>1, 3</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2, 3, 3</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2, 3, 2, 1</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3, 2, 1</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2, 1</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Total width: 30 bits

Fig. 7.8 Generalized delay model for carry-skip adders.
Elaboration on Example 7.2

Given the delay pair \(\{\beta, \alpha\} \) for a level-2 block in Fig. 7.7a, the number of level-1 blocks in the corresponding single-level carry-skip adder will be \(\gamma = \min(\beta - 1, \alpha) \)

This is easily verified from the following two diagrams.

The width of the \(i \)th level-1 block in the level-2 block characterized by \(\{\beta, \alpha\} \) is \(b_i = \min(\beta - \gamma + i + 1, \alpha - i) \)

So, the total width of such a block is:

\[
\sum_{i=0}^{\gamma-1} \min(\beta - \gamma + i + 1, \alpha - i)
\]

The only exception occurs in the rightmost level-2 block A for which \(b_0 \) is one unit less than the value given above in order to accommodate the carry-in signal.
7.3 Carry-Select Adders

![Carry-select adder for k-bit numbers built from three k/2-bit adders.](image)

Fig. 7.9 Carry-select adder for k-bit numbers built from three k/2-bit adders.

\[
C_{\text{select-add}}(k) = 3C_{\text{add}}(k/2) + k/2 + 1 \\
T_{\text{select-add}}(k) = T_{\text{add}}(k/2) + 1
\]

![Two-level carry-select adder built of k/4-bit adders.](image)

Fig. 7.10 Two-level carry-select adder built of k/4-bit adders.
7.4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme, until we arrive at single-bit blocks.

\[C(k) \equiv 2C(k/2) + k + 2 \equiv k (\log_2 k + 2) + k C(1) \]
\[T(k) = T(k/2) + 1 = \log_2 k + T(1) \]

where \(C(1) \) and \(T(1) \) are the cost and delay of the circuit of Fig. 7.11 used at the top to derive the sum and carry bits with a carry-in of 0 and 1.

The term \(k + 2 \) in the first recurrence represents an upper bound on the number of single-bit 2-to-1 multiplexers needed for combining two \(k/2 \)-bit adders into a \(k \)-bit adder.

![Fig. 7.11](image)

Fig. 7.11 Top-level block for one bit position of a conditional-sum adder.
Table 7.2 Conditional-sum addition of two 16-bit numbers. The width of the block for which the sum and carry bits are known doubles with each additional level, leading to an addition time that grows as the logarithm of the word width \(k \).

<table>
<thead>
<tr>
<th>Block width</th>
<th>Block carry-in</th>
<th>Block sum and block carry-out</th>
<th>C_in</th>
<th>C_out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Where:
- \(x \) and \(y \) are the two 16-bit numbers.
- \(s \) and \(c \) represent the sum and carry bits for each block.
- \(C_{in} \) is the carry-in for the next level.
- \(C_{out} \) is the carry-out for the current level.
7.5 **Hybrid Adder Designs**

![Diagram of hybrid carry-lookahead/carry-select adder]

Fig. 7.12 A hybrid carry-lookahead/carry-select adder.

![Diagram of 48-bit adder with hybrid ripple-carry/carry-lookahead design]

Fig. 7.13 Example 48-bit adder with hybrid ripple-carry/carry-lookahead design.

Other possibilities: hybrid carry-select/ripple-carry
hybrid ripple-carry/carry-select

...
7.6 Optimizations in Fast Adders

What looks best at the block diagram or gate level may not be best when a circuit-level design is generated (effects of wire length, signal loading, ...)

Modern practice: optimization at the transistor level

Variable-block carry-lookahead adder

Optimization based on knowledge of given input timing or required output timing

![Graph showing latency from inputs in XOR-gate delays]

Fig. 7.14 Example arrival times for operand bits in the final fast adder of a tree multiplier [Oklo96].
8 Multi-Operand Addition

Chapter Goals
Learn methods for speeding up the Addition of several numbers (needed for multiplication or inner-product)

Chapter Highlights
Running total kept in redundant form
Current total + Next number → New total
Deferred carry assimilation
Wallace/Dadda trees and parallel counters

Chapter Contents
8.1 Using Two-Operand Adders
8.2 Carry-Save Adders
8.3 Wallace and Dadda Trees
8.4 Parallel Counters
8.5 Generalized Parallel Counters
8.6 Adding Multiple Signed Numbers
8.1 Using Two-Operand Adders

Fig. 8.1 Multioperand addition problems for multiplication or inner-product computation in dot notation.

Fig. 8.2 Serial implementation of multi-operand addition with a single 2-operand adder.

\[T_{\text{serial-multi-add}} = O(n \log(k + \log n)) \]

Because \(\max(k, \log n) < k + \log n \cdot \max(2k, 2 \log n) \)

we have \(\log(k + \log n) = O(\log k + \log \log n) \) and:

\[T_{\text{serial-multi-add}} = O(n \log k + n \log \log n) \]

Therefore, addition time grows superlinearly with \(n \) when \(k \) is fixed and logarithmically with \(k \) for a given \(n \)
One can pipeline the serial solution to get somewhat better performance.

Fig. 8.3 Serial multi-operand addition when each adder is a 4-stage pipeline.
Fig. 8.4 Adding 7 numbers in a binary tree of adders.

\[
T_{\text{tree-fast-multi-add}} = O(\log k + \log(k + 1) + \ldots \\
+ \log(k + \lceil \log_2 n \rceil - 1))
\]

\[
= O(\log n \log k + \log n \log \log n)
\]

\[
T_{\text{tree-ripple-multi-add}} = O(k + \log n)
\]

Fig. 8.5 Ripple-carry adders at levels \(i\) and \(i + 1\) in the tree of adders used for multi-operand addition.
8.2 Carry-Save Adders

Fig. 8.6 A ripple-carry adder turns into a carry-save adder if the carries are saved (stored) rather than propagated.

Fig. 8.7 Carry-propagate adder (CPA) and carry-save adder (CSA) functions in dot notation.
Fig. 8.8 Specifying full- and half-adder blocks, with their inputs and outputs, in dot notation.

A full-adder compacts 3 dots into 2 dots
A half-adder rearranges 2 dots

Fig. 8.9 Tree of carry-save adders reducing seven numbers to two.

\[T_{\text{carry-save-multi-add}} = O(\text{tree height} + T_{\text{CPA}}) \]
\[= O(\log n + \log k) \]

\[C_{\text{carry-save-multi-add}} = (n - 2)C_{\text{CSA}} + C_{\text{CPA}} \]
Fig. 8.10 Addition of seven 6-bit numbers in dot notation.

Fig. 8.11 Representing a seven-operand addition in tabular form.
Fig. 8.12 Adding seven k-bit numbers and the CSA/CPA widths required.

Fig. 8.13 Serial carry-save addition using a single CSA.
8.3 Wallace and Dadda Trees

\[
h(n) = 1 + h\left\lceil \frac{2n}{3} \right\rceil
\]

\[
n(h) = \left\lfloor \frac{3n(h - 1)}{2} \right\rfloor
\]

\[
2 \times 1.5^{h-1} < n(h) \leq 2 \times 1.5^h
\]

<table>
<thead>
<tr>
<th>Table 8.1</th>
<th>The maximum number (n(h)) of inputs for an (h)-level carry-save-adder tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>(n(h))</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
</tr>
</tbody>
</table>
In a Wallace tree, we reduce the number of operands at the earliest possible opportunity.

In a Dadda tree, we reduce the number of operands at the latest possible opportunity that leads to no added delay (target the next smaller number in Table 8.1).

![Diagram of a Dadda tree](image)

Fig. 8.14 Adding seven 6-bit numbers using Dadda’s strategy.
Fig. 8.15 Adding seven 6-bit numbers by taking advantage of the final adder’s carry-in.

Total cost = 7-bit adder + 26 FAs + 3 HA
8.4 Parallel Counters

Single-bit full-adder = (3; 2)-counter
Circuit reducing 7 bits to their 3-bit sum = (7; 3)-counter
Circuit reducing n bits to their $\lceil \log_2(n + 1) \rceil$-bit sum
\[= (n; \lceil \log_2(n + 1) \rceil)\text{-counter} \]

Fig. 8.16 A 10-input parallel counter also known as a (10; 4)-counter.
8.5 Generalized Parallel Counters

Fig. 8.17 Dot notation for a (5, 5; 4)-counter and the use of such counters for reducing five numbers to two numbers.

(n; 2)-counters

\[n + \psi_1 + \psi_2 + \psi_3 + \cdots \leq 3 + 2\psi_1 + 4\psi_2 + 8\psi_3 + \cdots \]
8.6 Adding Multiple Signed Numbers

Extended positions Sign Magnitude positions
\[x_{k-1} \quad x_{k-1} \quad x_{k-1} \quad x_{k-1} \quad x_{k-1} \quad x_{k-2} \quad x_{k-3} \quad x_{k-4} \ldots \]
\[y_{k-1} \quad y_{k-1} \quad y_{k-1} \quad y_{k-1} \quad y_{k-1} \quad y_{k-2} \quad y_{k-3} \quad y_{k-4} \ldots \]
\[z_{k-1} \quad z_{k-1} \quad z_{k-1} \quad z_{k-1} \quad z_{k-1} \quad z_{k-2} \quad z_{k-3} \quad z_{k-4} \ldots \]

(a)

Extended positions Sign Magnitude positions
\[1 \quad 1 \quad 1 \quad 1 \quad 0 \quad x_{k-1} \quad x_{k-2} \quad x_{k-3} \quad x_{k-4} \ldots \]
\[\overline{y}_{k-1} \quad y_{k-2} \quad y_{k-3} \quad y_{k-4} \ldots \]
\[\overline{z}_{k-1} \quad z_{k-2} \quad z_{k-3} \quad z_{k-4} \ldots \]
\[1 \]

(b)

Fig. 8.18 Adding three 2’s-complement numbers using sign extension (a) or by the method based on negatively weighted sign bits (b).
Part III Multiplication

Part Goals
Review shift-add multiplication schemes
Learn about faster multipliers
Discuss speed/cost tradeoffs in multipliers

Part Synopsis
Multiplication is an often-used operation
(arithmetic & array index calculations)
Division = reciprocation + multiplication
Multiplication speedup: high-radix, tree, ...
Bit-serial, modular, and array multipliers

Part Contents
Chapter 9 Basic Multiplication Schemes
Chapter 10 High-Radix Multipliers
Chapter 11 Tree and Array Multipliers
Chapter 12 Variations in Multipliers
9 Basic Multiplication Schemes

Chapter Goals
Study shift/add or bit-at-a-time multipliers
and set the stage for faster methods and
variations to be covered in Chapters 10-12

Chapter Highlights
Multiplication = multioperand addition
Hardware, firmware, software algorithms
Multiplying 2’s-complement numbers
The special case of one constant operand

Chapter Contents
9.1. Shift/Add Multiplication Algorithms
9.2. Programmed Multiplication
9.3. Basic Hardware Multipliers
9.4. Multiplication of Signed Numbers
9.5. Multiplication by Constants
9.6. Preview of Fast Multipliers
“At least one good reason for studying multiplication and division is that there is an infinite number of ways of performing these operations and hence there is an infinite number of PhDs (or expenses-paid visits to conferences in the USA) to be won from inventing new forms of multiplier.”

Alan Clements
The Principles of Computer Hardware, 1986
9.1 Shift/Add Multiplication Algorithms

Notation for our discussion of multiplication algorithms:

\[a \quad \text{Multiplicand} \quad a_{k-1}a_{k-2} \cdots a_1a_0 \]
\[x \quad \text{Multiplier} \quad x_{k-1}x_{k-2} \cdots x_1x_0 \]
\[p \quad \text{Product} \quad (a \times x) \quad p_{2k-1}p_{2k-2} \cdots p_1p_0 \]

Initially, we assume unsigned operands

![Diagram of multiplication process](image)

Fig. 9.1 Multiplication of two 4-bit unsigned binary numbers in dot notation.

Multiplication with right shifts: top-to-bottom accumulation

\[p^{(j+1)} = (p^{(j)} + x_ja2^k) 2^{-1} \]

with \(p^{(0)} = 0 \) and \(p^{(k)} = p = ax + p^{(0)}2^{-k} \)

|——add——|
|——shift right——|

Multiplication with left shifts: bottom-to-top accumulation

\[p^{(j+1)} = 2p^{(j)} + x_{k-j-1}a \]

with \(p^{(0)} = 0 \) and \(p^{(k)} = p = ax + p^{(0)}2^k \)

|shift|
|——add——|
Right-shift algorithm

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p^{(0)}$</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$+x_0a$</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(1)}$</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(1)}$</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$+x_1a$</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(2)}$</td>
<td>0 1 1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(2)}$</td>
<td>0 1 1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>$+x_2a$</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(3)}$</td>
<td>0 0 1 1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(3)}$</td>
<td>0 0 1 1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>$+x_3a$</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(4)}$</td>
<td>0 1 1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(4)}$</td>
<td>0 1 1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

Left-shift algorithm

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p^{(0)}$</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(0)}$</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$+x_3a$</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(1)}$</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(1)}$</td>
<td>0 1 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>$+x_2a$</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(2)}$</td>
<td>0 1 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(2)}$</td>
<td>0 1 0 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$+x_1a$</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(3)}$</td>
<td>0 1 1 0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$2p^{(3)}$</td>
<td>0 1 1 0 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>$+x_0a$</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$p^{(4)}$</td>
<td>0 1 1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9.2 Examples of sequential multiplication with right and left shifts.
Programmed multiplication of k-bit numbers

$6k + 3$ to $7k + 3$ machine instructions, ignoring operand loads and result store

$k = 32$ implies 200^+ instructions on average

This is too slow for many modern applications!

Microprogrammed multiply would be somewhat better
9.2 Programmed Multiplication

\[
\begin{array}{c|c|c|c|c}
R0 & R_c & Ra & Rx & Rp \\
0 & Counter & Multicand & Multiplier & Product, high \\
\end{array}
\]

{Using right shifts, multiply unsigned m_cand and m_ier, storing the resultant 2k-bit product in p_high and p_low.}

Registers: R0 holds 0 Rc for counter
Ra for m_cand Rx for m_ier
Rp for p_high Rq for p_low

{Load operands into registers Ra and Rx}

mult: load Ra with m_cand
load Rx with m_ier

{Initialize partial product and counter}
copy R0 into Rp
copy R0 into Rq
load k into Rc

{Begin multiplication loop}
m_loop: shift Rx right 1 {LSB moves to carry flag}
branch no_add if carry = 0
add Ra to Rp {carry flag is set to c_{out}}
no_add: rotate Rp right 1 {carry to MSB, LSB to carry}
rotate Rq right 1 {carry to MSB, LSB to carry}
decr Rc {decrement counter by 1}
branch m_loop if Rc ≠ 0

{Store the product}

store Rp into p_high
store Rq into p_low

m_done: ...

Fig. 9.3 Programmed multiplication (right-shift algorithm).
9.3 Basic Hardware Multipliers

Fig. 9.4 Hardware realization of the sequential multiplication algorithm with additions and right shifts.

Fig. 9.5 Combining the loading and shifting of the double-width register holding the partial product and the partially used multiplier.
Fig. 9.6 Hardware realization of the sequential multiplication algorithm with left shifts and additions.
9.4 Multiplication of Signed Numbers

\[
\begin{array}{c}
\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
\end{array} \\
\begin{array}{cccccc}
p^{(0)} & 0 & 0 & 0 & 0 & 0 \\
+x_0a & 1 & 0 & 1 & 1 & 0 \\
\end{array} \\
\hline
2p^{(1)} & 1 & 1 & 0 & 1 & 1 & 0 \\
p^{(1)} & 1 & 1 & 0 & 1 & 1 & 0 \\
+x_1a & 1 & 0 & 1 & 1 & 0 \\
\hline
2p^{(2)} & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
p^{(2)} & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
+x_2a & 0 & 0 & 0 & 0 & 0 \\
\hline
2p^{(3)} & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
p^{(3)} & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
+x_3a & 1 & 0 & 1 & 1 & 0 \\
\hline
2p^{(4)} & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
p^{(4)} & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
+x_4a & 0 & 0 & 0 & 0 & 0 \\
\hline
2p^{(5)} & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
p^{(5)} & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\end{array}
\]

Fig. 9.7 Sequential multiplication of 2’s-complement numbers with right shifts (positive multiplier).
Fig. 9.8 Sequential multiplication of 2’s-complement numbers with right shifts (negative multiplier).

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^{(0)})</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>(+x_0a)</td>
<td>1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(2p^{(1)})</td>
<td>1 1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(p^{(1)})</td>
<td>1 1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(+x_1a)</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>(2p^{(2)})</td>
<td>1 1 1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(p^{(2)})</td>
<td>1 1 1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(+x_2a)</td>
<td>1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(2p^{(3)})</td>
<td>1 1 0 0 1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(p^{(3)})</td>
<td>1 1 0 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(+x_3a)</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>(2p^{(4)})</td>
<td>1 1 1 0 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(p^{(4)})</td>
<td>1 1 1 0 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(+(-x_4a))</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>(2p^{(5)})</td>
<td>0 0 0 1 1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>(p^{(5)})</td>
<td>0 0 0 1 1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

\(p\) is the product at the \(i\)th stage.
Table 9.1 Radix-2 Booth’s recoding

<table>
<thead>
<tr>
<th>x_i</th>
<th>x_{i-1}</th>
<th>y_i</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No string of 1s in sight</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>End of string of 1s in x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>Beginning of string of 1s in x</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Continuation of string of 1s in x</td>
</tr>
</tbody>
</table>

Example

$1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0$ Operand x

$-1 \ 0 \ 1 \ 0 \ 0 \ -1 \ 1 \ 0 \ -1 \ 1 \ -1 \ 1 \ 0 \ -1 \ 0$ Recoded version y

Justification

$$2^j + 2^{j-1} + \cdots + 2^{i+1} + 2^i = 2^{i+1} - 2^i$$
Fig. 9.9 Sequential multiplication of 2’s-complement numbers with right shifts using Booth’s recoding.
9.5 Multiplication by Constants

Explicit multiplications, e.g. \(y := 12 \times x + 1 \)

Address of \(A[i, j] = \text{base} + n \times i + j \)

Aspects of multiplication by integer constants:
- Produce efficient code using as few registers as possible
- Find the best code by a time/space-efficient algorithm

Use binary expansion

Example: multiply \(R_1 \) by \(113 = (1110001)_2 \)

\[
\begin{align*}
R_2 & \leftarrow R_1 \text{ shift-left 1} \\
R_3 & \leftarrow R_2 + R_1 \\
R_6 & \leftarrow R_3 \text{ shift-left 1} \\
R_7 & \leftarrow R_6 + R_1 \\
R_{112} & \leftarrow R_7 \text{ shift-left 4} \\
R_{113} & \leftarrow R_{112} + R_1
\end{align*}
\]

Only two registers are required; \(R_1 \) and another

Shorter sequence using shift-and-add instructions

\[
\begin{align*}
R_3 & \leftarrow R_1 \text{ shift-left 1} + R_1 \\
R_7 & \leftarrow R_3 \text{ shift-left 1} + R_1 \\
R_{113} & \leftarrow R_7 \text{ shift-left 4} + R_1
\end{align*}
\]
Use of subtraction (Booth’s recoding) may help
Example:
multiply R_1 by $113 = (1110001)_2 = (100\cdot10001)_2$

\[
\begin{align*}
R_8 & \leftarrow R_1 \text{ shift-left 3} \\
R_7 & \leftarrow R_8 - R_1 \\
R_{112} & \leftarrow R_7 \text{ shift-left 4} \\
R_{113} & \leftarrow R_{112} + R_1
\end{align*}
\]

Use of factoring may help
Example: multiply R_1 by $119 = 7 \times 17 = (8 - 1) \times (16 + 1)$

\[
\begin{align*}
R_8 & \leftarrow R_1 \text{ shift-left 3} \\
R_7 & \leftarrow R_8 - R_1 \\
R_{112} & \leftarrow R_7 \text{ shift-left 4} \\
R_{119} & \leftarrow R_{112} + R_7
\end{align*}
\]

Shorter sequence using shift-and-add/subtract instructions

\[
\begin{align*}
R_7 & \leftarrow R_1 \text{ shift-left 3} - R_1 \\
R_{119} & \leftarrow R_7 \text{ shift-left 4} + R_7
\end{align*}
\]

Factors of the form $2^b \pm 1$ translate directly into a shift followed by an add or subtract

Program execution time improvement by an optimizing compiler using the preceding methods: 20-60% [Bern86]
9.6 Preview of Fast Multipliers

Viewing multiplication as a multioperand addition problem, there are but two ways to speed it up:

a. Reducing the number of operands to be added: handling more than one multiplier bit at a time (high-radix multipliers, Chapter 10)

b. Adding the operands faster: parallel/pipelined multioperand addition (tree and array multipliers, Chapter 11)

In Chapter 12, we cover all remaining multiplication topics, including bit-serial multipliers, multiply-add units, and the special case of squaring.
10 High-Radix Multipliers

Chapter Goals
Study techniques that allow us to handle more than one multiplier bit in each cycle (two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
High radix gives rise to “difficult” multiples
Recoding (change of digit-set) as remedy
Carry-save addition reduces cycle time
Implementation and optimization methods

Chapter Contents
10.1 Radix-4 Multiplication
10.2 Modified Booth’s Recoding
10.3 Using Carry-Save Adders
10.4 Radix-8 and Radix-16 Multipliers
10.5 Multibeat Multipliers
10.6 VLSI Complexity Issues
10.1 Radix-4 Multiplication

Radix-\(r\) versions of multiplication recurrences

Multiplication with right shifts: top-to-bottom accumulation

\[
p^{(j+1)} = (p^{(j)} + x_j a r^k) r^{-1} \quad \text{with} \quad p^{(0)} = 0 \quad \text{and} \quad p^{(k)} = p = ax + p^{(0)}r^{-k}
\]

|––add––|
|––shift right––|

Multiplication with left shifts: bottom-to-top accumulation

\[
p^{(j+1)} = r p^{(j)} + x_{k-j-1}a \quad \text{with} \quad p^{(0)} = 0 \quad \text{and} \quad p^{(k)} = p = ax + p^{(0)}r^k
\]

|shift|
|––add––|

Fig. 10.1 Radix-4, or two-bit-at-a-time, multiplication in dot notation.
Fig. 10.2 The multiple generation part of a radix-4 multiplier with precomputation of $3a$.

\[
\begin{array}{cccc}
 a & 0 & 1 & 1 \\
 3a & 0 & 1 & 0 & 0 & 1 & 0 \\
 x & 1 & 1 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
p^{(0)} & 0 & 0 & 0 & 0 \\
+(x_1 x_0)_{\text{two}}a & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
4p^{(1)} & 0 & 0 & 1 & 1 & 0 & 0 \\
p^{(1)} & 0 & 0 & 1 & 1 & 0 & 0 \\
+(x_3 x_2)_{\text{two}}a & 0 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
4p^{(2)} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
p^{(2)} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

Fig. 10.3 Example of radix-4 multiplication using the $3a$ multiple.
Fig. 10.4 The multiple generation part of a radix-4 multiplier based on replacing $3a$ with $4a$ (carry into next higher radix-4 multiplier digit) and $-a$.

<table>
<thead>
<tr>
<th>x_{i+1}</th>
<th>x_i</th>
<th>c</th>
<th>Mux control</th>
<th>Set carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
10.2 Modified Booth’s Recoding

Table 10.1 Radix-4 Booth’s recoding yielding $(z_{k/2} \cdots z_1 z_0)_{\text{four}}$

<table>
<thead>
<tr>
<th>x_{i+1}</th>
<th>x_i</th>
<th>x_{i-1}</th>
<th>y_{i+1}</th>
<th>y_i</th>
<th>$z_{i/2}$</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No string of 1s in sight</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>End of string of 1s</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Isolated 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>End of string of 1s</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>Beginning of string of 1s</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>End a string, begin new one</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>Beginning of string of 1s</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Continuation of string of 1s</td>
</tr>
</tbody>
</table>

Example: $(21 \ 31 \ 22 \ 32)_{\text{four}}$

Operand x

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
(1) & -2 & 2 & -1 & 2 & -1 & -1 & 0 & -2
\end{array}
\]

Recoded version z
Fig. 10.5 Example radix-4 multiplication with modified Booth’s recoding of the 2’s-complement multiplier.
Fig. 10.6 The multiple generation part of a radix-4 multiplier based on Booth’s recoding.
10.3 Using Carry-Save Adders

Fig. 10.7 Radix-4 multiplication with a carry-save adder used to combine the cumulative partial product, $x_i a$, and $2x_{i+1} a$ into two numbers.
Fig. 10.8 Radix-2 multiplication with the upper half of the cumulative partial product in stored-carry form.

Fig. 10.9 Radix-4 multiplication with a carry-save adder used to combine the stored-carry cumulative partial product and $z_{i/2}^a$ into two numbers.
Fig. 10.10 Booth recoding and multiple selection logic for high-radix or parallel multiplication.

Fig. 10.11 Radix-4 multiplication with two carry-save adders.
10.4 Radix-8 and Radix-16 Multipliers

Fig. 10.12 Radix-16 multiplication with the upper half of the cumulative partial product in carry-save form.

Remove the mux corresponding to x_{i+3} and the CSA right below it to get a radix-8 multiplier (the cycle time will remain the same, though).
Must also modify the small adder at the lower right
Radix-16 multiplier design can become a radix-32 design if modified Booth’s recoding is applied first.

Fig. 10.13 High-radix multipliers as intermediate between sequential radix-2 and full-tree multipliers.
10.5 Multibeat Multipliers

Fig. 10.14 Twin-beat multiplier with radix-8 Booth’s recoding.
Fig. 10.2 Conceptual view of a twin-beat multiplier.

Fig. 10.15 Conceptual view of a three-beat multiplier.
10.6 VLSI Complexity Issues

Radix-2^b multiplication
- \(bk \) two-input AND gates
- \(O(bk) \) area for the CSA tree
- Total area: \(A = O(bk) \)
- Latency: \(T = O((k/b) \log b + \log k) \)

Any VLSI circuit computing the product of two \(k \)-bit integers must satisfy the following constraints
- \(AT \) grows at least as fast as \(k \sqrt{k} \).
- \(AT^2 \) is at least proportional to \(k^2 \)

For the preceding implementations, we have:
- \(AT = O(k^2 \log b + bk \log k) \)
- \(AT^2 = O((k^3/b) \log^2 b) \)
Suboptimality of radix-\(b\) multipliers

<table>
<thead>
<tr>
<th>Low cost</th>
<th>High speed</th>
<th>Optimal wrt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) constant</td>
<td>(b = O(k))</td>
<td>(AT) or (AT^2)</td>
</tr>
<tr>
<td>(AT = O(k^2))</td>
<td>(AT = O(k^2 \log k))</td>
<td>(AT = O(k\sqrt{k}))</td>
</tr>
<tr>
<td>(AT^2 = O(k^3))</td>
<td>(AT^2 = O(k^2 \log^2 k))</td>
<td>(AT^2 = O(k^2))</td>
</tr>
</tbody>
</table>

Intermediate designs do not yield better \(AT\) and \(AT^2\). The multipliers remain asymptotically suboptimal for any \(b\).

By the \(AT\) measure (indicator of cost-effectiveness), slower radix-2 multipliers are better than high-radix or tree multipliers.

When many independent multiplications are required, it may be appropriate to use the available chip area for a large number of slow multipliers as opposed to a small number of faster units.

Latency of high-radix multipliers can actually be reduced from \(O((k/b) \log b + \log k)\) to \(O(k/b + \log k)\) through more effective pipelining (Chapter 11).
11 Tree and Array Multipliers

Chapter Goals
Study the design of multipliers for highest possible performance (speed, throughput)

Chapter Highlights
Tree multiplier = reduction tree
+ redundant-to-binary converter
Avoiding full sign extension in multiplying signed numbers
Array multiplier = one-sided reduction tree
+ ripple-carry adder

Chapter Contents
11.1 Full-Tree Multipliers
11.2 Alternative Reduction Trees
11.3 Tree Multipliers for Signed Numbers
11.4 Partial-Tree Multipliers
11.5 Array Multipliers
11.6 Pipelined Tree and Array Multipliers
11.1 Full-Tree Multipliers

Fig. 10.13 High-radix multipliers as intermediate between sequential radix-2 and full-tree multipliers.
Fig. 11.1 General structure of a full-tree multiplier.
Variations in tree multipliers are distinguished by the designs of the following three elements:

- multiple-forming circuits
- partial products reduction tree
- redundant-to-binary converter
Wallace Tree
(5 FAs + 3 HAs + 4-Bit Adder)

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 3 & 2 & 1 \\
FA & FA & FA & HA \\
\hline
1 & 3 & 2 & 3 & 2 & 1 & 1 \\
FA & HA & FA & HA \\
\hline
2 & 2 & 2 & 2 & 1 & 1 & 1 \\
4-Bit Adder \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

Dadda Tree
(4 FAs + 2 HAs + 6-Bit Adder)

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 3 & 2 & 1 \\
FA & FA \\
\hline
1 & 3 & 2 & 2 & 3 & 2 & 1 \\
FA & HA & HA & FA \\
\hline
2 & 2 & 2 & 2 & 1 & 2 & 1 \\
6-Bit Adder \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

Fig. 11.2 Two different binary 4×4 tree multipliers.
Fig. 11.3 Possible CSA tree for a 7×7 tree multiplier.

CSA trees are generally quite irregular, thus causing problems in VLSI implementation.
11.2 Alternative Reduction Trees

Fig. 11.4 A slice of a balanced-delay tree for 11 inputs.

Fig. 11.5 Tree multiplier with a more regular structure based on 4-to-2 reduction modules.
Fig. 11.6 Layout of a partial-products reduction tree composed of 4-to-2 reduction modules. Each solid arrow represents two numbers.

If 4-to-2 reduction is done by using two CSAs, the binary tree will often have more CSA levels, but regularity will improve.

Use of Booth’s recoding reduces the gate complexity but may not prove worthwhile due to irregularity.
11.3 Tree Multipliers for Signed Numbers

Sign extension in multioperand addition (from Fig. 8.18)

Extended positions Sign Magnitude positions
\[x_{k-1} \ x_{k-1} \ x_{k-1} \ x_{k-1} \ x_{k-1} \ x_{k-1} \ x_{k-2} \ x_{k-3} \ x_{k-4} \ \cdots \]
\[y_{k-1} \ y_{k-1} \ y_{k-1} \ y_{k-1} \ y_{k-1} \ y_{k-1} \ y_{k-2} \ y_{k-3} \ y_{k-4} \ \cdots \]
\[z_{k-1} \ z_{k-1} \ z_{k-1} \ z_{k-1} \ z_{k-1} \ z_{k-1} \ z_{k-2} \ z_{k-3} \ z_{k-4} \ \cdots \]

The difference in multiplication is the shifting sign positions

Fig. 11.7 Sharing of full adders to reduce the CSA width in a signed tree multiplier.
Fig. 11.8 Baugh-Wooley 2's-complement multiplication.

\[-a_4 x_0 = a_4 (1 - x_0) - a_4 = a_4 \bar{x}_0 - a_4\]
11.4 Partial-Tree Multipliers

![Diagram of a partial-tree multiplier]

Fig. 11.9 General structure of a partial-tree multiplier.

High-radix versus partial-tree multipliers
difference is quantitative rather than qualitative
for small h, say < 8 bits, the multiplier of Fig. 11.9
is viewed as a high-radix multiplier
when h is a significant fraction of k, say $k/2$ or $k/4$,
then we view it as a partial-tree multiplier
11.4 Array Multipliers

Fig. 11.10 A basic array multiplier uses a one-sided CSA tree and a ripple-carry adder.

Fig. 11.11 Details of a 5×5 array multiplier using FA blocks.
Fig. 11.12 Modifications in a 5 × 5 array multiplier to deal with 2’s-complement inputs using the Baugh-Wooley method or to shorten the critical path.

Nearly half of the hardware in array/tree multipliers is there to get the last bit right (1 dot = one FPGA cell)

ulp

k-by-k multiplication

<table>
<thead>
<tr>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

© Fall 2001, Oxford University Press
Behrooz Parhami, UC Santa Barbara
\[
\text{Max error} = 8/2 + 7/4 + 6/8 + 5/16 + 4/32 + 3/64 + 2/128 + 1/256 = 7.004 \text{ ulp}
\]

\[
\text{Mean error} = 1.751 \text{ ulp}
\]

Constant compensation

\[
\text{Variable compensation}
\]

Fig. 11.13 Design of a 5×5 array multiplier with two additive inputs and full-adder blocks that include AND gates.
Fig. 11.14 Conceptual view of a modified array multiplier that does not need a final carry-propagate adder.

Fig. 11.15 Carry-save addition, performed in level i, extends the conditionally computed bits of the final product.
11.6 Pipelined Tree and Array Multipliers

Fig. 11.9 General structure of a partial-tree multiplier.

Fig. 11.16 Efficiently pipelined partial-tree multiplier.
Fig. 11.17 Pipelined 5×5 array multiplier using latched FA blocks. The small shaded boxes are latches.
12 Variations in Multipliers

Chapter Goals
Learn additional methods for synthesizing fast multipliers as well as other types of multipliers (bit-serial, modular, etc.)

Chapter Highlights
Building a multiplier from smaller units
Performing multiply-add as one operation
Bit-serial and (semi)systolic multipliers
Using a multiplier for squaring is wasteful

Chapter Contents
12.1 Divide-and-Conquer Designs
12.2 Additive Multiply Modules
12.3 Bit-Serial Multipliers
12.4 Modular Multipliers
12.5 The Special Case of Squaring
12.6 Combined Multiply-Add Units
12.1 Divide-and-Conquer Designs

Fig. 12.1 Divide-and-conquer (recursive) strategy for synthesizing a $2b \times 2b$ multiplier from $b \times b$ multipliers.

Fig. 12.2 Using $b \times b$ multipliers to synthesize $2b \times 2b$, $3b \times 3b$, and $4b \times 4b$ multipliers.

- $2b \times 2b$ use (3; 2)-counters
- $3b \times 3b$ use (5; 2)-counters
- $4b \times 4b$ use (7; 2)-counters
Fig. 12.3 Using 4×4 multipliers and 4-bit adders to synthesize an 8×8 multiplier.

Generalization

$2b \times 2c$ use $b \times c$ multipliers and $(3; 2)$-counters

$2b \times 4c$ use $b \times c$ multipliers and $(5; 2)$-counters

$gb \times hc$ use $b \times c$ multipliers and $(?; 2)$-counters
12.2 Additive Multiply Modules

Fig. 12.4 Additive multiply module with 2×4 multiplier (ax) plus 4-bit and 2-bit additive inputs (y and z).

$b \times c$ AMM

b-bit and c-bit multiplicative inputs
b-bit additive input
c-bit additive input
$(b + c)$-bit output

$$(2^b - 1) \times (2^c - 1) + (2^b - 1) + (2^c - 1) = 2^{b+c} - 1$$
Fig. 12.5 An 8 × 8 multiplier built of 4 × 2 AMMs. Inputs marked with an asterisk carry 0s.
Fig. 12.6 Alternate 8×8 multiplier design based on 4×2 AMMs. Inputs marked with an asterisk carry 0s.
12.3 Bit-Serial Multipliers

![Diagram of Bit-Serial Multiplier](image)

Fig. 12.7 Semi-systolic circuit for 4 × 4 multiplication in 8 clock cycles.

![Diagram of Retiming](image)

Fig. 12.8 Example of retiming by delaying the inputs to C_L and advancing the outputs from C_L by d units.
Fig. 12.9 A retimed version of our semi-systolic multiplier.

Fig. 12.10 Systolic circuit for 4×4 multiplication in 15 cycles.
Fig. 12.11 Building block for a latency-free bit-serial multiplier.

Fig. 12.12 The cellular structure of the bit-serial multiplier based on the cell in Fig. 12.11.
Already accumulated into three numbers

\[a_{i-1} a_x (i-1) i a (i-1) \]

Already output

Fig. 12.13 Bit-serial multiplier design in dot notation.
12.4 Modular Multipliers

Fig. 12.14 Modulo-\((2^b - 1)\) carry-save adder.

Fig. 12.15 Design of a \(4 \times 4\) modulo-15 multiplier.

Fig. 12.16 One way to design of a \(4 \times 4\) modulo-13 multiplier.
Fig. 12.17 A method for modular multioperand addition.
12.5 The Special Case of Squaring

Fig. 12.18 Design of a 5-bit squarer.
12.6 Combined Multiply-Add Units

Fig. 12.19 Dot-notation representations of various methods for performing a multiply-add operation in hardware.

Multiply-add versus multiply-accumulate
Multiply-accumulate units often have wider additive inputs
Part IV Division

Part Goals
- Review shift-subtract division schemes
- Learn about faster dividers
- Discuss speed/cost tradeoffs in dividers

Part Synopsis
- Division is the hardest basic operation
- Fortunately, it is also the least common
- Division speedup: high-radix, array, ...
- Combined multiplication/division hardware
- Digit-recurrence vs convergence division

Part Contents
- Chapter 13 Basic Division Schemes
- Chapter 14 High-Radix Dividers
- Chapter 15 Variations in Dividers
- Chapter 16 Division by Convergence
13 Basic Division Schemes

Chapter Goals
Study shift/subtract (bit-at-a-time) dividers and set the stage for faster methods and variations to be covered in Chapters 14-16

Chapter Highlights
Shift/sub divide vs shift/add multiply
Hardware, firmware, software algorithms
Dividing 2’s-complement numbers
The special case of a constant divisor

Chapter Contents
13.1 Shift/Subtract Division Algorithms
13.2 Programmed Division
13.3 Restoring Hardware Dividers
13.4 Nonrestoring and Signed Division
13.5 Division by Constants
13.6 Preview of Fast Dividers
13.1 Shift/Subtract Division Algorithms

Notation for our discussion of division algorithms:

- **z** Dividend $z_{2k-1}z_{2k-2} \cdots z_1z_0$
- **d** Divisor $d_{k-1}d_{k-2} \cdots d_1d_0$
- **q** Quotient $q_{k-1}q_{k-2} \cdots q_1q_0$
- **s** Remainder $(z - d \times q)$ $s_{k-1}s_{k-2} \cdots s_1s_0$

Fig. 13.1 Division of an 8-bit number by a 4-bit number in dot notation.

Division is more complex than multiplication:

- Need for quotient digit selection or estimation
- Possibility of overflow: the high-order k bits of z must be strictly less than d; this overflow check also detects the divide-by-zero condition.
Fractional division can be reformulated as integer division

Integer division is characterized by \(z = d \times q + s \)
multiply both sides by \(2^{-2k} \) to get
\[
2^{-2k}z = (2^{-k}d) \times (2^{-k}q) + 2^{-2k}s
\]
\[
z_{\text{frac}} = d_{\text{frac}} \times q_{\text{frac}} + 2^{-k}s_{\text{frac}}
\]

Divide fractions like integers; adjust the final remainder
No-overflow condition in this case is \(z_{\text{frac}} < d_{\text{frac}} \)

Sequential division with left shifts

\[
s^{(j)} = 2s^{(j-1)} - q_{k-j}(2^k d) \quad \text{with } s^{(0)} = z \quad \text{and}
\]
\[
| \text{shift} | s^{(k)} = 2^k s
\]
\[
| \text{subtract} |
\]

There is no division algorithm with right shifts
Integer division

<table>
<thead>
<tr>
<th>z</th>
<th>0 1 1 1 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^4 \cdot d$</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>$s^{(0)}$</td>
<td>0 1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>$2s^{(0)}$</td>
<td>0 1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>$-q_3 2^4 \cdot d$</td>
<td>1 0 1 0 { $q_3 = 1$ }</td>
</tr>
<tr>
<td>$s^{(1)}$</td>
<td>0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>$2s^{(1)}$</td>
<td>0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>$-q_2 2^4 \cdot d$</td>
<td>0 0 0 0 { $q_2 = 0$ }</td>
</tr>
<tr>
<td>$s^{(2)}$</td>
<td>1 0 0 1 0 1</td>
</tr>
<tr>
<td>$2s^{(2)}$</td>
<td>1 0 0 1 0 1</td>
</tr>
<tr>
<td>$-q_1 2^4 \cdot d$</td>
<td>1 0 1 0 { $q_1 = 1$ }</td>
</tr>
<tr>
<td>$s^{(3)}$</td>
<td>1 0 0 0 1</td>
</tr>
<tr>
<td>$2s^{(3)}$</td>
<td>1 0 0 0 1</td>
</tr>
<tr>
<td>$-q_0 2^4 \cdot d$</td>
<td>1 0 1 0 { $q_0 = 1$ }</td>
</tr>
<tr>
<td>$s^{(4)}$</td>
<td>0 1 1 1</td>
</tr>
</tbody>
</table>

Fractional division

<table>
<thead>
<tr>
<th>z_{frac}</th>
<th>.0 1 1 1 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{frac}</td>
<td>.1 0 1 0</td>
</tr>
<tr>
<td>$s^{(0)}$</td>
<td>.0 1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>$2s^{(0)}$</td>
<td>0 .1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>$-q_{-1}d$</td>
<td>.1 0 1 0 { $q_{-1} = 1$ }</td>
</tr>
<tr>
<td>$s^{(1)}$</td>
<td>.0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>$2s^{(1)}$</td>
<td>0 .1 0 0 1 0 1</td>
</tr>
<tr>
<td>$-q_{-2}d$</td>
<td>.0 0 0 0 { $q_{-2} = 0$ }</td>
</tr>
<tr>
<td>$s^{(2)}$</td>
<td>.1 0 0 1 0 1</td>
</tr>
<tr>
<td>$2s^{(2)}$</td>
<td>1 .0 0 1 0 1</td>
</tr>
<tr>
<td>$-q_{-3}d$</td>
<td>.1 0 1 0 { $q_{-3} = 1$ }</td>
</tr>
<tr>
<td>$s^{(3)}$</td>
<td>.1 0 0 0 1</td>
</tr>
<tr>
<td>$2s^{(3)}$</td>
<td>1 .0 0 0 1</td>
</tr>
<tr>
<td>$-q_{-4}d$</td>
<td>.1 0 1 0 { $q_{-4} = 1$ }</td>
</tr>
<tr>
<td>$s^{(4)}$</td>
<td>.0 1 1 1</td>
</tr>
</tbody>
</table>

s_{frac} | 0 .0 0 0 0 0 1 1 |
q_{frac} | .1 0 1 1 |

Fig. 13.2 Examples of sequential division with integer and fractional operands.
13.2 Programmed Division

![Diagram showing register usage for programmed division]

Fig. 13.3 Register usage for programmed division.
{Using left shifts, divide unsigned 2k-bit dividend,
z_high|z_low, storing the k-bit quotient and remainder.
Registers: R0 holds 0 Rc for counter
 Rd for divisor Rs for z_high & remainder
 Rq for z_low & quotient}

{Load operands into registers Rd, Rs, and Rq}

\[
\begin{align*}
\text{div:} & \quad \text{load} \quad \text{Rd with divisor} \\
& \quad \text{load} \quad \text{Rs with z_high} \\
& \quad \text{load} \quad \text{Rq with z_low}
\end{align*}
\]

{Check for exceptions}

\[
\begin{align*}
\text{branch} \quad d_by_0 & \quad \text{if Rd = R0} \\
\text{branch} \quad d_ovfl & \quad \text{if Rs > Rd}
\end{align*}
\]

{Initialize counter}

\[
\begin{align*}
\text{load} \quad k & \quad \text{into Rc}
\end{align*}
\]

{Begin division loop}

\[
\begin{align*}
\text{d_loop:} & \quad \text{shift} \quad \text{Rq left 1} & \{\text{zero to LSB, MSB to carry}\} \\
& \quad \text{rotate} \quad \text{Rs left 1} & \{\text{carry to LSB, MSB to carry}\} \\
& \quad \text{skip} & \{\text{if carry = 1}\} \\
& \quad \text{branch} \quad \text{no_sub} & \{\text{if Rs < Rd}\} \\
& \quad \text{sub} & \{\text{Rd from Rs}\} \\
& \quad \text{incr} \quad \text{Rq} & \{\text{set quotient digit to 1}\}
\end{align*}
\]

\[
\begin{align*}
\text{no_sub:} & \quad \text{decr} \quad \text{Rc} & \{\text{decrement counter by 1}\} \\
& \quad \text{branch} \quad \text{d_loop} & \{\text{if Rc ≠ 0}\}
\end{align*}
\]

{Store the quotient and remainder}

\[
\begin{align*}
\text{store} & \quad \text{Rq into quotient} \\
\text{store} & \quad \text{Rs into remainder}
\end{align*}
\]

\[
\begin{align*}
d_by_0: & \quad \ldots \\
d_ovfl: & \quad \ldots \\
d_done: & \quad \ldots
\end{align*}
\]

Fig. 13.4 Programmed division using left shifts.
13.3 Restoring Hardware Dividers

Division with signed operands: q and s are defined by

$$z = d \times q + s \quad \text{sign}(s) = \text{sign}(z) \quad |s| < |d|$$

Examples of division with signed operands

- $z = 5 \quad d = 3 \quad \Rightarrow \quad q = 1 \quad s = 2$
- $z = 5 \quad d = -3 \quad \Rightarrow \quad q = -1 \quad s = 2$
- $z = -5 \quad d = 3 \quad \Rightarrow \quad q = -1 \quad s = -2$
- $z = -5 \quad d = -3 \quad \Rightarrow \quad q = 1 \quad s = -2$

Magnitudes of q and s are unaffected by input signs
Signs of q and s are derivable from signs of z and d
Will discuss direct signed division later

![Diagram of Shift/subtract sequential restoring divider.](image)
<table>
<thead>
<tr>
<th>z</th>
<th>0 1 1 1 1 0 1 0 1</th>
<th>No overflow, since: (0111)\text{two} < (1010)\text{two}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^4d</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>-2^4d</td>
<td>1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(0)}$</th>
<th>0 0 1 1 1 0 1 0 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$2s^{(0)}$</td>
<td>0 1 1 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$+(-2^4d)$</td>
<td>1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(1)}$</th>
<th>0 0 1 0 0 1 0 1 0</th>
<th>Positive, so set $q_3 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2s^{(1)}$</td>
<td>0 1 0 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>$+(-2^4d)$</td>
<td>1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(2)}$</th>
<th>1 1 1 1 1 0 1</th>
<th>Negative, so set $q_2 = 0$ and restore</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s^{(2)} = 2s^{(1)}$</td>
<td>0 1 0 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>$2s^{(2)}$</td>
<td>1 0 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>$+(-2^4d)$</td>
<td>1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(3)}$</th>
<th>0 1 0 0 0 1 0 1 0</th>
<th>Positive, so set $q_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2s^{(3)}$</td>
<td>1 0 0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>$+(-2^4d)$</td>
<td>1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(4)}$</th>
<th>0 0 1 1 1 0 1 0 1</th>
<th>Positive, so set $q_0 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>1 0 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 13.6 Example of restoring unsigned division.
13.4 Nonrestoring and Signed Division

The cycle time in restoring division must accommodate
shifting the registers
allowing signals to propagate through the adder
determining and storing the next quotient digit
storing the trial difference, if required
Later events depend on earlier ones in the same cycle
Such dependencies tend to lengthen the clock cycle

Nonrestoring division algorithm to the rescue!
assume $q_{k-j} = 1$ and perform a subtraction
store the difference as the new partial remainder
(the partial remainder can become incorrect, hence the name “nonrestoring”)

Why it is acceptable to store an incorrect value
in the partial-remainder register?

Shifted partial remainder at start of the cycle is u
Subtraction yields the negative result $u - 2^kd$

Option 1: restore the partial remainder to correct value u, shift, and subtract to get $2u - 2^kd$
Option 2: keep the incorrect partial remainder $u - 2^kd$, shift, and add to get $2(u - 2^kd) + 2^kd = 2u - 2^kd$
No overflow, since: $(0111)_{\text{two}} < (1010)_{\text{two}}$

<table>
<thead>
<tr>
<th>z</th>
<th>0 1 1 1 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^4d</td>
<td>0 1 0 1 0</td>
</tr>
<tr>
<td>-2^4d</td>
<td>1 0 1 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(0)}$</th>
<th>0 0 1 1 1 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2s^{(0)}$</td>
<td>0 1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>$+(-2^4d)$</td>
<td>1 0 1 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(1)}$</th>
<th>0 0 1 0 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2s^{(1)}$</td>
<td>0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>$+(-2^4d)$</td>
<td>1 0 1 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(2)}$</th>
<th>1 1 1 1 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2s^{(2)}$</td>
<td>1 1 1 1 0 1</td>
</tr>
<tr>
<td>$+2^4d$</td>
<td>0 1 0 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(3)}$</th>
<th>0 1 0 0 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2s^{(3)}$</td>
<td>1 0 0 0 1</td>
</tr>
<tr>
<td>$+(-2^4d)$</td>
<td>1 0 1 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(4)}$</th>
<th>0 0 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>q</td>
<td>1 0 1 1</td>
</tr>
</tbody>
</table>

Fig. 13.7 Example of nonrestoring unsigned division.
Example

\[(0 \, 1 \, 1 \, 1 \, 0 \, 1 \, 0 \, 1)_{\text{two}} \div (1 \, 0 \, 1 \, 0)_{\text{two}} \]

\[(117)_{\text{ten}} \div (10)_{\text{ten}} \]

Fig. 13.8 Partial remainder variations for restoring and nonrestoring division.
Restoring division
$q_{k-j} = 0$ means no subtraction (or subtraction of 0)
$q_{k-j} = 1$ means subtraction of d

Nonrestoring division
We always subtract or add
As if quotient digits are selected from the set \{1, -1\}
 1 corresponds to subtraction
 -1 corresponds to addition
Our goal is to end up with a remainder
 that matches the sign of the dividend

This idea of trying to match the sign of s with the sign z, leads to a direct signed division algorithm

If $\text{sign}(s) = \text{sign}(d)$ then $q_{k-j} = 1$ else $q_{k-j} = -1$

Two problems must be dealt with at the end:
1. Converting the quotient with digits 1 and -1 to binary
2. Adjusting the results if final remainder has wrong sign
 (correction step involves addition of $\pm d$ to remainder and subtraction of ± 1 from quotient)

Correction might be required even in unsigned division
 (when the final remainder is negative)
Dividend = \((33)_{\text{ten}}\)
Divisor = \((-7)_{\text{ten}}\)

\[
\begin{align*}
\begin{array}{cccccccc}
& & & & & & & \\
\text{z} & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
2^4d & 1 & 1 & 0 & 0 & 1 \\
-2^4d & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccccccc}
& & & & & & & \\
\text{s}^{(0)} & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
2s^{(0)} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
+2^4d & 1 & 1 & 0 & 0 & 1 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccccccc}
& & & & & & & \\
\text{s}^{(1)} & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
2s^{(1)} & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
+(-2^4d) & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccccccc}
& & & & & & & \\
\text{s}^{(2)} & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
2s^{(2)} & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
+2^4d & 1 & 1 & 0 & 0 & 1 \\
+(-2^4d) & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccccccc}
& & & & & & & \\
\text{s}^{(3)} & 1 & 1 & 0 & 1 & 1 & 1 \\
2s^{(3)} & 1 & 0 & 1 & 1 & 1 \\
+(-2^4d) & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccccccc}
& & & & & & & \\
\text{s}^{(4)} & 1 & 1 & 1 & 1 & 0 \\
+(-2^4d) & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccccccc}
\text{s}^{(4)} & 0 & 0 & 1 & 0 & 1 \\
\text{s} & 0 & 1 & 0 & 1 \\
\text{q} & -1 & 1 & -1 & 1 \\
\text{q}_2's\text{-compl} & 1 & 1 & 0 & 0 \\
\end{array}
\end{align*}
\]

Remainder = \((5)_{\text{ten}}\)
Uncorrected BSD form
Corrected \(q = (-4)_{\text{ten}}\)

Fig. 13.9 Example of nonrestoring signed division.
Fig. 13.10 Shift-subtract sequential nonrestoring divider.
13.5 Division by Constants

Method 1: find the reciprocal of the constant and multiply

Method 2: use the property that for each odd integer \(d \) there exists an odd integer \(m \) such that \(d \times m = 2^n - 1 \)

\[
\frac{1}{d} = \frac{m}{2^n - 1} = \frac{m}{2^n (1 - 2^{-n})} = \frac{m}{2^n (1 + 2^{-n})(1 + 2^{-2n})(1 + 2^{-4n}) \ldots}
\]

Number of shift-adds required is proportional to \(\log k \)

Example: division by \(d = 5 \) with 24 bits of precision

\[m = 3, \quad n = 4 \text{ by inspection} \]

\[
\frac{z}{5} = \frac{3z}{2^4 - 1} = \frac{3z}{16(1 - 2^{-4})} = \frac{3z}{16} (1 + 2^{-4})(1 + 2^{-8})(1 + 2^{-16})
\]

\[
q \leftarrow z + z \text{ shift-left 1} \quad \{3z \text{ computed}\}
\]
\[
q \leftarrow q + q \text{ shift-right 4} \quad \{3z (1 + 2^{-4})\}
\]
\[
q \leftarrow q + q \text{ shift-right 8} \quad \{3z (1 + 2^{-4})(1 + 2^{-8})\}
\]
\[
q \leftarrow q + q \text{ shift-right 16} \quad \{3z (1 + 2^{-4})(1 + 2^{-8})(1 + 2^{-16})\}
\]
\[
q \leftarrow q \text{ shift-right 4} \quad \{3z (1+2^{-4})(1+2^{-8})(1+2^{-16})/16\}
\]

This divide-by-5 algorithm uses 5 shifts and 4 adds
13.6 Preview of Fast Dividers

Like multiplication, division is multioperand addition.
Thus, there are but two ways to speed it up:

 a. Reducing the number of operands
 (high-radix dividers)

 b. Adding them faster
 (use carry-save partial remainder)

There is one complication making division more difficult:

 terms to be subtracted from (added to) the dividend
 are not known a priori but become known
 as the quotient digits are computed;
 quotient digits in turn depend on partial remainders
14 High-Radix Dividers

Chapter Goals
Study techniques that allow us to obtain more than one quotient bit in each cycle (two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
Radix > 2 ⇒ quotient digit selection harder
Cure: redundant quotient representation
Carry-save addition reduces cycle time
Implementation methods and tradeoffs

Chapter Contents
14.1 Basics of High-Radix Division
14.2 Radix-2 SRT Division
14.3 Using Carry-Save Adders
14.4 Choosing the Quotient Digits
14.5 Radix-4 SRT Division
14.6 General High-Radix Dividers
14.1 Basics of High-Radix Division

Radix-r version of division recurrence of Section 13.1

\[s^{(j)} = r \cdot s^{(j-1)} - q_{k-j} \cdot (r^kd) \quad \text{with} \quad s^{(0)} = z \quad \text{and} \quad s^{(k)} = r^k s \]

High-radix dividers of practical interest have $r = 2^b$

(and, occasionally, $r = 10$)

![Fig. 14.1 Radix-4 division in dot notation.](image)

© Fall 2001, Oxford University Press

Behrooz Parhami, UC Santa Barbara
Radix-4 integer division

<table>
<thead>
<tr>
<th>z</th>
<th>0 1 2 3 1 1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4^4d</td>
<td>1 0 0 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(0)}$</th>
<th>0 1 2 3 1 1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4s^{(0)}$</td>
<td>0 1 2 3 1 1 2 3</td>
</tr>
<tr>
<td>$-q_34^4d$</td>
<td>0 1 2 0 3 \ {q_3 = 1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(1)}$</th>
<th>0 0 2 2 1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4s^{(1)}$</td>
<td>0 0 2 2 1 2 3</td>
</tr>
<tr>
<td>$-q_24^4d$</td>
<td>0 0 0 0 0 \ {q_2 = 0}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(2)}$</th>
<th>0 2 2 1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4s^{(2)}$</td>
<td>0 2 2 1 2 3</td>
</tr>
<tr>
<td>$-q_14^4d$</td>
<td>0 1 2 0 3 \ {q_1 = 1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(3)}$</th>
<th>1 0 0 3 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4s^{(3)}$</td>
<td>1 0 0 3 3</td>
</tr>
<tr>
<td>$-q_04^4d$</td>
<td>0 3 0 1 2 \ {q_0 = 2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(4)}$</th>
<th>1 0 2 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>1 0 2 1</td>
</tr>
<tr>
<td>q</td>
<td>1 0 1 2</td>
</tr>
</tbody>
</table>

Radix-10 fractional division

<table>
<thead>
<tr>
<th>z_{frac}</th>
<th>. 7 0 0 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{frac}</td>
<td>. 9 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(0)}$</th>
<th>0 1 2 3 1 1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10s^{(0)}$</td>
<td>0 1 2 3 1 1 2 3</td>
</tr>
<tr>
<td>$-q_1d$</td>
<td>6 . 9 3 \ {q_1 \text{= 7}}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(1)}$</th>
<th>. 0 7 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10s^{(1)}$</td>
<td>. 0 7 3</td>
</tr>
<tr>
<td>$-q_2d$</td>
<td>0 . 0 0 \ {q_2 = 0}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s^{(2)}$</th>
<th>. 7 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_{frac}</td>
<td>0 0 7 3</td>
</tr>
<tr>
<td>q_{frac}</td>
<td>. 7 0</td>
</tr>
</tbody>
</table>

Fig. 14.2 Examples of high-radix division with integer and fractional operands.
14.2 Radix-2 SRT Division

Radix-2 nonrestoring division, fractional operands

\[
s^{(j)} = 2s^{(j-1)} - q_j d \quad \text{with} \quad s^{(0)} = z \quad \text{and} \quad s^{(k)} = 2^k s
\]

Fig. 14.3 The new partial remainder, \(s^{(j)} \), as a function of the shifted old partial remainder, \(2s^{(j-1)} \), in radix-2 nonrestoring division.

Fig. 14.4 The new partial remainder \(s^{(j)} \) as a function of \(2s^{(j-1)} \), with \(q_j \) in \(\{-1, 0, 1\} \).
Fig. 14.5 The relationship between new and old partial remainders in radix-2 SRT division.

SRT algorithm (Sweeney, Robertson, Tocher)

\[2s^{(j-1)} \geq +1/2 = (0.1)_{2's-compl} \]

\[\Rightarrow 2s^{(j-1)} = (0.1u_{-2}u_{-3} \cdots)_{2's-compl} \]

\[2s^{(j-1)} < -1/2 = (1.1)_{2's-compl} \]

\[\Rightarrow 2s^{(j-1)} = (1.0u_{-2}u_{-3} \cdots)_{2's-compl} \]

Skipping over identical leading bits by shifting

\[s^{(j-1)} = 0.0000110 \cdots \] Shift left by 4 bits and subtract;
append \(q \) with \(0001 \)

\[s^{(j-1)} = 1.1110100 \cdots \] Shift left by 3 bits and add;
append \(q \) with \(00^{-1} \)

Average skipping distance (statistically): 2.67 bits
\begin{align*}
\text{z} & \quad 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \quad \text{In } [-1/2, 1/2), \text{ so OK} \\
\text{d} & \quad 1 \ 0 \ 1 \ 0 \quad \text{In } [1/2, 1), \text{ so OK} \\
-d & \quad 1 \ . \ 0 \ 1 \ 1 \ 0
\end{align*}

\begin{align*}
\text{s}(0) & \quad 0 \ . \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\
2s(0) & \quad 0 \ . \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \quad \geq 1/2, \text{ so set } q_{-1} = 1 \\
+(-d) & \quad 1 \ . \ 0 \ 1 \ 1 \ 0
\end{align*}

\begin{align*}
\text{s}(1) & \quad 1 \ . \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \\
2s(1) & \quad 1 \ . \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \quad \text{In } [-1/2, 1/2), \text{ so } q_{-2} = 0
\end{align*}

\begin{align*}
\text{s}(2) = 2s(1) & \quad 1 \ . \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \\
2s(2) & \quad 1 \ . \ 1 \ 0 \ 1 \ 0 \ 1 \quad \text{In } [-1/2, 0), \text{ so } q_{-3} = 0
\end{align*}

\begin{align*}
\text{s}(3) = 2s(2) & \quad 1 \ . \ 1 \ 0 \ 1 \ 0 \ 1 \\
2s(3) & \quad 1 \ . \ 0 \ 1 \ 0 \ 1 \\
+d & \quad 0 \ . \ 1 \ 0 \ 1 \ 0 \quad < -1/2, \text{ so } q_{-4} = -1 \quad \text{and add}
\end{align*}

\begin{align*}
\text{s}(4) & \quad 1 \ . \ 1 \ 1 \ 1 \ 1 \quad \text{Negative,} \\
+d & \quad 0 \ . \ 1 \ 0 \ 1 \ 0 \quad \text{so add to correct}
\end{align*}

\begin{align*}
\text{s}(4) & \quad 0 \ . \ 1 \ 0 \ 0 \ 1 \\
\text{s} & \quad 0 \ . \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \quad \text{Ucorrected BSD form} \\
\text{q} & \quad 0 \ . \ 1 \ 0 \ 0 \ -1 \quad \text{Convert, subtract ulp} \\
\text{q} & \quad 0 \ . \ 0 \ 1 \ 1 \ 0
\end{align*}

\begin{footnotesize}
\begin{itemize}
\item Fig. 14.6 Example of unsigned radix-2 SRT division.
\end{itemize}
\end{footnotesize}
14.3 Using Carry-Save Adders

Fig. 14.7 Constant thresholds used for quotient digit selection in radix-2 division with \(q_{k-j} \) in \{–1, 0, 1\}.

Sum part of \(2s^{(j-1)} \): \(u = (u_1 u_0 . u_{-1} u_{-2} \cdots)_{2's-compl} \)

Carry part of \(2s^{(j-1)} \): \(v = (v_1 v_0 . v_{-1} v_{-2} \cdots)_{2's-compl} \)

\[
t = u_{[-2,1]} + v_{[-2,1]}
\]

\{Add the 4 MSBs of \(u \) and \(v \}\)

if \(t < -1/2 \) then \(q_{-j} = -1 \)
else if \(t \cdot 0 \) then \(q_{-j} = 1 \)
else \(q_{-j} = 0 \)
endif
endif
Fig. 14.8 Block diagram of a radix-2 divider with partial remainder in stored-carry form.

Fig. 14.9 Overlap regions in radix-2 SRT division.
14.4 Choosing the Quotient Digits

![Diagram showing a p-d plot for radix-2 division with $d \in [1/2, 1)$, partial remainder in $[-d, d)$, and quotient digits in $[-1, 1]$.]

Fig. 14.10 A p-d plot for radix-2 division with $d \in [1/2, 1)$, partial remainder in $[-d, d)$, and quotient digits in $[-1, 1]$.

Approx. shifted partial remainder $t = (t_1 t_0 . t_{-1} t_{-2})_2$'s-compl

Non0 $= \overline{t}_1 + \overline{t}_0 + \overline{t}_{-1} = t_1 t_0 t_{-1}$

Sign $= t_1 (\overline{t}_0 + \overline{t}_{-1})$
14.5 Radix-4 SRT division

![Diagram of radix-4 SRT division]

Fig. 14.11 New versus shifted old partial remainder in radix-4 division with q_{-j} in $[-3, 3]$.

![Diagram of p-d plot]

Fig. 14.12 p-d plot for radix-4 SRT division with quotient digit set $[-3, 3]$.
Fig. 14.13 New versus shifted old partial remainder in radix-4 division with \(q_j \) in \([-2, 2]\).

Fig. 14.14 A \(p-d \) plot for radix-4 SRT division with quotient digit set \([-2, 2]\).
14.6 General High-Radix Dividers

![Diagram of radix-r divider with partial remainder in stored-carry form.](image)

Fig. 14.15 Block diagram of radix-r divider with partial remainder in stored-carry form.

Design process to determine details of the above divider:

- **Radix** r
- Digit set $[-\alpha, \alpha]$ for q_{-j}
- Number of bits of p (v and u) and d to be inspected
- Quotient digit selection table or logic
- Multiple generation/selection scheme
- Conversion of redundant q to 2's complement
15 Variations in Dividers

Chapter Goals
Discuss practical aspects of designing high-radix dividers and cover other types of fast hardware dividers

Chapter Highlights
Building and using p-d plots in practice
Prescaling simplifies q digit selection
Parallel hardware (array) dividers
Shared hardware in multipliers/dividers
Square-rooting not special case of division

Chapter Contents
15.1 Quotient-Digit Selection Revisited
15.2 Using p-d Plots in Practice
15.3 Division with Prescaling
15.4 Modular Dividers and Reducers
15.5 Array Dividers
15.6 Combined Multiply/Divide Units
15.1 Quotient-Digit Selection Revisited

![Diagram of quotient-digit selection](image)

Fig. 15.1 The relationship between new and shifted old partial remainders in radix-r division with quotient digits in $[-\alpha, +\alpha]$.

Radix-r division with quotient digit set $[-\alpha, \alpha]$, $\alpha < r - 1$

Restrict the partial remainder range, say to $[-hd, hd]$

From the solid rectangle in Fig. 15.1, we get

$$rhd - \alpha d \leq hd \quad \text{or} \quad h \leq \alpha/(r - 1)$$

To minimize the range restriction, we choose $h = \alpha/(r - 1)$
Choose \(\beta + 1 \)

Choose \(\beta \)

Overlap region \((h + \beta + 1)d\)

Overlap region \((-h + \beta + 1)d\)

Overlap region \((-h + \beta)d\)

4 bits of \(p \)

3 bits of \(d \)

Note: \(h = \alpha / (r - 1) \)

Fig. 15.2 A part of \(p-d \) plot showing the overlap region for choosing the quotient digit value \(\beta \) or \(\beta + 1 \) in radix-\(r \) division with quotient digit set \([-\alpha, \alpha]\).

Fig. 15.3 A part of \(p-d \) plot showing an overlap region and its staircase-like selection boundary.
15.2 Using p-d Plots in Practice

![Diagram showing p-d plots](image)

Fig. 15.4 Establishing upper bounds on the dimensions of uncertainty rectangles.

Smallest Δd occurs for the overlap region of α and $\alpha - 1$

$$\Delta d = d_{\text{min}} \frac{2h - 1}{-h + \alpha}$$

$$\Delta p = d_{\text{min}} (2h - 1)$$

Example: For $r = 4$, divisor range $[0.5, 1)$, digit set $[-2, 2]$, we have $\alpha = 2$, $d_{\text{min}} = 1/2$, $h = \alpha/(r - 1) = 2/3$

$$\Delta d = (1/2) \frac{4/3 - 1}{-2/3 + 2} = 1/8$$

$$\Delta p = (1/2)(4/3 - 1) = 1/6$$

Because $1/8 = 2^{-3}$ and $2^{-3} \leq 1/6 < 2^{-2}$, we must inspect at least 3 bits of d (2, given its leading 1) and 3 bits of p

These are lower bounds and may prove inadequate

In fact, 3 bits of p and 4 (3) bits of d are required

With p in carry-save form, 4 bits of each component must be inspected (or added to give the high-order 3 bits)
Theorem: Once lower bounds on precision are determined based on Δd and Δp, one more bit of precision in each direction is always adequate [Parh01] (Asilomar 2001)

Proof: Let w be the vertical spacing of grid lines

$$w \leq \Delta d/2 \quad \Rightarrow \quad v \leq \Delta p/2 \quad \Rightarrow \quad u \geq \Delta p/2$$

![Diagram](image.png)

Fig. 15.5 The asymmetry of quotient digit selection process.
Fig. 15.6 Example of p-d plot allowing larger uncertainty rectangles, if the 4 cases marked with asterisks are handled as exceptions.
Example: A complete p-d plot
15.3 Division with Prescaling

Overlap regions of a p-d plot are wider toward the high end of the divisor range

If we can restrict the magnitude of the divisor to an interval close to d^{max} (say $1 - \varepsilon < d < 1 + \delta$, when $d^{\text{max}} = 1$), quotient digit selection may become simpler.

This restriction can be achieved by performing the division $(zm)/(dm)$ for a suitably chosen scale factor m ($m > 1$).

Of course, prescaling (multiplying z and d by the scale factor m) should be done without real multiplications.
15.4 Modular Dividers and Reducers

Given a dividend z and divisor d, with $d \geq 0$, a modular divider computes

$$q = \lfloor z / d \rfloor \quad \text{and} \quad s = z \mod d = \langle z \rangle_d$$

The quotient q is, by definition, an integer

but the inputs z and d do not have to be integers

Example:

$$\lfloor -3.76 / 1.23 \rfloor = -4 \quad \text{and} \quad \langle -3.76 \rangle_{1.23} = 1.16$$

The modular remainder is always positive

A modular reducer computes only the modular remainder
15.5 Array Dividers

The similarity of the array divider of Fig. 15.7 to an array multiplier is somewhat deceiving. The same number of cells are involved in both designs, and the cells have comparable complexities. However, the critical path in a $k \times k$ array multiplier contains $O(k)$ cells, whereas in Fig. 15.7, the critical path passes through all k^2 cells (borrow ripples in each row). Thus, an array divider is quite slow, and, given its high cost, not very cost-effective.
Fig. 15.8 Nonrestoring array divider built of controlled add/subtract cells.

Speedup method:
Pass the partial remainder downward in carry-save form
However, we still need to know the carry-out or borrow-out from each row to determine the action in the following row: subtract/no-change (Fig. 15.7) or subtract/add (Fig. 15.8)
This can be done by using a carry- (borrow-) lookahead circuit laid out between successive rows
Not used in practice
15.6 Combined Multiply/Divide Units

Fig. 15.9 Sequential radix-2 multiply/divide unit.
Fig. 15.10 I/O specification of a universal circuit that can act as an array multiplier or array divider.
16 Division by Convergence

Chapter Goals
Show how by using multiplication as the basic operation in each division step, the number of iterations can be reduced.

Chapter Highlights
Digit-recurrence as convergence method
Convergence by Newton-Raphson iteration
Computing the reciprocal of a number
Hardware implementation and fine tuning

Chapter Contents
16.1 General Convergence Methods
16.2 Division by Repeated Multiplications
16.3 Division by Reciprocation
16.4 Speedup of Convergence Division
16.5 Hardware Implementation
16.6 Analysis of Lookup Table Size
16.1 General Convergence Methods

\[u^{(i+1)} = f(u^{(i)}, v^{(i)}) \]
\[v^{(i+1)} = g(u^{(i)}, v^{(i)}) \]
\[u^{(i+1)} = f(u^{(i)}, v^{(i)}, w^{(i)}) \]
\[v^{(i+1)} = g(u^{(i)}, v^{(i)}, w^{(i)}) \]
\[w^{(i+1)} = h(u^{(i)}, v^{(i)}, w^{(i)}) \]

We direct the iterations such that one value, say \(u \), converges to some constant.

The value of \(v \) (and/or \(w \)) then converges to the desired function(s).

The complexity of this method depends on two factors:

a. Ease of evaluating \(f \) and \(g \) (and \(h \))

b. Rate of convergence (no. of iterations needed)
16.2 Division by Repeated Multiplications

\[q = \frac{z}{d} = \frac{z \cdot x^{(0)} \cdot x^{(1)} \cdots x^{(m-1)}}{d \cdot x^{(0)} \cdot x^{(1)} \cdots x^{(m-1)}} \]

Converges to \(q \)

Made to converge to 1

To turn the above into a division algorithm, we face three questions:

1. How to select the multipliers \(x^{(i)} \)?
2. How many iterations (pairs of multiplications)?
3. How to implement in hardware?

Formulate as convergence computation, for \(d \) in \([1/2, 1)\)

\[d^{(i+1)} = d^{(i)} \cdot x^{(i)} \quad \text{Set } d^{(0)} = d; \text{ make } d^{(m)} \text{ converge to 1} \]

\[z^{(i+1)} = z^{(i)} \cdot x^{(i)} \quad \text{Set } z^{(0)} = z; \text{ obtain } z/d = q \equiv z^{(m)} \]

Q1: How to select the multipliers \(x^{(i)} \)?

\[x^{(i)} = 2 - d^{(i)} \]

This choice transforms the recurrence equations into:

\[d^{(i+1)} = d^{(i)} (2 - d^{(i)}) \quad \text{Set } d^{(0)} = d; \text{ iterate until } d^{(m)} \equiv 1 \]

\[z^{(i+1)} = z^{(i)} (2 - d^{(i)}) \quad \text{Set } z^{(0)} = z; \text{ obtain } z/d = q \equiv z^{(m)} \]
Q2: How quickly does \(d^{(i)} \) converge to 1?

\[
\begin{align*}
d^{(i+1)} &= d^{(i)} (2 - d^{(i)}) = 1 - (1 - d^{(i)})^2 \\
1 - d^{(i+1)} &= (1 - d^{(i)})^2
\end{align*}
\]

Thus, \(1 - d^{(i)} \leq \varepsilon \) leads to \(1 - d^{(i+1)} \leq \varepsilon^2 \): quadratic convergence

In general, for \(k \)-bit operands, we need

\[
2m - 1 \text{ multiplications and } m \text{ 2's complementations}
\]

where \(m = \lceil \log_2 k \rceil \)

Table 16.1 Quadratic convergence in computing \(z/d \) by repeated multiplications, where \(1/2 \leq d = 1 - y < 1 \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(d^{(i)} = d^{(i-1)}x^{(i-1)}), with (d^{(0)} = d)</th>
<th>(x^{(i)} = 2 - d^{(i)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(1 - y = (.1xxxx \ldots)_{\text{two}} \geq 1/2)</td>
<td>(1 + y)</td>
</tr>
<tr>
<td>1</td>
<td>(1 - y^2 = (.11xx \ldots)_{\text{two}} \geq 3/4)</td>
<td>(1 + y^2)</td>
</tr>
<tr>
<td>2</td>
<td>(1 - y^4 = (.111xx \ldots)_{\text{two}} \geq 15/16)</td>
<td>(1 + y^4)</td>
</tr>
<tr>
<td>3</td>
<td>(1 - y^8 = (.11111 \ldots)_{\text{two}} \geq 255/256)</td>
<td>(1 + y^8)</td>
</tr>
<tr>
<td>4</td>
<td>(1 - y^{16} = (.11111 \ldots)_{\text{two}} = 1 - \text{ulp})</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 16.1. Graphical representation of convergence in division by repeated multiplications.

Q3: How implemented in hardware?

... to be discussed later
16.3 Division by Reciprocation

To find $q = z/d$, compute $1/d$ and multiply it by z

Particularly efficient if several divisions by d are required

Newton-Raphson iteration to determine a root of $f(x) = 0$
Start with some initial estimate $x^{(0)}$ for the root
Iteratively refine the estimate using the recurrence

$$x^{(i+1)} = x^{(i)} - f(x^{(i)}) / f'(x^{(i)})$$

Justification: $\tan \alpha^{(i)} = f'(x^{(i)}) = f(x^{(i)}) / (x^{(i)} - x^{(i+1)})$

![Fig. 16.2 Convergence to a root of $f(x) = 0$ in the Newton-Raphson method.](image)
To compute $1/d$, find the root of $f(x) = 1/x - d$

$f'(x) = -1/x^2$, leading to the recurrence:

$$x^{(i+1)} = x^{(i)} (2 - x^{(i)} d)$$

One iteration = 2 multiplications + a 2’s complementation

Let $\delta^{(i)} = 1/d - x^{(i)}$ be the error at the ith iteration. Then:

$$\delta^{(i+1)} = 1/d - x^{(i+1)} = 1/d - x^{(i)} (2 - x^{(i)} d)$$

$$= d(1/d - x^{(i)})^2$$

$$= d(\delta^{(i)})^2$$

Because $d < 1$, we have $\delta^{(i+1)} < (\delta^{(i)})^2$

Choosing the initial value $x^{(0)}$

$0 < x^{(0)} < 2/d \Rightarrow |\delta^{(0)}| < 1/d \Rightarrow$ guaranteed convergence

For d in $[1/2, 1)$:

- simple choice $x^{(0)} = 1.5 \Rightarrow |\delta^{(0)}| \cdot 0.5$
- better approx. $x^{(0)} = 4(\sqrt{3} - 1) - 2d = 2.9282 - 2d$
 max error $\equiv 0.1$
16.4 Speedup of Convergence Division

Division can be done via $2 \lceil \log_2 k \rceil - 1$ multiplications
This is not yet very impressive
64-bit numbers, 5-ns multiplier \Rightarrow 55-ns division

Three types of speedup are possible:

Reducing the number of multiplications
Using narrower multiplications
Performing the multiplications faster

Convergence is slow in the beginning
It takes 6 multiplications to get 8 bits of convergence and another 5 to go from 8 bits to 64 bits

$$dx^{(0)} x^{(1)} x^{(2)} \quad = \quad \text{(0.1111 1111 \ldots)}_{\text{two}}$$

$$\quad \text{-------------}$$

$$x^{(0+)} \text{ read from table}$$

A $2^w \times w$ lookup table is necessary and sufficient for w bits of convergence after the first pair of multiplications
Fig. 16.3 Convergence in division by repeated multiplications with initial table lookup.

Fig. 16.4 Convergence in division by repeated multiplications with initial table lookup and the use of truncated multiplicative factors.
Fig. 16.5 One step in convergence division with truncated multiplicative factors.

Example (64-bit multiplication)
Table of size $256 \times 8 = 2K$ bits for the lookup step
Then we need multiplication pairs, with the multiplier being 9 bits, 17 bits, and 33 bits wide
The final step involves a single 64×64 multiplication
16.5 Hardware Implementation

Repeated multiplications:

![Diagram showing repeated multiplications in a 2-stage pipelined multiplier.]

Fig. 16.6 Two multiplications fully overlapped in a 2-stage pipelined multiplier.

Reciprocation:

Can begin with a good approximation to the reciprocal by consulting a large table

Table lookup, along with interpolation

Augmenting the multiplier tree
16.6 Analysis of Lookup Table Size

Table 16.2 Sample entries in the lookup table replacing the first four multiplications in division by repeated multiplications

<table>
<thead>
<tr>
<th>Address</th>
<th>(d = 0.1 \text{ xxxx xxxx})</th>
<th>(\chi^{(0+)} = 1. \text{ xxxx xxxx})</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>0011 0111</td>
<td>1010 0101</td>
</tr>
<tr>
<td>64</td>
<td>0100 0000</td>
<td>1001 1001</td>
</tr>
</tbody>
</table>

Example: derivation of the table entry for 55

\[
\frac{311}{512} \leq d < \frac{312}{512}
\]

For 8 bits of convergence, the table entry \(f \) must satisfy

\[
\frac{311}{512} (1 + .f) \geq 1 - 2^{-8} \quad \frac{312}{512} (1 + .f) \leq 1 + 2^{-8}
\]

Thus

\[
\frac{199}{311} \leq .f \leq \frac{101}{156}
\]

or for the integer \(f = 256 \times .f \)

\[
163.81 \times f \times 165.74
\]

Two choices: \(164 = (1010 0100)_{\text{two}} \) or \(165 = (1010 0101)_{\text{two}} \)
Part V Real Arithmetic

Part Goals
Review floating-point representations
Learn about floating-point arithmetic
Discuss error sources and error bounds

Part Synopsis
Combining wide range and high precision
Floating-point formats and operations
The ANSI/IEEE standard
Errors: causes and consequences
When can we trust computation results?

Part Contents
Chapter 17 Floating-Point Representations
Chapter 18 Floating-Point Operations
Chapter 19 Errors and Error Control
Chapter 20 Precise and Certifiable Arithmetic
17 Floating-Point Representations

Chapter Goals
Study representation method offering both wide range (e.g., astronomical distances) and high precision (e.g., atomic distances)

Chapter Highlights
Floating-point formats and tradeoffs
Why a floating-point standard?
Finiteness of precision and range
The two extreme special cases: fixed-point and logarithmic numbers

Chapter Contents
17.1 Floating-Point Numbers
17.2 The ANSI/IEEE Floating-Point Standard
17.3 Basic Floating-Point Algorithms
17.4 Conversions and Exceptions
17.5 Rounding Schemes
17.6 Logarithmic Number Systems
17.1 Floating-Point Numbers

No finite number system can represent all real numbers. Various systems can be used for a subset of real numbers:

- **Fixed-point** $\pm w \cdot f$ low precision and/or range
- **Rational** $\pm p/q$ difficult arithmetic
- **Floating-point** $\pm s \times b^e$ most common scheme
- **Logarithmic** $\pm \log_b x$ limiting case of floating-point

Fixed-point numbers

\[x = (0000\ 0000\ .\ 0000\ 1001)_{\text{two}} \quad \text{Small number} \]
\[y = (1001\ 0000\ .\ 0000\ 0000)_{\text{two}} \quad \text{Large number} \]

Floating-point numbers

\[x = \pm s \times b^e \quad \text{or} \quad \pm \text{significand} \times \text{base}^{\text{exponent}} \]

Two signs are involved in a floating-point number.

1. The significand or number sign, usually represented by a separate sign bit

2. The exponent sign, usually embedded in the biased exponent (when the bias is a power of 2, the exponent sign is the complement of its MSB)
Table: Floating-Point Number Format

<table>
<thead>
<tr>
<th>±</th>
<th>e</th>
<th>s</th>
</tr>
</thead>
</table>
| Sign | Exponent: Signed integer, often represented as unsigned value by adding a bias | Significant: Usually normalized by shifting, so that the MSB becomes nonzero. In radix 2, the fixed leading 1 can be removed to save one bit; this bit is known as "hidden 1".
| 0: + | Range with h bits: \([-\text{bias}, 2^h-1-\text{bias}]\) | \([-\text{bias}, 2^h-1-\text{bias}]\) |
| 1: – | | |

Fig. 17.1 Typical floating-point number format.

Fig. 17.2 Subranges and special values in floating-point number representations.
17.2 The ANSI/IEEE Floating-Point Standard

Short (32-bit) format

8 bits, bias = 127, –126 to 127

11 bits, bias = 1023, –1022 to 1023

23 bits for fractional part
(plus hidden 1 in integer part)

52 bits for fractional part
(plus hidden 1 in integer part)

Long (64-bit) format

Fig. 17.3 The ANSI/IEEE standard floating-point number representation formats.
Table 17.1 Some features of the ANSI/IEEE standard floating-point number representation formats

<table>
<thead>
<tr>
<th>Feature</th>
<th>Single/Short</th>
<th>Double/Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word width (bits)</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Significand bits</td>
<td>$23 + 1$ hidden</td>
<td>$52 + 1$ hidden</td>
</tr>
<tr>
<td>Significand range</td>
<td>$[1, 2 – 2^{-23}]$</td>
<td>$[1, 2 – 2^{-52}]$</td>
</tr>
<tr>
<td>Exponent bits</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Exponent bias</td>
<td>127</td>
<td>1023</td>
</tr>
<tr>
<td>Zero (± 0)</td>
<td>$e + bias = 0, f = 0$</td>
<td>$e + bias = 0, f = 0$</td>
</tr>
<tr>
<td>Denormal</td>
<td>$e + bias = 0, f \neq 0$ represents $\pm 0.f\times2^{-126}$</td>
<td>$e + bias = 0, f \neq 0$ represents $\pm 0.f\times2^{-1022}$</td>
</tr>
<tr>
<td>Infinity ($\pm \infty$)</td>
<td>$e + bias = 255, f = 0$</td>
<td>$e + bias = 2047, f = 0$</td>
</tr>
<tr>
<td>Not-a-number (NaN)</td>
<td>$e + bias = 255, f \neq 0$</td>
<td>$e + bias = 2047, f \neq 0$</td>
</tr>
<tr>
<td>Ordinary number</td>
<td>$e + bias \in [1, 254]$</td>
<td>$e + bias \in [1, 2046]$</td>
</tr>
<tr>
<td></td>
<td>$e \in [-126, 127]$ represents $1.f\times2^e$</td>
<td>$e \in [-1022, 1023]$ represents $1.f\times2^e$</td>
</tr>
<tr>
<td>\min</td>
<td>$2^{-126} \approx 1.2 \times 10^{-38}$</td>
<td>$2^{-1022} \approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>\max</td>
<td>$\approx 2^{128} \approx 3.4 \times 10^{38}$</td>
<td>$\approx 2^{1024} \approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Operations on special operands:

- Ordinary number ÷ (+∞) = ±0
- (+∞) × Ordinary number = ±∞
- NaN + Ordinary number = NaN

Fig. 17.4 Denormals in the IEEE single-precision format.

The IEEE floating-point standard also defines

The four basic arithmetic op’s (+, −, ×, ÷) and \(\sqrt{x} \) must match the results that would be obtained if intermediate computations were infinitely precise.

Extended formats for greater internal precision

- Single-extended: \(\geq 11 \) bits for exponent
 \(\geq 32 \) bits for significand
 Bias unspecified, but exp range \(\supseteq [-1022, 1023] \)

- Double-extended: \(\geq 15 \) bits for exponent
 \(\geq 64 \) bits for significand
 exp range \(\supseteq [-16382, 16383] \)
17.3 Basic Floating-Point Algorithms

Addition/Subtraction

Assume $e_1 \geq e_2$; need alignment shift (preshift) if $e_1 > e_2$:

$$(\pm s_1 \times b^{e_1}) + (\pm s_2 \times b^{e_2}) = (\pm s_1 \times b^{e_1}) + (\pm s_2 / b^{e_1-e_2}) \times b^{e_1}$$

$$= (\pm s_1 \pm s_2 / b^{e_1-e_2}) \times b^{e_1} = \pm s \times b^e$$

Like signs: 1-digit normalizing right shift may be needed
Different signs: shifting by many positions may be needed
Overflow/underflow during addition or normalization

Multiplication

$$(\pm s_1 \times b^{e_1}) \times (\pm s_2 \times b^{e_2}) = \pm (s_1 \times s_2) \times b^{e_1+e_2}$$

Postshifting for normalization, exponent adjustment
Overflow/underflow during multiplication or normalization

Division

$$(\pm s_1 \times b^{e_1}) / (\pm s_2 \times b^{e_2}) = \pm (s_1/s_2) \times b^{e_1-e_2}$$

Square-rooting

First make the exponent even, if necessary

$$\sqrt{(s \times b^e)} = \sqrt{s} \times b^{e/2}$$

In all algorithms, rounding complications are ignored here
17.4 Conversions and Exceptions

Conversions from fixed- to floating-point
Conversions between floating-point formats
Conversion from high to lower precision: Rounding

ANSI/IEEE standard includes four rounding modes:
 Round to nearest even [default rounding mode]
 Round toward zero (inward)
 Round toward $+\infty$ (upward)
 Round toward $-\infty$ (downward)

Exceptions
 divide by zero
 overflow
 underflow
 inexact result: rounded value not same as original
 invalid operation: examples include
 addition $(+\infty) + (-%infty)$
 multiplication $0 \times %infty$
 division $0 / 0$ or ∞ / ∞
 square-root operand < 0
17.5 Rounding Schemes

Round
\[x_{k-1}x_{k-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-l} \Rightarrow y_{k-1}y_{k-2} \cdots y_1y_0. \]

Special case: truncation or chopping

Chop
\[x_{k-1}x_{k-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-l} \Rightarrow x_{k-1}x_{k-2} \cdots x_1x_0. \]

Fig. 17.5 Truncation or chopping of a signed-magnitude number (same as round toward 0).

Fig. 17.6 Truncation or chopping of a 2’s-complement number (same as downward-directed rounding).
Ordinary rounding has a slight upward bias

Assume that \((x_{k-1}x_{k-2} \cdots x_1x_0 \cdot x_{-1}x_{-2})_{\text{two}}\) is to be rounded to an integer \((y_{k-1}y_{k-2} \cdots y_1y_0 \cdot)_{\text{two}}\)

The four possible cases, and their representation errors:

\[
\begin{align*}
 x_{-1}x_{-2} = 00 & \quad \text{round down} & \text{error} = 0 \\
 x_{-1}x_{-2} = 01 & \quad \text{round down} & \text{error} = -0.25 \\
 x_{-1}x_{-2} = 10 & \quad \text{round up} & \text{error} = 0.5 \\
 x_{-1}x_{-2} = 11 & \quad \text{round up} & \text{error} = 0.25
\end{align*}
\]

Assume 4 cases are equiprobable \(\Rightarrow\) mean error = 0.125

For certain calculations, the probability of getting a midpoint value can be much higher than \(2^{-l}\)
Fig. 17.8 Rounding to the nearest even number.

Fig. 17.9 R* rounding or rounding to the nearest odd number.

Fig. 17.10 Jamming or von Neumann rounding.
ROM rounding

\[x_{k-1} \cdots x_4 x_3 x_2 x_1 x_0 \cdot x_{-1} \cdots x_{-l} \Rightarrow x_{k-1} \cdots x_4 y_3 y_2 y_1 y_0 \cdot \]

The rounding result is the same as that of the round to nearest scheme in 15 of the 16 possible cases, but a larger error is introduced when \(x_3 = x_2 = x_1 = x_0 = 1 \)

Fig. 17.11 ROM rounding with an 8 × 2 table.
We may need result errors to be in a known direction.

Example: in computing upper bounds, larger results are acceptable, but results that are smaller than correct values could invalidate the upper bound.

This leads to the definition of directed rounding modes: upward-directed rounding (round toward $+\infty$) and downward-directed rounding (round toward $-\infty$) (required features of the IEEE floating-point standard).

Fig. 17.12 Upward-directed rounding or rounding toward $+\infty$ (see Fig. 17.6 for downward-directed rounding, or rounding toward $-\infty$).

Fig. 17.6 Truncation or chopping of a 2’s-complement number (same as downward-directed rounding).
17.6 Logarithmic Number Systems

sign-and-logarithm number system:
limiting case of floating-point representation
\[x = \pm b^e \times 1 \quad e = \log_b |x| \]

\(b \) usually called the logarithm base, not exponent base

The log is often represented as a 2’s-complement number
\[(Sx, Lx) = (\text{sign}(x), \log_2 |x|) \]

Simple multiply and divide; harder add and subtract

Example: 12-bit, base-2, logarithmic number system

\[\begin{array}{cccccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
\end{array} \]

\[\begin{array}{c}
\text{Sign} \quad \text{Radix point} \\
\end{array} \]

The above represents \(-2^{-9.828125} \approx -(0.0011)_{\text{ten}}\)

number range \(\approx [-2^{16}, 2^{16}]\), with \(\text{min} = 2^{-16}\)
18 Floating-Point Operations

Chapter Goals
See how adders, multipliers, and dividers are designed for floating-point operands (square-rooting postponed to Chapter 21)

Chapter Highlights
Floating-point operation = preprocessing + exponent arith + significand arith + postprocessing (+ exception handling)
Adders need preshift, postshift, rounding
Multipliers and dividers are easy to design

Chapter Contents
18.1 Floating-Point Adders/Subtractors
18.2 Pre- and Postshifting
18.3 Rounding and Exceptions
18.4 Floating-Point Multipliers
18.5 Floating-Point Dividers
18.6 Logarithmic Arithmetic Unit
18.1 Floating-Point Adders/Subtractors

Floating-point add/subtract algorithm

Assume $e_1 \geq e_2$; need alignment shift (preshift) if $e_1 > e_2$:

$$(\pm s_1 \times b^{e_1}) + (\pm s_2 \times b^{e_2}) = (\pm s_1 \times b^{e_1}) + (\pm s_2 / b^{e_1-e_2}) \times b^{e_1}$$

$$= (\pm s_1 \pm s_2 / b^{e_1-e_1}) \times b^{e_1}$$

$$= \pm s \times b^e$$

Like signs: 1-digit normalizing right shift may be needed
Different signs: shifting by many positions may be needed
Overflow/underflow during addition or normalization

Example floating-point addition with rounding

Numbers to be added:

\[
\begin{align*}
x &= 2^5 \times 1.00101101 \\
y &= 2^1 \times 1.11101101
\end{align*}
\]

Operands after alignment shift:

\[
\begin{align*}
x &= 2^5 \times 1.00101101 \\
y &= 2^5 \times 0.000111101101
\end{align*}
\]

Result of addition:

\[
\begin{align*}
s &= 2^5 \times 1.0100101111101 \\
s &= 2^5 \times 1.01001100
\end{align*}
\]
Block diagram of a floating-point adder/subtractor (simple version from the encyclopedia article).
Fig. 18.1 Block diagram of a floating-point adder/subtractor.
Unpacking of the operands involves:

- Separating sign, exponent, and significand
- Reinstating the hidden 1
- Converting the operands to the internal format
- Testing for special operands and exceptions

Packing of the result involves:

- Combining sign, exponent, and significand
- Hiding (removing) the leading 1
- Testing for special outcomes and exceptions

[Converting internal to external representation, if required, must be done at the rounding stage]

Other key parts of a floating-point adder:

- significand aligner or preshifter: Section 18.2
- result normalizer or postshifter, including leading 0s detector/predictor: Section 18.2
- rounding unit: Section 18.3
- sign logic: Problem 18.2
18.2 Pre- and Postshifting

![One bit-slice of a single-stage pre-shifter.](image1)

Fig. 18.2 One bit-slice of a single-stage pre-shifter.

![Four-stage combinational shifter for preshifting an operand by 0 to 15 bits.](image2)

Fig. 18.3 Four-stage combinational shifter for preshifting an operand by 0 to 15 bits.
Leading zeros prediction
Adder inputs: \((0x_0.x_{-1}x_{-2}\cdots)_{2’s-compl}, (1y_0.y_{-1}y_{-2}\cdots)_{2’s-compl}\)
How leading 0s/1s can be generated

\[
p p \ldots p p g a a \ldots a a g \ldots
p p \ldots p p g a a \ldots a a p \ldots
p p \ldots p p a g g \ldots g g a \ldots
p p \ldots p p a g g \ldots g g p \ldots
\]
18.3 Rounding and Exceptions

Adder result = \((c_{\text{out}}z_1 z_0 . z_{-1} z_{-2} \cdots z_{-l} G R S)_{2'} \) s-compl

- \(G \) Guard bit
- \(R \) Round bit
- \(S \) Sticky bit

Why only three extra bits at the right are adequate

Amount of alignment right-shift

1 bit: \(G \) holds the bit that is shifted out, no precision is lost

2 bits or more:

- shifted significand has a magnitude in \([0, 1/2)\)
- unshifted significand has a magnitude in \([1, 2)\)
- difference of aligned significands has a magnitude in \([1/2, 2)\)
- normalization left-shift will be by at most one bit

If a normalization left-shift actually takes place:

- \(R = 0 \), round down, discarded part < \(ulp/2 \)
- \(R = 1 \), round up, discarded part \(\geq ulp/2 \)

The only remaining question is establishing if the discarded part is exactly equal to \(ulp/2 \), as this information is needed in some rounding schemes

Providing this information is the role of \(S \) which is set to the logical OR of all the bits that are right-shifted through it
The effect of 1-bit normalization shifts on the rightmost few bits of the significand adder output is as follows

Before postshifting \((z)\) ... \(z_{-l+1} \ z_{-l} \ | \ G \ R \ S\)

1-bit normalizing right-shift ... \(z_{-l+2}z_{-l+1} \ | \ z_{-l} \ G \ R \lor S\)

1-bit normalizing left-shift ... \(z_{-l} \ G \ | \ R \ S \ 0\)

After normalization \((Z)\) ... \(Z_{-l+1} \ Z_{-l} \ | \ Z_{-l-1}Z_{-l-2}Z_{-l-3}\)

Round to nearest even:

- Do nothing if \(Z_{-l-1} = 0\) or \(Z_{-l} = Z_{-l-2} = Z_{-l-3} = 0\)
- Add \(ulp = 2^{-l}\) otherwise

No rounding needed in case of multibit left-shift, because full precision is preserved in this case.

Overflow and underflow exceptions are detected by the exponent adjustment blocks in Fig. 18.1

- Overflow can occur only for normalizing right-shift
- Underflow is possible only with normalizing left shifts

Exceptions involving NaNs and invalid operations are handled by the unpacking and packing blocks in Fig. 18.1

Zero detection is a special case of leading 0s detection

Determining when the “inexact” exception must be signalled is left as an exercise.
Dual-datapath floating-point adders
18.4 Floating-Point Multipliers

Floating-point multiplication algorithm

\[(\pm s_1 \times b^{e_1}) \times (\pm s_2 \times b^{e_2}) = \pm (s_1 \times s_2) \times b^{e_1+e_2}\]

Postshifting for normalization, exponent adjustment
Overflow/underflow during multiplication or normalization

Fig. 18.5 Block diagram of a floating-point multiplier.
Many multipliers produce the lower half of the product (rounding info) early

Need for normalizing right-shift is known at or near the end

Hence, rounding can be integrated in the generation of the upper half, by producing two versions of these bits
18.5 Floating-Point Dividers

Floating-point division algorithm

\[(\pm s_1 \times b^{e_1}) / (\pm s_2 \times b^{e_2}) = \pm (s_1 / s_2) \times b^{e_1-e_2}\]

Postshifting for normalization, exponent adjustment
Overflow/underflow during division or normalization

Fig. 18.6 Block diagram of a floating-point divider.
Quotient must be produced with two extra bits (G and R), in case of the need for a normalizing left shift

The remainder does the job of the sticky bit

Floating-point square-rooting algorithm
Make the exponent even, if necessary, by decrementing it and doubling the significand; significand is now in $[1, 4)$

$$\sqrt{s \times b^e} = \sqrt{s} \times b^{e/2}$$

Never overflow or underflow
18.6 Logarithmic Arithmetic Unit

Add/subtract: \((S_x, L_x) \pm (S_y, L_y) = (S_z, L_z)\)

Assume \(x > y > 0\) (other cases are similar)

\[
L_z = \log z = \log(x \pm y) = \log(x(1 \pm y/x)) = \log x + \log(1 \pm y/x)
\]

Given \(\Delta = -(\log x - \log y)\), the term

\[
\log(1 \pm y/x) = \log(1 \pm \log^{-1}\Delta)
\]

is obtained from a table (two tables \(\phi^+\) and \(\phi^-\) needed)

\[
\log(x + y) = \log x + \phi^+(\Delta)
\]
\[
\log(x - y) = \log x + \phi^-(\Delta)
\]

![Arithmetic unit for a logarithmic number system.](image)
19 Errors and Error Control

Chapter Goals
Learn about sources of computation errors
consequences of inexact arithmetic
and methods for avoiding or limiting errors

Chapter Highlights
Representation and computation errors
Absolute versus relative error
Worst-case versus average error
Why $3 \times (1/3)$ is not necessarily 1?
Error analysis and bounding

Chapter Contents
19.1 Sources of Computational Errors
19.2 Invalidated Laws of Algebra
19.3 Worst-Case Error Accumulation
19.4 Error Distribution and Expected Errors
19.5 Forward Error Analysis
19.6 Backward Error Analysis
19.1 Sources of Computational Errors

FLP approximates exact computation with real numbers

Two sources of errors to understand and counteract:

- **Representation errors**
 - e.g., no machine representation for $1/3$, $\sqrt{2}$, or π
- **Arithmetic errors**
 - e.g., $(1 + 2^{-12})^2 = 1 + 2^{-11} + 2^{-24}$
 - not representable in IEEE format

We saw early in the course that errors due to finite precision can lead to disasters in life-critical applications

Example 19.1: Compute $1/99 - 1/100$

(decimal floating-point format, 4-digit significand in $[1, 10)$, single-digit signed exponent)

Precise result $= 1/9900 \approx 1.010 \times 10^{-4}$ (error $\approx 10^{-8}$ or 0.01%)

$x = 1/99 \approx 1.010 \times 10^{-2}$ \hspace{1cm} \text{Error} \approx 10^{-6} \text{ or } 0.01$

$y = 1/100 = 1.000 \times 10^{-2}$ \hspace{1cm} \text{Error} = 0

$z = x - fp y = 1.010 \times 10^{-2} - 1.000 \times 10^{-2} = 1.000 \times 10^{-4}$ \hspace{1cm} \text{Error} \approx 10^{-6} \text{ or } 1\%
Notation for floating-point system \(\text{FLP}(r, p, A) \)

Radix \(r \) (assume to be the same as the exponent base \(b \))
Precision \(p \) in terms of radix-\(r \) digits
Approximation scheme \(A \in \{\text{chop}, \text{round}, \text{rtne}, \text{chop}(g), \ldots\} \)

Let \(x = r^e s \) be an unsigned real number, normalized such that \(1/r \leq s < 1 \), and \(x_{fp} \) be its representation in \(\text{FLP}(r, p, A) \)

\[
x_{fp} = r^e s_{fp} = (1 + \eta)x
\]

\(A = \text{chop} \)
\(-ulp < s_{fp} - s \leq 0 \quad -r \times ulp < \eta \leq 0 \)

\(A = \text{round} \)
\(-ulp/2 < s_{fp} - s \leq ulp/2 \quad |\eta| \leq r \times ulp/2 \)

Arithmetic in \(\text{FLP}(r, p, A) \)

Obtain an infinite-precision result, then chop, round, \ldots

Real machines approximate this process by keeping \(g > 0 \) guard digits, thus doing arithmetic in \(\text{FLP}(r, p, \text{chop}(g)) \)
Error analysis for FLP(r, p, A)

Consider multiplication, division, addition, and subtraction for positive operands x_{fp} and y_{fp} in FLP(r, p, A)

Due to representation errors, $x_{fp} = (1 + \sigma)x$, $y_{fp} = (1 + \tau)y$

$x_{fp} \times_{fp} y_{fp} = (1 + \eta)x_{fp}y_{fp} = (1 + \eta)(1 + \sigma)(1 + \tau)xy$

$= (1 + \eta + \sigma + \tau + \eta\sigma + \eta\tau + \sigma\tau + \eta\sigma\tau)xy$

$\approx (1 + \eta + \sigma + \tau)xy$

$x_{fp} /_{fp} y_{fp} = (1 + \eta)x_{fp}/y_{fp} = (1 + \eta)(1 + \sigma)x/[(1 + \tau)y]$

$= (1 + \eta)(1 + \sigma)(1 - \tau)(1 + \tau^2)(1 + \tau^4)(\ldots)x/y$

$\approx (1 + \eta + \sigma - \tau)x/y$

$x_{fp} +_{fp} y_{fp} = (1 + \eta)(x_{fp} + y_{fp}) = (1 + \eta)(x + \sigma x + y + \tau y)$

$= (1 + \eta)(1 + \frac{\sigma x + \tau y}{x + y})(x + y)$

Since $|\sigma x + \tau y| \leq \max(|\sigma|, |\tau|)(x + y)$, the magnitude of the worst-case relative error in the computed sum is roughly bounded by $|\eta| + \max(|\sigma|, |\tau|) $

$x_{fp} -_{fp} y_{fp} = (1 + \eta)(x_{fp} - y_{fp}) = (1 + \eta)(x + \sigma x - y - \tau y)$

$= (1 + \eta)(1 + \frac{\sigma x - \tau y}{x - y})(x - y)$

The term $(\sigma x - \tau y)/(x - y)$ can be very large if x and y are both large but $x - y$ is relatively small

This is known as cancellation or loss of significance
Fixing the problem

The part of the problem that is due to \(\eta \) being large can be fixed by using guard digits

Theorem 19.1: In floating-point system \(\text{FLP}(r, p, \text{chop}(g)) \) with \(g \geq 1 \) and \(-x < y < 0 < x\), we have:

\[
x +_{fp} y = (1 + \eta)(x + y) \quad \text{with} \quad -r^{-p+1} < \eta < r^{-p-g+2}
\]

Corollary: In \(\text{FLP}(r, p, \text{chop}(1)) \)

\[
x +_{fp} y = (1 + \eta)(x + y) \quad \text{with} \quad |\eta| < r^{-p+1}
\]

So, a single guard digit is sufficient to make the relative arithmetic error in floating-point addition/subtraction comparable to the representation error with truncation.
Example 19.2: Decimal floating-point system \((r = 10)\) with \(p = 6\) and no guard digit

\[
x = 0.100\ 000\ 000 \times 10^3 \quad y = -0.999\ 999\ 456 \times 10^2
\]

\[
x_{\text{fp}} = .100\ 000 \times 10^3 \quad y_{\text{fp}} = - .999\ 999 \times 10^2
\]

\[
x + y = 0.544 \times 10^{-4} \quad \text{and} \quad x_{\text{fp}} + y_{\text{fp}} = 10^{-4}, \quad \text{but:}
\]

\[
x_{\text{fp}} +_{\text{fp}} y_{\text{fp}} = .100\ 000\ 000 \times 10^3 -_{\text{fp}} .099\ 999\ 9 \times 10^3
\]

\[
= .100\ 000 \times 10^{-2}
\]

Relative error \(= (10^{-3} - 0.544 \times 10^{-4})/(0.544 \times 10^{-4}) \approx 17.38\)

(i.e., the result is 1738\% larger than the correct sum!)

With 1 guard digit, we get:

\[
x_{\text{fp}} +_{\text{fp}} y_{\text{fp}} = 0.100\ 000\ 0 \times 10^3 -_{\text{fp}} 0.099\ 999\ 9 \times 10^3
\]

\[
= 0.100\ 000 \times 10^{-3}
\]

Relative error = 80.5\% relative to the exact sum \(x + y\)
but the error is 0\% with respect to \(x_{\text{fp}} + y_{\text{fp}}\)
19.2 Invalidated Laws of Algebra

Many laws of algebra do not hold for floating-point arithmetic (some don’t even hold approximately)

This can be a source of confusion and incompatibility

Associative law of addition: \(a + (b + c) = (a + b) + c \)

\(a = 0.123 \ 41 \times 10^5 \quad b = -0.123 \ 40 \times 10^5 \quad c = 0.143 \ 21 \times 10^1 \)

\(a_{fp} (b_{fp} + c) \)

\[
= 0.123 \ 41 \times 10^5 +_{fp} (-0.123 \ 40 \times 10^5 +_{fp} 0.143 \ 21 \times 10^1) \\
= 0.123 \ 41 \times 10^5 -_{fp} 0.123 \ 39 \times 10^5 \\
= 0.200 \ 00 \times 10^1
\]

\((a_{fp} b) +_{fp} c \)

\[
= (0.123 \ 41 \times 10^5 -_{fp} 0.123 \ 40 \times 10^5) +_{fp} 0.143 \ 21 \times 10^1 \\
= 0.100 \ 00 \times 10^1 +_{fp} 0.143 \ 21 \times 10^1 \\
= 0.243 \ 21 \times 10^1
\]

The two results differ by about 20%!
A possible remedy: unnormalized arithmetic

\[a +_{fp} (b +_{fp} c) \]
\[= 0.123 41 \times 10^5 +_{fp} (-0.123 40 \times 10^5 +_{fp} 0.143 21 \times 10^1) \]
\[= 0.123 41 \times 10^5 -_{fp} 0.123 39 \times 10^5 = 0.000 02 \times 10^5 \]

\[(a +_{fp} b) +_{fp} c \]
\[= (0.123 41 \times 10^5 -_{fp} 0.123 40 \times 10^5) +_{fp} 0.143 21 \times 10^1 \]
\[= 0.000 01 \times 10^5 +_{fp} 0.143 21 \times 10^1 = 0.000 02 \times 10^5 \]

Not only are the two results the same but they carry with them a kind of warning about the extent of potential error.

Let’s see if using 2 guard digits helps:

\[a +_{fp} (b +_{fp} c) \]
\[= 0.123 41 \times 10^5 +_{fp} (-0.123 40 \times 10^5 +_{fp} 0.143 21 \times 10^1) \]
\[= 0.123 41 \times 10^5 -_{fp} 0.123 385 7 \times 10^5 = 0.243 00 \times 10^1 \]

\[(a +_{fp} b) +_{fp} c \]
\[= (0.123 41 \times 10^5 -_{fp} 0.123 40 \times 10^5) +_{fp} 0.143 21 \times 10^1 \]
\[= 0.100 00 \times 10^1 +_{fp} 0.143 21 \times 10^1 = 0.243 21 \times 10^1 \]

The difference is now about 0.1%; still too high.

Using more guard digits will improve the situation but does not change the fact that laws of algebra cannot be assumed to hold in floating-point arithmetic.
Examples of other laws of algebra that do not hold:

Associative law of multiplication
\[a \times (b \times c) = (a \times b) \times c \]

Cancellation law (for \(a > 0 \))
\[a \times b = a \times c \implies b = c \]

Distributive law
\[a \times (b + c) = (a \times b) + (a \times c) \]

Multiplication canceling division
\[a \times (b / a) = b \]

Before the ANSI-IEEE floating-point standard became available and widely adopted, these problems were exacerbated by the use of many incompatible formats

Example 19.3: The formula \(x = -b \pm d \), with \(d = \sqrt{b^2 - c} \), yielding the roots of the quadratic equation \(x^2 + 2bx + c = 0 \), can be rewritten as \(x = -c / (b \pm d) \)

Example 19.4: The area of a triangle with sides \(a, \ b, \) and \(c \) (assume \(a \geq b \geq c \)) is given by the formula

\[A = \frac{1}{4} \sqrt{(a + (b + c))(c - (a - b))(c + (a - b))(a + (b - c))} \]
19.3 Worst-Case Error Accumulation

In a sequence of operations, round-off errors might add up

The larger the number of cascaded computation steps (that depend on results from previous steps), the greater the chance for, and the magnitude of, accumulated errors

With rounding, errors of opposite signs tend to cancel each other out in the long run, but one cannot count on such cancellations

Example: inner-product calculation \(z = \sum_{i=0}^{1023} x(i) y(i) \)

Max error per multiply-add step = \(ulp/2 + ulp/2 = ulp \)
Total worst-case absolute error = \(1024 \times ulp \)
(equivalent to losing 10 bits of precision)

A possible cure: keep the double-width products in their entirety and add them to compute a double-width result which is rounded to single-width at the very last step

Multiplications do not introduce any round-off error
Max error per addition = \(ulp^2/2 \)
Total worst-case error = \(1024 \times ulp^2/2 \)

Therefore, provided that overflow is not a problem, a highly accurate result is obtained
Moral of the preceding examples:

Perform intermediate computations with a higher precision than what is required in the final result.

Implement multiply-accumulate in hardware (DSP chips).

Reduce the number of cascaded arithmetic operations; So, using computationally more efficient algorithms has the double benefit of reducing the execution time as well as accumulated errors.

Kahan’s summation algorithm or formula

To compute \(s = \sum_{i=0}^{n-1} x(i) \), proceed as follows

\[
\begin{align*}
s & \leftarrow x(0) \\
c & \leftarrow 0 \quad \{c \text{ is a correction term}\}
\end{align*}
\]

for \(i = 1 \) to \(n - 1 \) do

\[
\begin{align*}
y & \leftarrow x(i) - c \quad \{\text{subtract correction term}\} \\
z & \leftarrow s + y \\
c & \leftarrow (z - s) - y \quad \{\text{find next correction term}\} \\
s & \leftarrow z
\end{align*}
\]

endfor
19.4 Error Distribution and Expected Errors

MRRE = maximum relative representation error

\[\text{MRRE}(\text{FLP}(r, p, \text{chop})) = r^{-p+1} \]
\[\text{MRRE}(\text{FLP}(r, p, \text{round})) = r^{-p+1}/2 \]

From a practical standpoint, however, the distribution of errors and their expected values may be more important.

Limiting ourselves to positive significands, we define:

\[\text{ARRE}(\text{FLP}(r, p, A)) = \int_{1}^{1/r} \frac{|x_{fp} - x|}{x} \frac{dx}{x \ln r} \]

\(1/(x \ln r)\) is a probability density function.

Fig. 19.1 Probability density function for the distribution of normalized significands in FLP\((r = 2, p, A)\).
19.5 Forward Error Analysis

Consider the computation

\[y = ax + b \]

and its floating-point version:

\[y_{fp} = (a_{fp} \times_{fp} x_{fp}) +_{fp} b_{fp} = (1 + \eta)y \]

Can we establish any useful bound on the magnitude of the relative error \(\eta \), given the relative errors in the input operands \(a_{fp} \), \(b_{fp} \), and \(x_{fp} \)?

The answer is “no”

Forward error analysis =

Finding out how far \(y_{fp} \) can be from \(ax + b \), or at least from \(a_{fp}x_{fp} + b_{fp} \), in the worst case
a. **Automatic error analysis**

Run selected test cases with higher precision and observe the differences between the new, more precise, results and the original ones.

b. **Significance arithmetic**

Roughly speaking, same as unnormalized arithmetic, although there are some fine distinctions.
The result of the unnormalized decimal addition
\[
.1234 \times 10^5 +_{fp} .0000 \times 10^{10} = .0000 \times 10^{10}
\]

warns us that precision has been lost.

c. **Noisy-mode computation**

Random digits, rather than 0s, are inserted during normalizing left shifts.
If several runs of the computation in noisy mode yield comparable results, then we are probably safe.

d. **Interval arithmetic**

An interval \([x_{lo}, x_{hi}]\) represents \(x\), \(x_{lo} \leq x \leq x_{hi}\).

With \(x_{lo}, x_{hi}, y_{lo}, y_{hi} > 0\), to find \(z = x / y\), we compute \([z_{lo}, z_{hi}] = [x_{lo} /_{fp} y_{hi}, x_{hi} /_{fp} y_{lo}]\).

Intervals tend to widen after many computation steps.
19.6 Backward Error Analysis

Backward error analysis replaces the original question
 How much does y_{fp} deviate from the correct result y?
with another question:
 What input changes produce the same deviation?
In other words, if the exact identity
 $y_{fp} = a_{alt}x_{alt} + b_{alt}$
holds for alternate parameter values a_{alt}, b_{alt}, and x_{alt},
we ask how far a_{alt}, b_{alt}, x_{alt} can be from a_{fp}, b_{fp}, x_{fp}
Thus, computation errors are converted or compared to additional input errors
Example of backward error analysis

\[y_{fp} = a_{fp} \times_{fp} x_{fp} +_{fp} b_{fp} \]
\[= (1 + \mu)[a_{fp} \times_{fp} x_{fp} + b_{fp}] \quad \text{with } |\mu| < r^{p+1} = r \times \text{ulp} \]
\[= (1 + \mu)[(1 + \nu)a_{fp}x_{fp} + b_{fp}] \quad \text{with } |\nu| < r^{p+1} = r \times \text{ulp} \]
\[= (1 + \mu)a_{fp}(1 + \nu)x_{fp} + (1 + \mu)b_{fp} \]
\[= (1 + \mu)(1 + \sigma)a(1 + \nu)(1 + \delta)x + (1 + \mu)(1 + \gamma)b \]
\[\cong (1 + \sigma + \mu)a(1 + \delta + \nu)x + (1 + \gamma + \mu)b \]

So the approximate solution of the original problem is the exact solution of a problem close to the original one.

We are, thus, assured that the effect of arithmetic errors on the result \(y_{fp} \) is no more severe than that of \(r \times \text{ulp} \) additional error in each of the inputs \(a, b, \) and \(x \).
20 Precise and Certifiable Arithmetic

Chapter Goals
Discuss methods for doing arithmetic when results of high accuracy or guaranteed correctness are required.

Chapter Highlights
More precise computation via multi- or variable-precision arithmetic.
Result certification via exact or error-bounded arithmetic.
Precise/exact arithmetic with low overhead.

Chapter Contents
20.1 High Precision and Certifiability
20.2 Exact Arithmetic
20.3 Multiprecision Arithmetic
20.4 Variable-Precision Arithmetic
20.5 Error-Bounding via Interval Arithmetic
20.6 Adaptive and Lazy Arithmetic
20.1 High Precision and Certifiability

There are two aspects of precision to discuss:
Results possessing adequate precision
Being able to provide assurance of the same

We consider three distinct approaches for coping with precision issues:

1. Obtaining completely trustworthy results via exact arithmetic

2. Making the arithmetic highly precise in order to raise our confidence in the validity of the results: multi- or variable-precision arithmetic

3. Doing ordinary or high-precision calculations while tracking potential error accumulation (can lead to fail-safe operation)

We take the hardware to be completely trustworthy
Hardware reliability issues to be dealt with in Chapter 27
20.2 Exact Arithmetic

Continued fractions

Any unsigned rational number \(x = \frac{p}{q} \) has a unique continued-fraction expansion

\[
x = \frac{p}{q} = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{1 + \ddots + \cfrac{1}{a_{m-1} + \cfrac{1}{a_m}}}}}
\]

with \(a_0 \geq 0, a_m \geq 2, \) and \(a_i \geq 1 \) for \(1 \leq i \leq m - 1 \)

Example: continued-fraction representation for 277/642

\[
\frac{277}{642} = 0 + \cfrac{1}{2 + \cfrac{1}{3 + \cfrac{1}{6 + \cfrac{1}{1 + \cfrac{1}{3 + \cfrac{1}{3}}}}}} = [0/2/3/6/1/3/3]
\]

Can get approximations for finite representation by limiting number of “digits” in the continued-fraction representation
Fixed-slash number systems

Numbers are represented by the ratio p/q of two integers

- **Rational number** if $p > 0$ and $q > 0$
- “rounded” to nearest value
- **±0** if $p = 0$ and q odd
- **±∞** if p odd and $q = 0$
- **NaN** (not a number) otherwise

The space waste due to multiple representations such as $3/5 = 6/10 = 9/15 = \ldots$ is no more than one bit, because:

$$\lim_{n \to \infty} \frac{|\{p/q \mid 1 \leq p, q \leq n, \gcd(p, q)=1\}|}{n^2} = \frac{6}{\pi^2} = 0.608$$
Floating-slash number systems

![Diagram of floating-slash number system representation format]

Fig. 20.2 Example floating-slash representation format.

Set of numbers represented:

\[\{ \pm p/q \mid p, q \geq 1, \gcd(p, q)=1, \left\lfloor \log_2 p \right\rfloor + \left\lfloor \log_2 q \right\rfloor \leq k - 2 \} \]

Again the following mathematical result, due to Dirichlet, shows that the space waste is no more than one bit:

\[
\lim_{n \to \infty} \frac{|\{p/q \mid pq \leq n, \gcd(p, q)=1\}|}{|\{p/q \mid pq \leq n, p, q \geq 1\}|} = \frac{6}{\pi^2} = 0.608
\]
20.3 Multiprecision Arithmetic

Fig. 20.3 Example quadruple-precision integer format.

Fig. 20.4 Example quadruple-precision floating-point format.

Fig. 20.5 Quadruple-precision significands aligned for the floating-point addition $z = x_{fp} + y$.
20.4 Variable-Precision Arithmetic

Same as multiprecision, but with dynamic adjustments

![Diagram of variable-precision integer format]

Fig. 20.6 Example variable-precision integer format.

![Diagram of variable-precision floating-point format]

Fig. 20.7 Example variable-precision floating-point format.

![Diagram of variable-precision floating-point addition]

Fig. 20.8 Variable-precision floating-point addition.
20.5 Error-Bounding via Interval Arithmetic

\[[a, b], \ a \leq b, \ \text{is an interval enclosing a number } x, \ a \leq x \leq b \]
\[[a, a] \ \text{represents the real number} \ x = a \]

The interval \([a, b], a > b, \) represents the empty interval \(\Phi\)

Intervals can be combined and compared in a natural way

\[
\begin{align*}
[x_{lo}, x_{hi}] \cap [y_{lo}, y_{hi}] &= [\max(x_{lo}, y_{lo}), \min(x_{hi}, y_{hi})] \\
[x_{lo}, x_{hi}] \cup [y_{lo}, y_{hi}] &= [\min(x_{lo}, y_{lo}), \max(x_{hi}, y_{hi})] \\
[x_{lo}, x_{hi}] \supseteq [y_{lo}, y_{hi}] & \iff x_{lo} \leq y_{lo} \text{ and } x_{hi} \geq y_{hi} \\
[x_{lo}, x_{hi}] &= [y_{lo}, y_{hi}] & \iff x_{lo} = y_{lo} \text{ and } x_{hi} = y_{hi} \\
[x_{lo}, x_{hi}] < [y_{lo}, y_{hi}] & \iff x_{hi} < y_{lo}
\end{align*}
\]

Interval arithmetic operations are intuitive and efficient

Additive inverse \(-x\) of an interval \(x = [x_{lo}, x_{hi}]\)
\[-[x_{lo}, x_{hi}] = [-x_{hi}, -x_{lo}]\]

Multiplicative inverse of an interval \(x = [x_{lo}, x_{hi}]\)
\[
1 / [x_{lo}, x_{hi}] = [1/x_{hi}, 1/x_{lo}] \ \text{provided that } 0 \notin [x_{lo}, x_{hi}] \\
\text{when } 0 \in [x_{lo}, x_{hi}], \ \text{the multiplicative inverse is} \ [\infty, +\infty]
\]
\[
[x_{lo}, x_{hi}] + [y_{lo}, y_{hi}] = [x_{lo} + y_{lo}, x_{hi} + y_{hi}]
\]

\[
[x_{lo}, x_{hi}] - [y_{lo}, y_{hi}] = [x_{lo} - y_{hi}, x_{hi} - y_{lo}]
\]

\[
[x_{lo}, x_{hi}] \times [y_{lo}, y_{hi}] = \left[\min(x_{lo}y_{lo}, x_{lo}y_{hi}, x_{hi}y_{lo}, x_{hi}y_{hi}), \max(x_{lo}y_{lo}, x_{lo}y_{hi}, x_{hi}y_{lo}, x_{hi}y_{hi})\right]
\]

\[
[x_{lo}, x_{hi}] / [y_{lo}, y_{hi}] = [x_{lo}, x_{hi}] \times [1/y_{hi}, 1/y_{lo}]
\]
From the viewpoint of arithmetic calculations, a very important property of interval arithmetic is:

Theorem 20.1: If $f(x^{(1)}, x^{(2)}, \ldots, x^{(n)})$ is a rational expression in the interval variables $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$, that is, f is a finite combination of $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ and a finite number of constant intervals by means of interval arithmetic operations, then $x^{(i)} \supset y^{(i)}$, $i = 1, 2, \ldots, n$, implies:

$$f(x^{(1)}, x^{(2)}, \ldots, x^{(n)}) \supset f(y^{(1)}, y^{(2)}, \ldots, y^{(n)})$$

Thus, arbitrarily narrow result intervals can be obtained by simply performing arithmetic with sufficiently high precision.
In particular, with reasonable assumptions about machine arithmetic, the following theorem holds

Theorem 20.2: Consider the execution of an algorithm on real numbers using machine interval arithmetic with precision \(p \) in radix \(r \), i.e., in \(\text{FLP}(r, p, \nabla|\Delta) \). If the same algorithm is executed using the precision \(q \), with \(q > p \), the bounds for both the absolute error and relative error are reduced by the factor \(r^{q-p} \)

(the absolute or relative error itself may not be reduced by this factor; the guarantee applies only to the upper bound)

Strategy for obtaining results with a desired error bound \(\epsilon \):

Let \(w_{\text{max}} \) be the maximum width of a result interval when interval arithmetic is used with \(p \) radix-\(r \) digits of precision. If \(w_{\text{max}} \leq \epsilon \), then we are done. Otherwise, interval calculations with the higher precision

\[q = p + \lceil \log_r w_{\text{max}} - \log_r \epsilon \rceil \]

is guaranteed to yield the desired accuracy.
20.6 Adaptive and Lazy Arithmetic

Need-based incremental precision adjustment to avoid high-precision calculations dictated by worst-case errors

Interestingly, the opposite of multi-precision arithmetic, which we may call fractional-precision arithmetic, is also of some interest. Example: Intel’s MMX

Lazy evaluation is a powerful paradigm that has been and is being used in many different contexts. For example, in evaluating composite conditionals such as

\[
\text{if } \text{cond1} \text{ and } \text{cond2} \text{ then action}
\]

evaluation of \(\text{cond2} \) may be skipped if \(\text{cond1} \) yields “false”

More generally, lazy evaluation means

postponing all computations or actions until they become irrelevant or unavoidable

Opposite of lazy evaluation (speculative or aggressive execution) has been applied extensively

Redundant number representations offer some advantages for lazy arithmetic

Because redundant representations support MSD-first arithmetic, it is possible to produce a small number of result digits by using correspondingly less computational effort, until more precision is needed
Part VI Function Evaluation

Part Goals
Learn algorithms and implementation methods for evaluating useful functions

Part Synopsis
Divisionlike square-rooting algorithms
Evaluating \sqrt{x}, $\sin x$, $\tanh x$, $\ln x$, e^x, ... via series expansion, using $+$, $-$, \times, $/$ convergence computation
Tables: the ultimate in simplicity/flexibility

Part Contents
Chapter 21 Square-Rooting Methods
Chapter 22 The CORDIC Algorithms
Chapter 23 Variations in Function Evaluation
Chapter 24 Arithmetic by Table Lookup
21 Square-Rooting Methods

Chapter Goals
Learning algorithms and implementations for both digit-at-a-time and convergence square-rooting

Chapter Highlights
Square-root part of ANSI/IEEE standard
Digit-recurrence (divisionlike) algorithms
Convergence square-rooting
Square-root not special case of division

Chapter Contents
21.1 The Pencil-and-Paper Algorithm
21.2 Restoring Shift/Subtract Algorithm
21.3 Binary Nonrestoring Algorithm
21.4 High-Radix Square-Rooting
21.5 Square-Rooting by Convergence
21.6 Parallel Hardware Square-Rooters
21.1 The Pencil-and-Paper Algorithm

Notation for our discussion of square-rooting algorithms:

- \(z \): Radicand \(z_{2k-1}z_{2k-2} \cdots z_1z_0 \)
- \(q \): Square root \(q_{k-1}q_{k-2} \cdots q_1q_0 \)
- \(s \): Remainder \((z - q^2)\) \(s_k s_{k-1} s_{k-2} \cdots s_1 s_0 \)

Remainder range: \(0 \leq s \leq 2q \) \(k + 1 \) digits

Justification: \(s \geq 2q + 1 \) leads to \(z = q^2 + s \geq (q + 1)^2 \)
so \(q \) cannot be the correct square-root of \(z \)

\[
\begin{array}{c|cccc}
q_2 & q_1 & q_0 & \leftarrow q \\
\hline
\sqrt{9} & 5 & 2 & 4 & 1 & \leftarrow z \\
9 & \hline
0 & 5 & 2 & 0 & 0 \\
\hline
5 & 2 & 4 & 1 & 4 & 8 & 6 & 4 \\
\hline
0 & 3 & 7 & 7 & s = (377)_{\text{ten}} & q = (308)_{\text{ten}}
\end{array}
\]

Fig. 21.1 Extracting the square root of a decimal integer using the pencil-and-paper algorithm.
Root digit selection

The root thus far is denoted by \(q^{(i)} = (q_{k-1}q_{k-2} \cdots q_{k-i})_{10} \)

Attach next digit \(q_{k-i-1} \); root becomes \(q^{(i+1)} = 10q^{(i)} + q_{k-i-1} \)

The square of \(q^{(i+1)} \) is \(100(q^{(i)})^2 + 20q^{(i)}q_{k-i-1} + (q_{k-i-1})^2 \)

\(100(q^{(i)})^2 = (10q^{(i)})^2 \) subtracted from PR in previous steps

Must subtract \((10(2q^{(i)}) + q_{k-i-1}) \times q_{k-i-1} \) to get the new PR

In radix \(r \), must subtract

\[(r(2q^{(i)}) + q_{k-i-1}) \times q_{k-i-1} \]

In radix 2, must subtract

\[(4q^{(i)} + q_{k-i-1}) \times q_{k-i-1} \]

\[4q^{(i)} + 1 \text{ if } q_{k-i-1} = 1, \ 0 \text{ otherwise} \]

As a trial, subtract \((q_{k-1}q_{k-2} \cdots q_{k-i}01)_{\text{two}} \)
\[
\begin{array}{cccc}
q_3 & q_2 & q_1 & q_0 \\
\sqrt{0 & 1 & 1 & 1 & 0 & 1 & 1 & 0} & \leftarrow \ z = (118)_{\text{ten}} \\
0 & 1 & & \\
\end{array}
\]

\[
q^0 = 0
\]

\[
\begin{array}{c}
q_3 \quad q_2 \quad q_1 \quad q_0 \quad \leftarrow q
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}
\]

\[
\geq_0 101\ ? \quad \text{No} \quad q_2 = 0 \quad q^{(2)} = 10
\]

\[
\begin{array}{cccc}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}
\]

\[
\geq_0 1001\ ? \quad \text{Yes} \quad q_1 = 1 \quad q^{(3)} = 101
\]

\[
\begin{array}{cccc}
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}
\]

\[
\geq_0 10101\ ? \quad \text{No} \quad q_0 = 0 \quad q^{(4)} = 1010
\]

\[
\begin{array}{c}
1 & 0 & 0 & 1 & 0
\end{array}
\]

\[
s = (18)_{\text{ten}} \quad q = (1010)_{\text{two}} = (10)_{\text{ten}}
\]

Fig. 21.2 Extracting the square root of a binary integer using the pencil-and-paper algorithm.

Fig. 21.3 Binary square-rooting in dot notation.
21.2 Restoring Shift/Subtract Algorithm

Consistent with the ANSI/IEEE floating-point standard, we formulate our algorithms for a radicand satisfying \(1 \leq z < 4\) (after possible 1-bit left shift to make the exponent even)

Notation:

\[
\begin{align*}
 z & \quad \text{Radicand in } [1, 4) \quad z_1z_0 \cdot z_{-1}z_{-2} \cdots z_{-l} \\
 q & \quad \text{Square root in } [1, 2) \quad 1 \cdot q_{-1}q_{-2} \cdots q_{-l} \\
 s & \quad \text{Scaled remainder} \quad s_1s_0 \cdot s_{-1}s_{-2} \cdots s_{-l}
\end{align*}
\]

Binary square-rooting is defined by the recurrence

\[
s^{(j)} = 2s^{(j-1)} - q_{-j} \left(2q^{(j-1)} + 2^{-j}q_{-j}\right)
\]

with \(s^{(0)} = z - 1, q^{(0)} = 1, s^{(j)} = s\)

where \(q^{(j)}\) is the root up to its \((-j)\)th digit; thus \(q = q^{(l)}\)

To choose the next root digit \(q_{-j} \in \{0, 1\}\), subtract from \(2s^{(j-1)}\) the value

\[
2q^{(j-1)} + 2^{-j} = (1q_{-1}^{(j-1)} \cdot q_{-2}^{(j-1)} \cdots q_{-j+1}^{(j-1)} 0 1)_{\text{two}}
\]

A negative trial difference means \(q_{-j} = 0\)
\[\begin{array}{cccccccccc}
\text{z} & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & (118/64) \\
\hline
s^{(0)} & z - 1 & 0 & 0 & 0 & . & 1 & 1 & 0 & 1 & 1 & 0 & q_0 = 11.
2s^{(0)} & 0 & 0 & 1 & . & 1 & 0 & 1 & 1 & 0 & 0
- [2 \times (1.) + 2^{-1}] & 1 & 0 & . & 1
s^{(1)} & 1 & 1 & 1 & . & 0 & 0 & 1 & 1 & 0 & 0 & q_{-1} = 01.0
s^{(1)} = 2s^{(0)} & 0 & 0 & 1 & . & 1 & 0 & 1 & 1 & 0 & 0
2s^{(1)} & 0 & 1 & 1 & . & 0 & 1 & 1 & 0 & 0 & 0
- [2 \times (1.0) + 2^{-2}] & 1 & 0 & . & 0 & 1
s^{(2)} & 0 & 0 & 1 & . & 0 & 0 & 1 & 0 & 0 & 0 & q_{-2} = 11.01
2s^{(2)} & 0 & 1 & 0 & . & 0 & 1 & 0 & 0 & 0 & 0
- [2 \times (1.01) + 2^{-3}] & 1 & 0 & . & 1 & 0 & 1
s^{(3)} & 1 & 1 & 1 & . & 1 & 0 & 1 & 0 & 0 & 0 & q_{-3} = 01.010
s^{(3)} = 2s^{(2)} & 0 & 1 & 0 & . & 0 & 1 & 0 & 0 & 0 & 0
2s^{(3)} & 1 & 0 & 0 & . & 1 & 0 & 0 & 0 & 0 & 0
- [2 \times (1.010) + 2^{-4}] & 1 & 0 & . & 1 & 0 & 0 & 1
s^{(4)} & 0 & 0 & 1 & . & 1 & 1 & 1 & 1 & 0 & 0 & q_{-4} = 11.0101
2s^{(4)} & 0 & 1 & 1 & . & 1 & 1 & 1 & 0 & 0 & 0
- [2 \times (1.0101) + 2^{-5}] & 1 & 0 & . & 1 & 0 & 1 & 0 & 1
s^{(5)} & 0 & 0 & 1 & . & 0 & 0 & 1 & 1 & 1 & 0 & q_{-5} = 11.01011
2s^{(5)} & 0 & 1 & 0 & . & 0 & 1 & 1 & 1 & 0 & 0
- [2 \times (1.01011) + 2^{-6}] & 1 & 0 & . & 1 & 0 & 1 & 1 & 0 & 1
s^{(6)} & 1 & 1 & 1 & . & 1 & 0 & 1 & 1 & 1 & 1 & q_{-6} = 01.0101110
s^{(6)} = 2s^{(5)} & 0 & 1 & 0 & . & 0 & 1 & 1 & 1 & 0 & 0 & 0
s \text{ (remainder } = 156/64) & 0 & . & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \text{ 0}
q \text{ (root } = 86/64) & 1 & . & 0 & 1 & 0 & 1 & 1 & 0
\hline
\end{array} \]

Fig. 21.4 Example of sequential binary square-rooting using the restoring algorithm.
In fractional square-rooting, the remainder is not needed.

To round the result, we can produce an extra digit q_{-l-1}

- truncate for $q_{-l-1} = 0$,
- round up for $q_{-l-1} = 1$

The midway case ($q_{-l-1} = 1$ followed by 0s), is impossible.

Example: in Fig. 21.4, an extra iteration produces $q_{-7} = 1$;

So the root is rounded up to $q = (1.010111)_\text{two} = 87/64$

The rounded-up value is closer to the root than the truncated version:

- Original: $118/64 = (86/64)^2 + 156/64^2$
- Rounded: $118/64 = (87/64)^2 - 17/64^2$
21.3 Binary Nonrestoring Algorithm

<table>
<thead>
<tr>
<th>z</th>
<th>0 1 1 1 0 1 1 0</th>
<th>(118/64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s^{(0)} = z - 1$</td>
<td>0 0 0 . 1 1 0 1 1 0</td>
<td>$q_0 = 1$ 1.0</td>
</tr>
<tr>
<td>$2s^{(0)}$</td>
<td>0 0 1 . 1 0 1 1 0 0</td>
<td>$q_{-1} = 1$ 1.1</td>
</tr>
<tr>
<td>$-[2 \times (1.)+2^{-1}]$</td>
<td>1 0 . 1</td>
<td></td>
</tr>
<tr>
<td>$s^{(1)}$</td>
<td>1 1 1 . 0 0 1 1 0 0</td>
<td>$q_{-2} = -1$ 1.01</td>
</tr>
<tr>
<td>$2s^{(1)}$</td>
<td>1 1 0 . 0 1 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$+[2 \times (1.1)-2^{-2}]$</td>
<td>1 0 . 1 1</td>
<td></td>
</tr>
<tr>
<td>$s^{(2)}$</td>
<td>0 0 1 . 0 0 1 0 0 0 0</td>
<td>$q_{-3} = 1$ 1.011</td>
</tr>
<tr>
<td>$2s^{(2)}$</td>
<td>0 1 0 . 0 1 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$-[2 \times (1.01)+2^{-3}]$</td>
<td>1 0 . 1 0 1</td>
<td></td>
</tr>
<tr>
<td>$s^{(3)}$</td>
<td>1 1 1 . 1 0 1 0 0 0 0</td>
<td>$q_{-4} = -1$ 1.0101</td>
</tr>
<tr>
<td>$2s^{(3)}$</td>
<td>1 1 1 . 0 1 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$+[2 \times (1.011)-2^{-4}]$</td>
<td>1 0 . 1 0 1 1</td>
<td></td>
</tr>
<tr>
<td>$s^{(4)}$</td>
<td>0 0 1 . 1 1 1 1 0 0 0 0</td>
<td>$q_{-5} = 1$ 1.01011</td>
</tr>
<tr>
<td>$2s^{(4)}$</td>
<td>0 1 1 . 1 1 1 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>$-[2 \times (1.0101)+2^{-5}]$</td>
<td>1 0 . 1 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>$s^{(5)}$</td>
<td>0 0 1 . 0 0 1 1 1 0 0</td>
<td>$q_{-6} = 1$ 1.010111</td>
</tr>
<tr>
<td>$2s^{(5)}$</td>
<td>0 1 0 . 0 1 1 1 0 0</td>
<td></td>
</tr>
<tr>
<td>$-[2 \times (1.01011)+2^{-6}]$</td>
<td>1 0 . 1 0 1 1 0 1</td>
<td></td>
</tr>
<tr>
<td>$s^{(6)}$</td>
<td>1 1 1 . 1 0 1 1 1 1</td>
<td>Negative (−17/64)</td>
</tr>
<tr>
<td>$+[2 \times (1.01011)+2^{-6}]$</td>
<td>1 0 . 1 0 1 1 0 1</td>
<td>Correct</td>
</tr>
<tr>
<td>$s^{(6)}$ (corrected)</td>
<td>0 1 0 . 0 1 1 1 0 0</td>
<td>(156/64)</td>
</tr>
<tr>
<td>s (true remainder)</td>
<td>0 . 0 0 0 0 0 1 0 0 1 1 1 0 0</td>
<td></td>
</tr>
<tr>
<td>q (signed-digit)</td>
<td>1 . 1 1 1 1 1 1 (87/64)</td>
<td></td>
</tr>
<tr>
<td>q (corrected bin)</td>
<td>1 . 0 1 0 1 1 0 (86/64)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 21.6 Example of nonrestoring binary square-rooting.
Details of binary nonrestoring square-rooting

Root digits in \{-1, 1\}; on-the-fly conversion to binary
Possible final correction

The case $q_j = 1$ (nonnegative PR), is handled as in the
restoring algorithm; i.e., it leads to the trial subtraction of
\[q_j[2q^{(j-1)} + 2^{-j}q_j] = 2q^{(j-1)} + 2^{-j} \]
from the PR. For $q_j = -1$, we must subtract
\[q_j[2q^{(j-1)} + 2^{-j}q_j] = -[2q^{(j-1)} - 2^{-j}] \]
which is equivalent to adding $2q^{(j-1)} - 2^{-j}$

$2q^{(j-1)} + 2^{-j} = 2[q^{(j-1)} + 2^{-j-1}]$ is formed by appending 01 to
the right end of $q^{(j-1)}$ and shifting
But computing the term $2q^{(j-1)} - 2^{-j}$ is problematic
We keep $q^{(j-1)}$ and $q^{(j-1)} - 2^{-j+1}$ in registers Q (partial root)
and Q^* (diminished partial root), respectively. Then:
\[q_j = 1 \text{ Subtract } 2q^{(j-1)} + 2^{-j} \text{ formed by shifting } Q 01 \]
\[q_j = -1 \text{ Add } 2q^{(j-1)} - 2^{-j} \text{ formed by shifting } Q^*11 \]
Updating rules for Q and Q^* registers:
\[q_j = 1 \Rightarrow Q := Q 1 \quad Q^* := Q 0 \]
\[q_j = -1 \Rightarrow Q := Q^*1 \quad Q^* := Q^*0 \]
Additional rule for SRT-like algorithm
\[q_j = 0 \Rightarrow Q := Q 0 \quad Q^* := Q^*1 \]
21.4 High-Radix Square-Rooting

Basic recurrence for fractional radix-r square-rooting:

$$s^{(j)} = rs^{(j-1)} - q_j(2q^{(j-1)} + r^{-j}q_j)$$

As in radix-2 nonrestoring algorithm, we can use two registers Q and Q^* to hold $q^{(j-1)}$ and $q^{(j-1)} - r^{-j+1}$, suitably updating them in each step.

Example: $r = 4$, root digit set $[-2, 2]$

Q^* holds $q^{(j-1)} - 4^{-j+1} = q^{(j-1)} - 2^{-2j+2}$. Then, one of the following values must be subtracted from, or added to, the shifted partial remainder $rs^{(j-1)}$

- $q_{-j} = 2$ Subtract $4q^{(j-1)} + 2^{-2j+2}$ double-shift $Q 010$
- $q_{-j} = 1$ Subtract $2q^{(j-1)} + 2^{-2j}$ shift $Q 001$
- $q_{-j} = -1$ Add $2q^{(j-1)} - 2^{-2j}$ shift $Q^* 111$
- $q_{-j} = -2$ Add $4q^{(j-1)} - 2^{-2j+2}$ double-shift $Q^* 110$

Updating rules for Q and Q^* registers:

- $q_{-j} = 2$ \Rightarrow $Q := Q 10$ $Q^* := Q 01$
- $q_{-j} = 1$ \Rightarrow $Q := Q 01$ $Q^* := Q 00$
- $q_{-j} = 0$ \Rightarrow $Q := Q 00$ $Q^* := Q^* 11$
- $q_{-j} = -1$ \Rightarrow $Q := Q^* 11$ $Q^* := Q^* 10$
- $q_{-j} = -2$ \Rightarrow $Q := Q^* 10$ $Q^* := Q^* 01$

Note that the root is obtained in standard binary (no conversion needed!)
Using carry-save addition

As in division, root digit selection can be based on a few bits of the partial remainder and of the partial root. This would allow us to keep s in carry-save form. One extra bit of each component of s (sum and carry) must be examined for root digit estimation.

With proper care, the same lookup table can be used for quotient digit selection in division and root digit selection in square-rooting.

To see how, compare the recurrences for radix-4 division and square-rooting:

Division: \[s(j) = 4s(j-1) - q_j d \]

Square-rooting: \[s(j) = 4s(j-1) - q_j(2q(j-1) + 4j q_j) \]

To keep the magnitudes of the partial remainders for division and square-rooting comparable, thus allowing the use of the same tables, we can perform radix-4 square-rooting using the digit set

\[\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\} \]

Conversion from the digit set above to the digit set $[-2, 2]$, or directly to binary, is possible with no extra computation.
21.5 Square-Rooting by Convergence

Newton-Raphson method

Choose \(f(x) = x^2 - z \) which has a root at \(x = \sqrt{z} \)

\[
x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}
\]

\[
x^{(i+1)} = 0.5(x^{(i)} + \frac{z}{x^{(i)}})
\]

Each iteration needs division, addition, and a one-bit shift

Convergence is quadratic

For \(0.5 \leq z < 1 \), a good starting approximation is \((1 + z)/2 \)

This approximation needs no arithmetic

The error is 0 at \(z = 1 \) and has a max of 6.07% at \(z = 0.5 \)

Table-lookup can yield a better starting estimate for \(\sqrt{z} \)

For example, if the initial estimate is accurate to within \(2^{-8} \), then 3 iterations would be sufficient to increase the accuracy of the root to 64 bits.

Example 21.1: Compute the square root of \(z = (2.4)_{10} \)

\[
x^{(0)} \text{ read out from table } = 1.5 \quad \text{ accurate to } 10^{-1}
\]

\[
x^{(1)} = 0.5(x^{(0)} + 2.4/x^{(0)}) = 1.550\,000\,000 \quad \text{ accurate to } 10^{-2}
\]

\[
x^{(2)} = 0.5(x^{(1)} + 2.4/x^{(1)}) = 1.549\,193\,548 \quad \text{ accurate to } 10^{-4}
\]

\[
x^{(3)} = 0.5(x^{(2)} + 2.4/x^{(2)}) = 1.549\,193\,338 \quad \text{ accurate to } 10^{-8}
\]
Convergence square-rooting without division

Rewrite the square-root recurrence as:

\[x^{(i+1)} = x^{(i)} + 0.5 \left(1/x^{(i)} \right) (z - (x^{(i)})^2) = x^{(i)} + 0.5 \gamma(x^{(i)}) (z - (x^{(i)})^2) \]

where \(\gamma(x^{(i)}) \) is an approximation to \(1/x^{(i)} \) obtained by a simple circuit or read out from a table.

Because of the approximation used in lieu of the exact value of \(1/x^{(i)} \), convergence rate will be less than quadratic.

Alternative: the recurrence above, but with the reciprocal found iteratively; thus interlacing the two computations.

Using the function \(f(y) = 1/y - x \) to compute \(1/x \), we get:

\[x^{(i+1)} = 0.5(x^{(i)} + z \, y^{(i)}) \]
\[y^{(i+1)} = y^{(i)}(2 - x^{(i)} \, y^{(i)}) \]

Convergence is less than quadratic but better than linear.
Example 21.2: Compute the square root of $z = (1.4)_{\text{ten}}$

\begin{align*}
 x^{(0)} &= y^{(0)} = 1.0 \\
 x^{(1)} &= 0.5(x^{(0)} + 1.4y^{(0)}) = 1.200000000 \\
 y^{(1)} &= y^{(0)}(2 - x^{(0)}y^{(0)}) = 1.000000000 \\
 x^{(2)} &= 0.5(x^{(1)} + 1.4y^{(1)}) = 1.300000000 \\
 y^{(2)} &= y^{(1)}(2 - x^{(1)}y^{(1)}) = 0.800000000 \\
 x^{(3)} &= 0.5(x^{(2)} + 1.4y^{(2)}) = 1.210000000 \\
 y^{(3)} &= y^{(2)}(2 - x^{(2)}y^{(2)}) = 0.768000000 \\
 x^{(4)} &= 0.5(x^{(3)} + 1.4y^{(3)}) = 1.142600000 \\
 y^{(4)} &= y^{(3)}(2 - x^{(3)}y^{(3)}) = 0.822312960 \\
 x^{(5)} &= 0.5(x^{(4)} + 1.4y^{(4)}) = 1.146919072 \\
 y^{(5)} &= y^{(4)}(2 - x^{(4)}y^{(4)}) = 0.872001394 \\
 x^{(6)} &= 0.5(x^{(5)} + 1.4y^{(5)}) = 1.183860512 \approx \sqrt{1.4}
\end{align*}
Convergence square-rooting without division (cont.)

A variant is based on computing $1/\sqrt{z}$ and then multiplying the result by z

Use the $f(x) = 1/x^2 - z$ that has a root at $x = 1/\sqrt{z}$ to get

$$x^{(i+1)} = 0.5x^{(i)}(3 - z(x^{(i)})^2)$$

Each iteration requires 3 multiplications and 1 addition, but quadratic convergence leads to only a few iterations

The Cray-2 supercomputer uses this method

An initial estimate $x^{(0)}$ for $1/\sqrt{z}$ is used to get $x^{(1)}$

$1.5x^{(0)}$ and $0.5(x^{(0)})^3$ are read out from a table

$x^{(1)}$ is accurate to within half the machine precision, so, a second iteration and a multiplication by z complete the process

Example 21.3: Compute the square root of $z = (.5678)_{\text{ten}}$

Table lookup provides the starting value $x^{(0)} = 1.3$ for $1/\sqrt{z}$

Two iterations, plus a multiplication by z, yield a fairly accurate result

$$x^{(0)} \text{ read out from table } = 1.3$$

$$x^{(1)} = 0.5x^{(0)}(3 - 0.5678(x^{(0)})^2) = 1.326\,271\,700$$

$$x^{(2)} = 0.5x^{(1)}(3 - 0.5678(x^{(1)})^2) = 1.327\,095\,128$$

$\sqrt{z} \approx z \times x^{(2)} = 0.753\,524\,613$
21.6 Parallel Hardware Square Rooters

Array square-rooters can be derived from the dot-notation representation in much the same way as array dividers.

\[
\begin{array}{c}
\sqrt{z} \\
q \\
s
\end{array}
\]

Radicand \(z = .z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8 \)

Root \(q = .q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8 \)

Remainder \(s = .s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 \)

Fig. 21.7 Nonrestoring array square-rooter built of controlled add/subtract cells.
22 The CORDIC Algorithms

Chapter Goals
Learning a useful convergence method
for evaluating trig and other functions

Chapter Highlights
Basic CORDIC idea: rotate a vector with
end point at \((x,y) = (1,0)\) by the angle \(z\)
to put its end point at \((\cos z, \sin z)\)
Other functions evaluated similarly
Complexity comparable to division

Chapter Contents
22.1 Rotations and Pseudorotations
22.2 Basic CORDIC Iterations
22.3 CORDIC Hardware
22.4 Generalized CORDIC
22.5 Using the CORDIC Method
22.6 An Algebraic Formulation
22.1 Rotations and Pseudorotations

If we have a computationally efficient way of rotating a vector, we can evaluate \(\cos, \sin, \) and \(\tan^{-1} \) functions.

Rotation by an arbitrary angle is difficult, so we:

- Perform pseudorotations
- Use special angles to synthesize a desired angle \(z \)

\[z = \alpha^{(1)} + \alpha^{(2)} + \ldots + \alpha^{(m)} \]
Rotate the vector OE\(^{(i)}\) with end point at \((x^{(i)}, y^{(i)})\) by \(\alpha^{(i)}\)

\[x^{(i+1)} = x^{(i)} \cos \alpha^{(i)} - y^{(i)} \sin \alpha^{(i)}\]
\[= (x^{(i)} - y^{(i)} \tan \alpha^{(i)})/(1 + \tan^2 \alpha^{(i)})^{1/2}\]
\[y^{(i+1)} = y^{(i)} \cos \alpha^{(i)} + x^{(i)} \sin \alpha^{(i)}\] \[\text{[Real rotation]}\]
\[= (y^{(i)} + x^{(i)} \tan \alpha^{(i)})/(1 + \tan^2 \alpha^{(i)})^{1/2}\]
\[z^{(i+1)} = z^{(i)} - \alpha^{(i)}\]

Goal: eliminate the divisions by \((1 + \tan^2 \alpha^{(i)})^{1/2}\) and choose \(\alpha^{(i)}\) so that \(\tan \alpha^{(i)}\) is a power of 2

Elimination of the divisions by \((1 + \tan^2 \alpha^{(i)})^{1/2}\)

Whereas a real rotation does not change the length \(R^{(i)}\) of the vector, a pseudorotation step increases its length to:

\[R^{(i+1)} = R^{(i)} (1 + \tan^2 \alpha^{(i)})^{1/2}\]
The coordinates of the new end point \(E'(i+1) \) after pseudorotation is derived by multiplying the coordinates of \(E(i+1) \) by the expansion factor

\[
\begin{align*}
x'(i+1) &= x(i) - y(i) \tan \alpha(i) \\
y'(i+1) &= y(i) + x(i) \tan \alpha(i) \\
z'(i+1) &= z(i) - \alpha(i)
\end{align*}
\]

[Pseudorotation]

Assuming \(x(0) = x, \ y(0) = y, \) and \(z(0) = z, \) after \(m \) real rotations by the angles \(\alpha(1), \alpha(2), \ldots, \alpha(m), \) we have:

\[
\begin{align*}
x'(m) &= x \cos(\sum \alpha(i)) - y \sin(\sum \alpha(i)) \\
y'(m) &= y \cos(\sum \alpha(i)) + x \sin(\sum \alpha(i)) \\
z'(m) &= z - (\sum \alpha(i))
\end{align*}
\]

After \(m \) pseudorotations by the angles \(\alpha(1), \alpha(2), \ldots, \alpha(m):\)

\[
\begin{align*}
x'(m) &= K(x \cos(\sum \alpha(i)) - y \sin(\sum \alpha(i))) \\
y'(m) &= K(y \cos(\sum \alpha(i)) + x \sin(\sum \alpha(i))) \\
z'(m) &= z - (\sum \alpha(i))
\end{align*}
\]

[*]

where \(K = \Pi(1 + \tan^2 \alpha(i))^{1/2} \)
22.2 Basic CORDIC Iterations

Pick $\alpha^{(i)}$ such that $\tan \alpha^{(i)} = d_i 2^{-i}$, $d_i \in \{-1, 1\}$

\[
\begin{align*}
 x^{(i+1)} &= x^{(i)} - d_i y^{(i)} 2^{-i} \\
 y^{(i+1)} &= y^{(i)} + d_i x^{(i)} 2^{-i} \\
 z^{(i+1)} &= z^{(i)} - d_i \tan^{-1} 2^{-i}
\end{align*}
\]

[CORDIC iteration]

If we always pseudorotate by the same set of angles (with + or – signs), then the expansion factor K is a constant that can be precomputed

\[
30.0 \approx 45.0 - 26.6 + 14.0 - 7.1 + 3.6 + 1.8 - 0.9 + 0.4 - 0.2 + 0.1 = 30.1
\]

Table 22.1 Approximate value of the function $e^{(i)} = \tan^{-1} 2^{-i}$, in degrees, for $0 \leq i \leq 9$

<table>
<thead>
<tr>
<th>i</th>
<th>$e^{(i)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>1</td>
<td>26.6</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
</tr>
<tr>
<td>3</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>3.6</td>
</tr>
<tr>
<td>5</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>0.4</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Table 22.2 Choosing the signs of the rotation angles in order to force z to 0

<table>
<thead>
<tr>
<th>i</th>
<th>$z^{(i)}$</th>
<th>$\alpha^{(i)}$</th>
<th>$z^{(i+1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+30.0</td>
<td>-45.0</td>
<td>-15.0</td>
</tr>
<tr>
<td>1</td>
<td>-15.0</td>
<td>+26.6</td>
<td>+11.6</td>
</tr>
<tr>
<td>2</td>
<td>+11.6</td>
<td>-14.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>3</td>
<td>-2.4</td>
<td>+7.1</td>
<td>+4.7</td>
</tr>
<tr>
<td>4</td>
<td>+4.7</td>
<td>-3.6</td>
<td>+1.1</td>
</tr>
<tr>
<td>5</td>
<td>+1.1</td>
<td>-1.8</td>
<td>-0.7</td>
</tr>
<tr>
<td>6</td>
<td>-0.7</td>
<td>+0.9</td>
<td>+0.2</td>
</tr>
<tr>
<td>7</td>
<td>+0.2</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>8</td>
<td>-0.2</td>
<td>+0.2</td>
<td>+0.0</td>
</tr>
<tr>
<td>9</td>
<td>+0.0</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Fig. 22.2 The first three of 10 pseudo-rotations leading from $(x^{(0)}, y^{(0)})$ to $(x^{(10)}, 0)$ in rotating by $+30^\circ$.
CORDIC Rotation Mode

In CORDIC terminology, the preceding selection rule for d_i, which makes z converge to 0, is known as “rotation mode”.

$$
\begin{align*}
 x^{(i+1)} &= x^{(i)} - d_i (2^{-i} y^{(i)}) \\
 y^{(i+1)} &= y^{(i)} + d_i (2^{-i} x^{(i)}) \\
 z^{(i+1)} &= z^{(i)} - d_i e^{(i)} \quad \text{where } e^{(i)} = \tan^{-1} 2^{-i}
\end{align*}
$$

After m iterations in rotation mode, when $z^{(m)} \cong 0$, we have $\sum \alpha^{(i)} = z$, and the CORDIC equations [*] become:

$$
\begin{align*}
 x^{(m)} &= K(x \cos z - y \sin z) \\
 y^{(m)} &= K(y \cos z + x \sin z) \quad \text{[Rotation mode]} \\
 z^{(m)} &= 0
\end{align*}
$$

Rule: Choose $d_i \in \{-1, 1\}$ such that $z \to 0$

The constant K is $K = 1.646\,760\,258\,121 \cdots$

Start with $x = 1/K = 0.607\,252\,935 \cdots$ and $y = 0$; as $z^{(m)}$ tends to 0 with CORDIC in rotation mode, $x^{(m)}$ and $y^{(m)}$ converge to $\cos z$ and $\sin z$

For k bits of precision in the results, k CORDIC iterations are needed, because $\tan^{-1} 2^{-i} \cong 2^{-i}$

Convergence of z to 0 is possible since each of our angles is more than half of the previous angle or, equivalently, each is less than the sum of all the angles following it

Domain of convergence is $-99.7 \cdots z \cdot 99.7 \cdots$, where 99.7 is the sum of all the angles (contains $[-\pi/2, \pi/2]$ radians)
CORDIC Vectoring Mode

Let us now make \(y \) tend to 0 by choosing \(d_i = -\text{sign}(x(i)y(i)) \)

After \(m \) steps in “vectoring mode,” \(\tan(\sum \alpha(i)) = -y/x \)

\[
x^{(m)} = K(x \cos(\sum \alpha(i)) - y \sin(\sum \alpha(i)))
\]
\[
= K(x - y \tan(\sum \alpha(i))/(1 + \tan^2(\sum \alpha(i)))^{1/2}
\]
\[
= K(x + y^2/x)/(1 + y^2/x^2)^{1/2}
\]
\[
= K(x^2 + y^2)^{1/2}
\]

The CORDIC equations [*] thus become:

\[
x^{(m)} = K(x^2 + y^2)^{1/2}
\]
\[
y^{(m)} = 0 \quad \text{[Vectoring mode]}
\]
\[
z^{(m)} = z + \tan^{-1}(y/x)
\]

Rule: Choose \(d_i \in \{-1, 1\} \) such that \(y \to 0 \)

Compute \(\tan^{-1}y \) by starting with \(x = 1 \) and \(z = 0 \)

This computation always converges. However, one can take advantage of

\[
\tan^{-1}(1/y) = \pi/2 - \tan^{-1}y
\]

to limit the range of fixed-point numbers encountered

Other trigonometric functions:

\(\tan \) obtained from \(\sin \) and \(\cos \) via division

\(\sin^{-1} \) and \(\cos^{-1} \): later
22.3 CORDIC Hardware

Fig. 22.3 Hardware elements needed for the CORDIC method.
22.4 Generalized CORDIC

The basic CORDIC method of Section 22.2 can be generalized to provide a more powerful tool for function evaluation. Generalized CORDIC is defined as follows:

\[
\begin{align*}
 x^{(i+1)} &= x^{(i)} - \mu d_i y^{(i)} 2^{-i} \\
 y^{(i+1)} &= y^{(i)} + d_i x^{(i)} 2^{-i} \quad \text{[Gen. CORDIC iteration]} \\
 z^{(i+1)} &= z^{(i)} - d_i e^{(i)}
\end{align*}
\]

- \(\mu = 1 \) Circular rotations (basic CORDIC) \(e^{(i)} = \tan^{-1} 2^{-i} \)
- \(\mu = 0 \) Linear rotations \(e^{(i)} = 2^{-i} \)
- \(\mu = -1 \) Hyperbolic rotations \(e^{(i)} = \tanh^{-1} 2^{-i} \)

Fig. 24.4 Circular, linear, and hyperbolic CORDIC.
22.5 Using the CORDIC Method

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rotation: (d_i = \text{sign}(z^{(i)})), (z^{(i)} \to 0)</th>
<th>Vectoring: (d_i = -\text{sign}(x^{(i)} y^{(i)})), (y^{(i)} \to 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu = 1) Circular</td>
<td>(x \xrightarrow{\text{CORDIC}} K(x \cos z - y \sin z)) (y \xrightarrow{\text{CORDIC}} K(y \cos z + x \sin z)) (z \xrightarrow{\text{CORDIC}} 0)</td>
<td>(x \xrightarrow{\text{CORDIC}} K \sqrt{x^2 + y^2}) (y \xrightarrow{\text{CORDIC}} 0) (z \xrightarrow{\text{CORDIC}} z + \tan^{-1}(y/x))</td>
</tr>
<tr>
<td>(e^{(i)} = \tan^{-1}2^{-i})</td>
<td>For (\cos & \sin), set (x = 1/K), (y = 0) (\tan z = \sin z / \cos z)</td>
<td>For (\tan^{-1}), set (x = 1), (z = 0) (\cos^{-1}w = \tan^{-1}[\sqrt{1-w^2}/w]) (\sin^{-1}w = \tan^{-1}[w/\sqrt{1-w^2}])</td>
</tr>
<tr>
<td>(\mu = 0) Linear</td>
<td>(x \xrightarrow{\text{CORDIC}} x) (y \xrightarrow{\text{CORDIC}} y + xz) (z \xrightarrow{\text{CORDIC}} 0)</td>
<td>For multiplication, set (y = 0)</td>
</tr>
<tr>
<td>(e^{(i)} = 2^{-i})</td>
<td>For (\text{multiplication}), set (y = 0)</td>
<td></td>
</tr>
<tr>
<td>(\mu = -1) Hyperbolic</td>
<td>(x \xrightarrow{\text{CORDIC}} K'(x \cosh z - y \sinh z)) (y \xrightarrow{\text{CORDIC}} K'(y \cosh z + x \sinh z)) (z \xrightarrow{\text{CORDIC}} 0)</td>
<td>(x \xrightarrow{\text{CORDIC}} K' \sqrt{x^2 - y^2}) (y \xrightarrow{\text{CORDIC}} 0) (z \xrightarrow{\text{CORDIC}} z + \tanh^{-1}(y/x))</td>
</tr>
<tr>
<td>(e^{(i)} = \tanh^{-1}2^{-i})</td>
<td>For (\cosh & \sinh), set (x = 1/K'), (y = 0) (\tanh z = \sinh z / \cosh z) (\exp(z) = \sinh z + \cosh z) (w' = \exp(r \ln w))</td>
<td>For (\tanh^{-1}), set (x = 1), (z = 0) (\ln w = 2 \tanh^{-1}[\sqrt{w + 1/4}]/(w + 1)) (\sqrt{w} = \sqrt{w + 1/4}^2 - (w - 1/4)^2) (\cosh^{-1}w = \ln(w + \sqrt{1 + w^2})) (\sinh^{-1}w = \ln(w + \sqrt{1 + w^2}))</td>
</tr>
<tr>
<td>Note</td>
<td>In executing the iterations for (\mu = -1), steps 4, 13, 40, 121, \ldots , j , 3j + 1 , \ldots] must be repeated. These repetitions are incorporated in the constant (K') below.</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
x^{(i+1)} &= x^{(i)} - \mu d_i (2^{-i} y^{(i)}) \\
y^{(i+1)} &= y^{(i)} + d_i (2^{-i} x^{(i)}) \\
z^{(i+1)} &= z^{(i)} - d_i e^{(i)}
\end{align*}
\]

\(\mu \in \{-1, 0, 1\}, \quad d_i \in \{-1, 1\} \)

\(K = 1.646\ 760\ 258\ 121 \ldots \)

\(K' = 0.828\ 159\ 360\ 960\ 2 \ldots \)

Fig. 22.5 Summary of generalized CORDIC algorithms.
Speedup Methods for CORDIC

Skipping some rotations

Must keep track of the expansion factor via the recurrence:

\[(K^{i+1})^2 = (K^i)^2(1 \pm 2^{-2i})\]

Given the additional work, variable-factor CORDIC is often not cost-effective compared to constant-factor CORDIC

Early termination

Do \(k/2\) iterations as usual, then combine the remaining \(k/2\) iterations into a single step, involving multiplication:

\[
\begin{align*}
 x^{(k/2+1)} &= x^{(k/2)} - y^{(k/2)}z^{(k/2)} \\
 y^{(k/2+1)} &= y^{(k/2)} + x^{(k/2)}z^{(k/2)} \\
 z^{(k/2+1)} &= z^{(k/2)} - z^{(k/2)} = 0
\end{align*}
\]

Possible because for very small \(z\), \(\tan^{-1}z \approx z \approx \tan z\)

The expansion factor \(K\) presents no problem because for \(e^{(i)} < 2^{-k/2}\), the contribution of the ignored terms that would have been multiplied by \(K\) is provably less than \(ulp\)

High-radix CORDIC

In a radix-4 CORDIC, \(d_i\) assumes values in \{–2, –1, 1, 2\} (perhaps with 0 also included) rather than in \{–1, 1\}

The hardware required for the radix-4 version of CORDIC is quite similar to Fig. 22.3
22.6 An Algebraic Formulation

Because

\[\cos z + j \sin z = e^{jz} \quad \text{where} \quad j = \sqrt{-1} \]

\[\cos z \text{ and } \sin z \text{ can be computed via evaluating the complex exponential function } e^{jz} \]

This leads to an alternate derivation of CORDIC iterations
Details in the text
23 Variations in Function Evaluation

Chapter Goals
Learning alternate computation methods (convergence and otherwise) for some functions computable through CORDIC

Chapter Highlights
Reasons for needing alternate methods:
Achieve higher performance or precision
Allow speed/cost tradeoffs
Optimizations, fit to diverse technologies

Chapter Contents
23.1 Additive/Multiplicative Normalization
23.2 Computing Logarithms
23.3 Exponentiation
23.4 Division and Square-Rooting, Again
23.5 Use of Approximating Functions
23.6 Merged Arithmetic
23.1 Additive/Multiplicative Normalization

Convergence methods characterized by recurrences

\[u^{(i+1)} = f(u^{(i)}, v^{(i)}) \]
\[v^{(i+1)} = g(u^{(i)}, v^{(i)}) \]
\[w^{(i+1)} = h(u^{(i)}, v^{(i)}, w^{(i)}) \]

Making \(u \) converge to a constant = “normalization”

Additive normalization = \(u \) normalized by adding values

Multiplicative normalization = \(u \) multiplied by values

Availability of cost-effective fast adders and multipliers make these two classes of methods useful

Multipliers are slower and more costly than adders, so we avoid multiplicative normalization when additive normalization would do

Multiplicative methods often offer faster convergence, thus making up for the slower steps

Multiplicative terms \(1 \pm 2^a \) are desirable (shift-add)

Examples we have seen before:

Additive normalization: CORDIC
Multiplicative normalization: convergence division
23.2 Computing Logarithms

A multiplicative normalization method using shift-add

\[x^{(i+1)} = x^{(i)}c^{(i)} = x^{(i)}(1 + d_i 2^{-i}) \quad d_i \in \{-1, 0, 1\} \]
\[y^{(i+1)} = y^{(i)} - \ln c^{(i)} = y^{(i)} - \ln(1 + d_i 2^{-i}) \]

where \(\ln(1 + d_i 2^{-i}) \) is read out from a table

Begin with \(x^{(0)} = x \), \(y^{(0)} = y \); Choose \(d_i \) such that \(x^{(m)} \to 1 \)

\[x^{(m)} = x \prod c^{(i)} \equiv 1 \quad \Rightarrow \quad \prod c^{(i)} \equiv 1/x \]
\[y^{(m)} = y - \sum \ln c^{(i)} = y - \ln \prod c^{(i)} \equiv y + \ln x \]

To find \(\ln x \), start with \(y = 0 \)

The algorithm’s domain of convergence is easily obtained:

\[1/\prod (1 + 2^{-i}) \leq x \leq 1/\prod (1 - 2^{-i}) \quad \text{or} \quad 0.21 \leq x \leq 3.45 \]

For large \(i \), we have \(\ln(1 \pm 2^{-i}) \equiv \pm 2^{-i} \)

So, we need \(k \) iterations to find \(\ln x \) with \(k \) bits of precision

This method can be used directly for \(x \) in \([1, 2)\)

Any \(x \) outside \([1, 2)\) can be written as \(x = 2^q s \), \(1 \leq s < 2 \)

\[\ln x = \ln(2^q s) = q \ln 2 + \ln s = 0.693 \ 147 \ 180 \ q + \ln s \]

A radix-4 version of this algorithm can be easily developed
A clever method based on squaring

Let $y = \log_2 x$ be a fractional number $(.y_{-1}y_{-2} \cdots y_{-l})_{\text{two}}$

$$x = 2^y = 2^{(.y_{-1}y_{-2}y_{-3} \cdots y_{-l})_{\text{two}}}$$

$$x^2 = 2^{2y} = 2^{(.y_{-1}y_{-2}y_{-3} \cdots y_{-l})_{\text{two}}} \Rightarrow y_{-1} = 1 \text{ iff } x^2 \geq 2$$

If $y_{-1} = 0$, we are back to the original situation
If $y_{-1} = 1$, we divide both sides of the equation by 2 to get

$$x^2/2 = 2^{(.y_{-2}y_{-3} \cdots y_{-l})_{\text{two}} / 2} = 2^{(.y_{-2}y_{-3} \cdots y_{-l})_{\text{two}}}$$

Subsequent bits of y can be determined in a similar way.

![Fig. 23.1 Hardware elements needed for computing log_2 x.](image)

Generalization to base-b logarithms: $y = \log_b x$ implies

$$x = b^y = b^{(.y_{-1}y_{-2}y_{-3} \cdots y_{-l})_{\text{two}}}$$

$$x^2 = b^{2y} = b^{(.y_{-1}y_{-2}y_{-3} \cdots y_{-l})_{\text{two}}} \Rightarrow y_{-1} = 1 \text{ iff } x^2 \geq b$$
23.3 Exponentiation

An additive normalization method for computing e^x

\[x^{(i+1)} = x^{(i)} - \ln c^{(i)} = x^{(i)} - \ln(1 + d_i 2^{-i}) \]
\[y^{(i+1)} = y^{(i)} c^{(i)} = y^{(i)} (1 + d_i 2^{-i}) \quad d_i \in \{-1, 0, 1\} \]

As before, $\ln(1 + d_i 2^{-i})$ is read out from a table

Begin with $x^{(0)} = x$, $y^{(0)} = y$; Choose d_i such that $x^{(m)} \to 0$

\[x^{(m)} = x - \sum \ln c^{(i)} \equiv 0 \quad \Rightarrow \quad \sum \ln c^{(i)} \equiv x \]
\[y^{(m)} = y \Pi c^{(i)} = y e^{\ln \Pi c^{(i)}} = y e^{\sum \ln c^{(i)}} \equiv y e^x \]

The algorithm’s domain of convergence is easily obtained:

\[\sum \ln(1 - 2^{-i}) \leq x \leq \sum \ln(1 + 2^{-i}) \quad \text{or} \quad -1.24 \leq x \leq 1.56 \]

Half of the k iterations can be eliminated by noting:

\[\ln (1 + \varepsilon) = \varepsilon - \varepsilon^2/2 + \varepsilon^3/3 - \cdots \equiv \varepsilon \quad \text{for} \ \varepsilon^2 < \text{ulp} \]

So when $x^{(j)} = 0.00 \cdots 00xx \cdots xx$, with $k/2$ leading zeros, we have $\ln(1 + x^{(j)}) \equiv x^{(j)}$, allowing us to terminate by

\[x^{(j+1)} = x^{(j)} - x^{(j)} = 0 \]
\[y^{(j+1)} = y^{(j)} (1 + x^{(j)}) \]

A radix-4 version of this e^x algorithm can be developed
General exponentiation function \(x^y \)

Can be computed by combining the logarithm and exponential functions and a single multiplication:

\[
x^y = (e^{\ln x})^y = e^{y \ln x}
\]

When \(y \) is a positive integer, exponentiation can be done by repeated multiplication.

In particular, when \(y \) is a constant, the methods used are reminiscent of multiplication by constants (Section 9.5)

Example:

\[
x^{25} = (((x^2)^2)^2)^2 x
\]

which implies 4 squarings and 2 multiplications.

Noting that

\[
25 = (1\ 1\ 0\ 0\ 1)_{\text{two}}
\]

leads us to a general procedure.

To raise \(x \) to the power \(y \), where \(y \) is a positive integer:

- Initialize the partial result to 1
- Scan the binary representation of \(y \) starting at its MSB
 - If the current bit is 1, multiply the partial result by \(x \)
 - If the current bit is 0, do not change the partial result
- Square the partial result before the next step (if any)
23.5 Use of Approximating Functions

Convert the problem of evaluating the function f to that of evaluating a different function g that approximates f, perhaps with a few pre- and postprocessing operations.

Approximating polynomials attractive because they need only additions and multiplications.

Polynomial approximations can be obtained based on various schemes; e.g., Taylor-Maclaurin series expansion. The Taylor-series expansion of $f(x)$ about $x = a$ is

$$f(x) = \sum_{j=0}^{\infty} f^{(j)}(a)(x - a)^j / j!$$

The error due to omitting terms of degree $> m$ is:

$$f^{(m+1)}(a + \mu(x - a))(x - a)^{m+1}/(m + 1)! \quad 0 < \mu < 1$$

Setting $a = 0$ yields the Maclaurin-series expansion

$$f(x) = \sum_{j=0}^{\infty} f^{(j)}(0)x^j / j!$$

and its corresponding error bound:

$$f^{(m+1)}(\mu x)x^{m+1}/(m + 1)! \quad 0 < \mu < 1$$

Efficiency can be gained via Horner’s method and incremental evaluation.
Table 23.1 Polynomial approximations for some useful functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Polynomial approximation</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/x$</td>
<td>$1 + y + y^2 + y^3 + \cdots + y^i + \cdots$</td>
<td>$0 < x < 2$ and $y = 1 - x$</td>
</tr>
<tr>
<td>e^x</td>
<td>$1 + \frac{1}{1!} x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \cdots + \frac{1}{i!} x^i + \cdots$</td>
<td></td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$-y - \frac{1}{2} y^2 - \frac{1}{3} y^3 - \frac{1}{4} y^4 - \cdots - \frac{1}{i} y^i - \cdots$</td>
<td>$0 < x \leq 2$ and $y = 1 - x$</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$2[z + \frac{1}{3} z^3 + \frac{1}{5} z^5 + \cdots + \frac{1}{2i+1} z^{2i+1} + \cdots]$</td>
<td>$x > 0$ and $z = \frac{x-1}{x+1}$</td>
</tr>
<tr>
<td>$\sin x$</td>
<td>$x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots + (-1)^i \frac{1}{(2i+1)!} x^{2i+1} + \cdots$</td>
<td></td>
</tr>
<tr>
<td>$\cos x$</td>
<td>$1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \cdots + (-1)^i \frac{1}{(2i)!} x^{2i} + \cdots$</td>
<td></td>
</tr>
<tr>
<td>$\tan^{-1} x$</td>
<td>$x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \cdots + (-1)^i \frac{1}{(2i+1)!} x^{2i+1} + \cdots$</td>
<td>$-1 < x < 1$</td>
</tr>
<tr>
<td>$\sinh x$</td>
<td>$x + \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \frac{1}{7!} x^7 + \cdots + \frac{1}{(2i+1)!} x^{2i+1} + \cdots$</td>
<td></td>
</tr>
<tr>
<td>$\cosh x$</td>
<td>$1 + \frac{1}{2!} x^2 + \frac{1}{4!} x^4 + \frac{1}{6!} x^6 + \cdots + \frac{1}{(2i)!} x^{2i} + \cdots$</td>
<td></td>
</tr>
<tr>
<td>$\tanh^{-1} x$</td>
<td>$x + \frac{1}{3} x^3 + \frac{1}{5} x^5 + \frac{1}{7} x^7 + \cdots + \frac{1}{(2i+1)!} x^{2i+1} + \cdots$</td>
<td>$-1 < x < 1$</td>
</tr>
</tbody>
</table>
A divide-and-conquer strategy for function evaluation

Let \(x \) in \([0, 4)\) be the \((I+2)\)-bit significand of a FLP number or its shifted version. Divide \(x \) into two chunks \(x_H \) and \(x_L \):

\[
x = x_H + 2^{-t} x_L \quad 0 \leq x_H < 4 \quad 0 \leq x_L < 1
\]

\(t + 2 \) bits \quad \(l - t \) bits

The Taylor-series expansion of \(f(x) \) about \(x = x_H \) is

\[
f(x) = \sum_{j=0}^{\infty} f^{(j)}(x_H)(2^{-t}x_L)^j / j!
\]

where \(f^{(j)}(x) \) is the \(j \)th derivative of \(f(x) \). If one takes just the first two terms, a linear approximation is obtained

\[
f(x) \cong f(x_H) + 2^{-t} x_L f'(x_H)
\]

If \(t \) is not too large, \(f \) and/or \(f' \) (and other derivatives of \(f \), if needed) can be evaluated by table lookup
Approximation by the ratio of two polynomials

Example, yielding good results for many elementary functions:

\[
f(x) \approx \frac{a^{(5)}x^5 + a^{(4)}x^4 + a^{(3)}x^3 + a^{(2)}x^2 + a^{(1)}x + a^{(0)}}{b^{(5)}x^5 + b^{(4)}x^4 + b^{(3)}x^3 + b^{(2)}x^2 + b^{(1)}x + b^{(0)}}
\]

Using Horner’s method, such a “rational approximation” needs 10 multiplications, 10 additions, and 1 division
23.6 Merged Arithmetic

Our methods thus far rely on word-level building-block operations such as addition, multiplication, shifting, . . .

Can compute a function of interest directly without breaking it down into conventional operations

Example: merged arithmetic for inner product computation

\[z = z^{(0)} + x^{(1)}y^{(1)} + x^{(2)}y^{(2)} + x^{(3)}y^{(3)} \]

![Diagram of merged arithmetic computation of an inner product followed by accumulation.]

Fig. 23.2 Merged-arithmetic computation of an inner product followed by accumulation.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>13</th>
<th>10</th>
<th>7</th>
<th>4</th>
<th>16 FAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>10 FAs + 1 HA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9 FAs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4 FAs + 1 HA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3 FAs + 2 HAs</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5-bit CPA</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 23.3 Tabular representation of the dot matrix for inner-product computation and its reduction.
24 Arithmetic by Table Lookup

Chapter Goals
Learning table lookup techniques
for flexible and dense VLSI realization
of arithmetic functions

Chapter Highlights
We have used tables to simplify or speedup
\(q \) digit selection, convergence methods, . . .
Now come tables as primary computational
mechanisms (as stars, not supporting cast)

Chapter Contents
24.1. Direct and Indirect Table Lookup
24.2. Binary-to-Unary Reduction
24.3. Tables in Bit-Serial Arithmetic
24.4. Interpolating Memory
24.5. Tradeoffs in Cost, Speed, and Accuracy
24.6. Piecewise Lookup Tables
24.1 Direct and Indirect Table Lookup

Fig. 24.1 Direct table lookup versus table-lookup with pre- and post-processing.

Tables are used in two ways:
- In supporting role, as in initial estimate for division
- As main computing mechanism

Boundary between two uses is fuzzy

Pure logic ------ Hybrid solutions ------ Pure tabular

Previously, we started with the goal of designing logic circuits for particular arithmetic computations and ended up using tables to facilitate or speed up certain steps

Here, we aim for a tabular implementation and end up using peripheral logic circuits to reduce the table size

Some solutions can be derived starting at either endpoint
24.2 Binary-to-Unary Reduction

Can reduce the table size by using an auxiliary unary function to evaluate a desired binary function

Example 1: Addition in a logarithmic number system

\[L_z = \log(x \pm y) = \log(x(1 \pm y/x)) = \log x + \log(1 \pm y/x) = Lx + \log(1 \pm \log^{-1}\Delta) \quad (\Delta = Ly - Lx) \]

Example 2: Multiplication via squaring

\[xy = (x + y)^2/4 - (x - y)^2/4 \]

Simplification

\[
\begin{align*}
(x \pm y)/2 &= \left\lfloor (x \pm y)/2 \right\rfloor + \varepsilon/2 \quad \varepsilon \in \{0, 1\} \text{ is the LSB} \\
(x + y)^2/4 - (x - y)^2/4 &= \left[\left\lfloor (x + y)/2 \right\rfloor + \varepsilon/2 \right]^2 - \left[\left\lfloor (x - y)/2 \right\rfloor + \varepsilon/2 \right]^2 \\
&= \left\lfloor (x + y)/2 \right]^2 - \left\lfloor (x - y)/2 \right]^2 + \varepsilon y
\end{align*}
\]

Compute \(x + y \) and \(x - y \) in the preprocessing stage,

Drop the least significant bit of each result,

Consult squaring table(s) of size \(2^k \times (2^k - 1) \)

Post-processing requires a carry-save adder (to reduce the 3 values to 2) followed by a carry-propagate adder.
24.3 Tables in Bit-Serial Arithmetic

In the bit-serial ALU of Fig. 24.2:

- a, b come from a 64K-bit memory (16-bit addresses)
- c comes from a 4-bit “flags” register (2-bit address)
- f output is stored as a flag bit (2-bit address)
- g output replaces the a operand in a third clock cycle

Three additional bits are used to specify a flag bit and a value (0 or 1) for conditionalizing the operation

To perform integer addition with the CM-2 ALU
- a and b: numbers to be added
- c: flag bit holding the carry from one position into next
- f op code: “00010111” (majority or $ab + bc + ca$)
- g op-code: “01010101” (3-input XOR)
Second-order digital filter example

\[y(i) = a(0)x(i) + a(1)x(i-1) + a(2)x(i-2) - b(1)y(i-1) - b(2)y(i-2) \]

Expand the equation for \(y(i) \) in terms of the bits in operands

\[x = (x_0 x_{-1} x_{-2} \cdots x_{-l})_{\text{two}} \quad \text{and} \quad y = (y_0 y_{-1} y_{-2} \cdots y_{-l})_{\text{two}} \]

\[y(i) = a(0)(-x_0(i) + \sum_{j=-l}^{-1} 2^j x_j(i)) + a(1)(-x_0(i-1) + \sum_{j=-l}^{-1} 2^j x_j(i-1)) + a(2)(-x_0(i-2) + \sum_{j=-l}^{-1} 2^j x_j(i-2)) - b(1)(-y_0(i-1) + \sum_{j=-l}^{-1} 2^j y_j(i-1)) - b(2)(-y_0(i-2) + \sum_{j=-l}^{-1} 2^j y_j(i-2)) \]

Define \(f(s, t, u, v, w) = a(0)s + a(1)t + a(2)u - b(1)v - b(2)w \)

\[y(i) = \sum_{j=-l}^{-1} 2^j f(x_j(i), x_j(i-1), x_j(i-2), y_j(i-1), y_j(i-2)) - f(x_0(i), x_0(i-1), x_0(i-2), y_0(i-1), y_0(i-2)) \]

Fig. 24.3 Bit-serial tabular realization of a second-order filter.
24.4 Interpolating Memory

Computing $f(x)$, $x \in [x_{lo}, x_{hi}]$, from $f(x_{lo})$ and $f(x_{hi})$:

$$f(x) = f(x_{lo}) + \frac{(x - x_{lo}) \left(f(x_{hi}) - f(x_{lo}) \right)}{x_{hi} - x_{lo}}$$

If the endpoints are consecutive multiples of a power of 2, the division and two of the additions trivial.

Example: evaluating $\log_2 x$ for x in $[1, 2)$$$
$$f(x_{lo}) = \log_2 1 = 0, f(x_{hi}) = \log_2 2 = 1$$; thus:

$$\log_2 x \cong x - 1 = \text{the fractional part of } x$$

An improved linear interpolation formula:

$$\log_2 x \cong \frac{\ln 2 - \ln(\ln 2) - 1}{2 \ln 2} + (x - 1) = 0.043036 + \Delta x$$

Fig. 24.4 Linear interpolation for computing $f(x)$ and its hardware realization.
Fig. 24.5 Linear interpolation for computing \(f(x) \) using 4 subintervals.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_{lo})</th>
<th>(x_{hi})</th>
<th>(a^{(i)})</th>
<th>(b^{(i)/4})</th>
<th>Max error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>1.25</td>
<td>0.004 487</td>
<td>0.321 928</td>
<td>± 0.004 487</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
<td>1.50</td>
<td>0.324 924</td>
<td>0.263 034</td>
<td>± 0.002 996</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>1.75</td>
<td>0.587 105</td>
<td>0.222 392</td>
<td>± 0.002 142</td>
</tr>
<tr>
<td>3</td>
<td>1.75</td>
<td>2.00</td>
<td>0.808 962</td>
<td>0.192 645</td>
<td>± 0.001 607</td>
</tr>
</tbody>
</table>
Interpolating memory with linear interpolation

Input x

Table for a

Table for b

Multiply

Add

Output $f(x)$
24.5 Trade-offs in Cost, Speed, and Accuracy

Fig. 24.6 Maximum absolute error in computing $\log_2{x}$ as a function of number h of address bits for the tables with linear, quadratic (second-degree), and cubic (third-degree) interpolations [Noet89].
24.6 Piecewise Lookup Tables

Function of a short (single) IEEE floating-point number
Divide the 26-bit significand \(x \) (with 2 whole and 24 fractional bits) into four sections:
\[
x = t + \lambda u + \lambda^2 v + \lambda^3 w = t + 2^{-6} u + 2^{-12} v + 2^{-18} w
\]
where \(u, v, \) and \(w \) are 6-bit fractions in \([0, 1)\) and \(t \), with up to 8 bits, depending on the function, is in \([0, 4)\)

Taylor polynomial for \(f(x) \):
\[
f(x) = \sum_{i=0}^{\infty} f(i) (t + \lambda u) (\lambda^2 v + \lambda^3 w)^i / i!
\]
Ignore terms smaller than \(\lambda^5 = 2^{-30} \)
\[
f(x) \approx f(t + \lambda u) + \frac{\lambda}{2} [f(t + \lambda u + \lambda v) - f(t + \lambda u - \lambda v)]
\]
\[
+ \frac{\lambda^2}{2} [f(t + \lambda u + \lambda w) - f(t + \lambda u - \lambda w)] + \lambda^4 \left[\frac{v^2}{2} f^{(2)}(t) - \frac{v^3}{6} f^{(3)}(t) \right]
\]

With this method, computing \(f(x) \) reduces to:

a. Derive the 14-bit values \(t + \lambda u + \lambda v, t + \lambda u - \lambda v, t + \lambda u + \lambda w, \) \(t + \lambda u - \lambda w \) (4 additions; \(t + \lambda u \) needs no computation)
b. Read the five values of \(f \) from table(s)
c. Read the last term \(\lambda^4 \left[\frac{v^2}{2} f^{(2)}(t) - \frac{v^3}{6} f^{(3)}(t) \right] \) from a table
d. Perform a 6-operand addition

Error in this computation is provably less than \(ulp/2 = 2^{-24} \)
Computing $z \mod p$ (modular reduction)

Fig. 24.7 Two-table modular reduction scheme based on divide-and-conquer.

Fig. 24.8 Modular reduction based on successive refinement.
Part VII Implementation Topics

Part Goals
Sample more advanced implementation methods and ponder some of the practical aspects of computer arithmetic

Part Synopsis
Speed/latency is often not the only concern
Other attributes of interest include throughput, size, power, reliability
Case studies: arithmetic in micros to supers
Lessons from the past, future outlook

Part Contents
Chapter 25 High-Throughput Arithmetic
Chapter 26 Low-Power Arithmetic
Chapter 27 Fault-Tolerant Arithmetic
Chapter 28 Past, Present, and Future
25 High-Throughput Arithmetic

Chapter Goals
Learn how to improve the performance of an arithmetic unit via higher throughput rather than reduced latency

Chapter Highlights
To improve overall performance, one has to
- look beyond individual operations
- trade off latency for throughput
E.g., a multiply may take 20 clock cycles, but a new one can begin every cycle
Data availability and hazards limit the depth

Chapter Contents
25.1. Pipelining of Arithmetic Functions
25.2. Clock Rate and Throughput
25.3. The Earle Latch
25.4. Parallel and Digit-Serial Pipelines
25.5. On-Line or Digit-Pipelined Arithmetic
25.6. Systolic Arithmetic Units
25.1 Pipelining of Arithmetic Functions

Throughput = number of operations per unit time

Pipelining period = time interval between the application of successive input data

Latency, though secondary, is still important because:

a. Occasional need for doing single operations

b. Dependencies may lead to *bubbles* or even *drainage*

At times, a pipelined implementation may improve the latency of a multistep computation and also reduce its cost. In such a case, pipelining is obviously preferred.

![Diagram of non-pipelined and pipelined arithmetic function units](image)

Fig. 26.1 An arithmetic function unit and its *σ*-stage pipelined version.
Analysis of pipelining

Consider an arithmetic circuit with cost g and latency t. Simplifying assumptions for our analysis:

1. Time overhead per stage is τ (latching delay)
2. Cost overhead per stage is γ (latching cost)
3. Function is divisible into σ equal stages for any σ

Then, for the pipelined implementation:

Latency $T = t + \sigma \tau$

Throughput $R = \frac{1}{T/\sigma} = \frac{1}{t/\sigma + \tau}$

Cost $G = g + \sigma \gamma$

Throughput approaches its maximum of $1/\tau$ for large σ

In practice, however, it does not pay to reduce t/σ below a certain threshold; typically 4 logic gate levels

Assuming a stage delay of 4δ, we have $\sigma = t/(4\delta)$ and:

Latency $T = t(1 + \frac{\tau}{4\delta})$

Throughput $R = \frac{1}{T/\sigma} = \frac{1}{4\delta + \tau}$

Cost $G = g(1 + \frac{t\gamma}{4g\delta})$
Cost-effectiveness

If throughput isn’t the single most important factor, then one might try to maximize a composite figure of merit.

Throughput per unit cost represents cost-effectiveness:

\[E = \frac{R}{G} = \frac{\sigma}{(t + \sigma \tau)(g + \sigma \gamma)} \]

To maximize \(E \), we compute \(dE/d\sigma \):

\[\frac{dE}{d\sigma} = \frac{tg - \sigma^2 \gamma}{(t + \sigma \tau)^2(g + \sigma \gamma)^2} \]

Equating \(dE/d\sigma \) with 0 yields:

\[\sigma_{\text{opt}} = \sqrt{\frac{tg}{\tau \gamma}} \]

We see that the optimal number of pipeline stages for maximal cost-effectiveness is

- directly related to the latency and cost of the function (it pays to have many pipeline stages if the function implemented is very slow or complex)
- inversely related to pipelining delay & cost overheads (few pipeline stages are in order if the time and/or cost overhead of pipelining is too high)

All in all, not a surprising result!
25.2 Clock Rate and Throughput

Consider a σ-stage pipeline with stage delay t_{stage}

One set of inputs are applied to the pipeline at time t_1

At $t_1 + t_{\text{stage}} + \tau$, results are safely stored in latches

Apply the next set of inputs at time t_2 satisfying

$$t_2 \geq t_1 + t_{\text{stage}} + \tau$$

Clock period $= \Delta t = t_2 - t_1 \geq t_{\text{stage}} + \tau$

Pipeline throughput is the inverse of the clock period:

$$\text{Throughput} = \frac{1}{\text{Clock period}} \leq \frac{1}{t_{\text{stage}} + \tau}$$

Implicit assumptions:
- one clock signal is distributed to all circuit elements
- all latches are clocked at precisely the same time

Uncontrolled or random clock skew causes the clock signal to arrive at point B before/after its arrival at point A

With proper design of the clock distribution network, we can place an upper bound $\pm \varepsilon$ on the uncontrolled clock skew at the input and output latches of a pipeline stage

Then, the clock period is lower bounded as:

$$\text{clock period} = \Delta t = t_2 - t_1 \geq t_{\text{stage}} + \tau + 2\varepsilon$$
Wave Pipelining
Note that the stage delay t_{stage} is really not a constant but varies from t_{min} to t_{max}

t_{min} represents fast paths (with fewer or faster gates)
t_{max} represents slow paths

Suppose that one set of inputs is applied at time t_1

At $t_1 + t_{\text{max}} + \tau$, the results are safely stored in latches

If that the next inputs are applied at time t_2, we must have:

$t_2 + t_{\text{min}} \geq t_1 + t_{\text{max}} + \tau$

This places a lower bound on the clock period:

$\text{clock period} = \Delta t = t_2 - t_1 \geq t_{\text{max}} - t_{\text{min}} + \tau$

Thus, we can approach the maximum possible throughput of $1/\tau$ without necessarily requiring very small stage delay

All we need is a very small delay variance $t_{\text{max}} - t_{\text{min}}$

Hence, there are two distinct strategies for increasing the throughput of a pipelined function unit:

(1) the traditional method of reducing t_{max}, and
(2) the counterintuitive method of increasing t_{min}
Fig. 25.2 Wave pipelining allows multiple computational wavefronts to coexist in a single pipeline stage.

Fig. 25.3 An alternate view of the throughput advantage of wave pipelining (b) over ordinary pipelining (a).
Wave pipelining is routinely used in high-speed LANs

Data adapted (rounded figures) from Myrinet [Bode95]

Gb/s throughput → Clock rate = 10^8 → clock cycle = 10 ns

In 10 ns, signals travel 1-1.5 m (speed of light = 0.3 m/ns)

For a 30 m cable, 20-30 characters will be in flight

At the circuit and logic level (μm-mm distances, not m), there are still problems that are being worked out

For example, delay equalization to reduce $t_{\text{max}} - t_{\text{min}}$ is nearly impossible in CMOS

2-input NAND delay varies by factor of 2 based on inputs

Biased CMOS (pseudo-CMOS) can solve this problem but has power consumption penalties
Controlled clock skew

\[
\text{clock period } = \Delta t = t_2 - t_1 \geq t_{\text{max}} - t_{\text{min}} + \tau
\]

\[
t_{\text{max}} - t_{\text{min}} = 0 \rightarrow \Delta t \geq \tau
\]

A new input enters the pipeline stage every \(\Delta t\) time units and the stage latency is \(t_{\text{max}} + \tau\)

Clock application at the output latch must be skewed by \((t_{\text{max}} + \tau) \mod \Delta t\) to ensure proper sampling of the results

Example: \(t_{\text{max}} + \tau = 12\) ns and \(\Delta t = 5\) ns

A clock skew of +2 ns is required at the stage output latches relative to the input latches

Generally \(t_{\text{max}} - t_{\text{min}} > 0\); perhaps different for each stage

\[
\Delta t \geq \max_{i=1}^{\sigma} [t_{\text{max}}^{(i)} - t_{\text{max}}^{(i)} + \tau]
\]

The controlled clock skew at the output of stage \(i\) will be:

\[
S^{(i)} = \sum_{j=1}^{i} [t_{\text{max}}^{(i)} - t_{\text{min}}^{(i)} + \tau] \mod \Delta t
\]
Random clock skew in wave pipelining

\[\text{clock period } = \Delta t = t_2 - t_1 \geq t_{\text{max}} - t_{\text{min}} + \tau + 4\varepsilon \]

Reason for including the term \(4\varepsilon\):

The clocking of the first input set may lag by \(\varepsilon\), while that of the second set leads by \(\varepsilon\) (net difference = \(2\varepsilon\))

The reverse condition may exist at the output

Uncontrolled skew has a larger effect on wave pipelining than on standard pipelining, especially in relative terms

Graphical justification of the term \(4\varepsilon\)
25.3 The Earle Latch

![Figure 25.4 Two-level AND-OR realization of the Earl latch.](image)

We derived constraints on the maximum clock rate $1/\Delta t$

Clock period Δt has two parts: clock high, and clock low

$$\Delta t = C_{\text{high}} + C_{\text{low}}$$

Consider a pipeline stage between Earle latches

C_{high}, must satisfy the inequalities

$$3\delta_{\text{max}} - \delta_{\text{min}} + S_{\text{max}}(C^\uparrow, \overline{C}^\downarrow) \leq C_{\text{high}} \leq 2\delta_{\text{min}} + t_{\text{min}}$$

The clock pulse must be wide enough to ensure that valid data is stored in the output latch and to avoid logic hazard should $C \leftarrow\rightarrow$ slightly lead $\overline{C} \leftarrow\rightarrow$

Clock must go low before the fastest signals from the next input data set can affect the input z of the latch

δ_{max} and δ_{min} are maximum and minimum gate delays;

$S_{\text{max}}(C^\uparrow, \overline{C}^\downarrow) \geq 0$ is max skew between C^\uparrow and \overline{C}^\downarrow
Merged logic and latch

A key property of the Earle latch is that it can be merged with the 2-level AND-OR logic that precedes it.

Example: to latch

\[d = vw + xy \]

we substitute for \(d \) in the equation for the Earle latch

\[z = dC + dz + \overline{C}z \]

to get a “logic+latch” circuit implementing \(z = vw + xy \)

\[z = (vw + xy)C + (vw + xy)z + \overline{C}z \]

\[= vwC + xyC + vwz + xyz + \overline{C}z \]

![Diagram](image)

Fig. 25.5 Two-level AND-OR latched realization of the function \(z = vw + xy \).
25.4 Parallel and Digit-Serial Pipelines

![Diagram of arithmetic operations and pipeline stages]

Latch positions in a four-stage pipeline

Fig. 25.6 Flow-graph representation of an arithmetic expression and timing diagram for its evaluation with digit-parallel computation.

Bit-serial addition and multiplication can be done LSB-first, but division and square-rooting are MSB-first operations.

Besides, division can’t be done in pipelined bit-serial fashion, because the MSB of the quotient q in general depends on all the bits of the dividend and divisor.

Example: consider the decimal division $0.1234/0.2469$

\[
\frac{0.1xxx}{0.2xxx} = .?xxx \quad \frac{0.12xx}{0.24xx} = .?xxx \quad \frac{0.123x}{0.246x} = .?xxx
\]

Solution: redundant number representation!
25.5 On-Line or Digit-Pipelined Arithmetic

Fig. 25.7 Digit-parallel versus digit-pipelined computation.

Decimal example:

\[
\begin{array}{c}
.18 \\
+.42 \\
\hline
.5
\end{array}
\]

Shaded boxes show the "unseen" or unprocessed parts of the operands and unknown part of the sum

Fig. 25.8 Digit-pipelined MSD-first carry-free addition.
BSD example:

\[
\begin{array}{c}
.101 \\
+ .011 \\
\hline
.1 \\
\end{array}
\]

Shaded boxes show the "unseen" or unprocessed parts of the operands and unknown part of the sum.

Fig. 25.9 Digit-pipelined MSD-first limited-carry addition.

Fig. 25.10 Digit-pipelined MSD-first multiplication process.
Fig. 25.11 Digit-pipelined MSD-first BSD multiplier.

Table 25.1 Example of digit-pipelined division showing that three cycles of delay are necessary before quotient digits can be output (radix = 4, digit set = [-2, 2])

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Dividend</th>
<th>Divisor</th>
<th>q Range</th>
<th>q_{-1} Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(.0\ldots)_four</td>
<td>(.1\ldots)_four</td>
<td>(-2/3, 2/3)</td>
<td>[-2, 2]</td>
</tr>
<tr>
<td>2</td>
<td>(.0 0\ldots)_four</td>
<td>(.1-2\ldots)_four</td>
<td>(-2/4, 2/4)</td>
<td>[-2, 2]</td>
</tr>
<tr>
<td>3</td>
<td>(.0 0 1\ldots)_four</td>
<td>(.1-2\cdot2\ldots)_four</td>
<td>(1/16, 5/16)</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>4</td>
<td>(.0 0 1 0\ldots)_four</td>
<td>(.1-2\cdot2\cdot2\ldots)_four</td>
<td>(10/64, 14/64)</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 25.2 Examples of digit-pipelined square-root computation showing that 1-2 cycles of delay are necessary before root digits can be output (radix = 10, digit set = [-6, 6], and radix = 2, digit set = [-1, 1]).

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Radicand</th>
<th>q Range</th>
<th>q₁ Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(.3 ...)₁₀</td>
<td>(\sqrt{7/30}, \sqrt{11/30})</td>
<td>[5, 6]</td>
</tr>
<tr>
<td>2</td>
<td>(.3 4 ...)₁₀</td>
<td>(\sqrt{1/3}, \sqrt{26/75})</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>(.0 ...)₂</td>
<td>(0, \sqrt{1/2})</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>2</td>
<td>(.0 1 ...)₂</td>
<td>(0, \sqrt{1/2})</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>3</td>
<td>(.0 1 1 ...)₂</td>
<td>(1/2, \sqrt{1/2})</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 25.12 High-level design of a systolic radix-4 digit-pipelined multiplier.
26 Low-Power Arithmetic

Chapter Goals
Learn how to improve the power efficiency of arithmetic circuits by means of algorithmic and logic design strategies

Chapter Highlights
Reduced power dissipation needed due to
- limited source (portable, embedded)
- difficulty of heat disposal
Algorithm & logic-level methods: discussed
Technology & circuit methods: ignored here

Chapter Contents
26.1. The Need for Low-Power Design
26.2. Sources of Power Consumption
26.3. Reduction of Power Waste
26.4. Reduction of Activity
26.5. Transformations and Tradeoffs
26.6. Some Emerging Methods
26.1 The Need for Low-Power Design

Portable and wearable electronic devices
Nickel-cadmium batteries: 40-50 W-hr per kg of weight
Practical battery weight < 1 kg (<0.1 kg if wearable device)
Total power \(\cong 3-5\) W for a day’s work between recharges
Modern high-performance microprocessors use 10s Watts

Power is proportional to die area \(\times\) clock frequency
Cooling of micros not yet a problem; but for MPPs . . .

New battery technologies cannot keep pace with demand
Demand for more speed & functionality (multimedia, etc.)

Fig. 26.1 Power consumption trend in DSPs [Raba98].
26.2 Sources of Power Consumption

Both average and peak power are important
Peak power impacts power distribution and signal integrity
Typically, low-power design aims at reducing both

Power dissipation in CMOS digital circuits

Static: leakage current in imperfect switches (< 10%)
Dynamic: due to (dis)charging of parasitic capacitance

\[P_{\text{avg}} \approx \alpha f CV^2 \]

\(f \): data rate (clock frequency) \(\alpha \): “activity”

Example: A 32-bit off-chip bus operates at 5 V & 100 MHz and drives a capacitance of 30 pF per bit. If random values were put on the bus in every cycle, we would have \(\alpha = 0.5 \). To account for data correlation and idle bus cycles, assume \(\alpha = 0.2 \). Then:

\[P_{\text{avg}} \approx \alpha f CV^2 = 0.2 \times 10^8 \times (32 \times 30 \times 10^{-12}) \times 5^2 = 0.48 \text{ W} \]

Once we fix the data rate \(f \), there are but three ways to reduce the power requirements:

1. Using a lower supply voltage \(V \)
2. Reducing the parasitic capacitance \(C \)
3. Lowering the switching activity \(\alpha \)
26.3 Reduction of Power Waste

Fig. 26.2 Saving power through clock gating.

Fig. 26.3 Saving power via guarded evaluation.

Fig. 26.4 Example of glitching in a ripple-carry adder.
Fig. 26.5 An array multiplier with gated FA cells.
26.4 Reduction of Activity

Fig. 26.6 Reduction of activity by precomputation.

Fig. 26.7 Reduction of activity via Shannon expansion.
26.5 Transformations and Tradeoffs

Fig. 26.8 Reduction of power via parallelism or pipelining.
Fig. 26.9 Direct realization of a first-order IIR filter.

Fig. 26.10 Realization of a first-order filter, unrolled once.

Fig. 26.11 Possible realization of a fourth-order FIR filter.

Fig. 26.12 Realization of the retimed fourth-order FIR filter.
26.6 Some Emerging Methods

Fig. 26.13 Part of an asynchronous chain of computations.

Fig. for problem 26.5
27 Fault-Tolerant Arithmetic

Chapter Goals
Learn about errors due to hardware faults or hostile environmental conditions, and how to deal with or circumvent them

Chapter Highlights
Modern components are very robust, but ... put millions/billions of them together and something is bound to go wrong Can arithmetic be protected via encoding? Reliable circuits and robust algorithms

Chapter Contents
27.1 Faults, Errors, and Error Codes
27.2 Arithmetic Error-Detecting Codes
27.3 Arithmetic Error-Correcting Codes
27.4 Self-Checking Function Units
27.5 Algorithm-Based Fault Tolerance
27.6 Fault-Tolerant RNS Arithmetic
27.1 Faults, Errors, and Error Codes

Fig. 27.1 A common way of applying information coding techniques.
Fig. 27.2 Arithmetic fault detection or fault tolerance (masking) with replicated units.

Unsigned addition

\[
\begin{array}{c}
0010 \\ 0111 \\ 0010 \\ 0001 \\
+ 0101 \\ 1000 \\ 1101 \\ 0011 \\
\end{array}
\]

Correct sum 0111 1111 1111 0100
Erroneous sum 1000 0000 0000 0100

Stage generating an erroneous carry of 1

Fig. 27.3 How a single carry error can produce an arbitrary number of bit-errors (inversions).
The *arithmetic weight* of an error

Minimum number of signed powers of 2 that must be added to the correct value in order to produce the erroneous result (or vice versa).

Examples:

<table>
<thead>
<tr>
<th>Correct</th>
<th>0111 1111 1111 0100</th>
<th>1101 1111 1111 0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erroneous</td>
<td>1000 0000 0000 0100</td>
<td>0110 0000 0000 0100</td>
</tr>
<tr>
<td>Difference</td>
<td>16 = 2^4</td>
<td>$-32752 = -2^{15} + 2^4$</td>
</tr>
</tbody>
</table>

Error type

<table>
<thead>
<tr>
<th>Single, positive</th>
<th>Double, negative</th>
</tr>
</thead>
</table>

(min-weight BSD)
27.2 Arithmetic Error-Detecting Codes

Arithmetic error-detecting codes:

1. Are characterized by arithmetic weights of detectable errors
2. Allow direct arithmetic on coded operands

a. Product codes or AN codes

Represent N by the product AN \hspace{1cm} (A = check modulus)

For odd A, all weight-1 arithmetic errors are detected

Arithmetic errors of weight ≥ 2 may go undetected

\hspace{1cm} e.g., the error $32736 = 2^{15} - 2^{5}$
\hspace{1cm} undetectable with $A = 3, 11, \text{ or } 31$

Error detection: check divisibility by A

Encoding/decoding: multiply/divide by A

Arithmetic also requires multiplication and division by A
Low-cost product codes: $A = 2^a - 1$

Multiplication by $A = 2^a - 1$: done by shift-subtract

Division by $A = 2^a - 1$: done a bits at a time as follows

Given $y = (2^a - 1)x$, find x by computing $2^a x - y$

\[
\ldots \text{xxxx 0000} - \ldots \text{xxxx xxxx} = \ldots \text{xxxx xxxx}
\]

Unknown $2^a x$ Known $(2^a - 1)x$ Unknown x

Theorem 27.1: Any unidirectional error with arithmetic weight not exceeding $a - 1$ is detectable by a low-cost product code using the check modulus $A = 2^a - 1$

Product codes are nonseparate (nonseparable) codes
Data and redundant check info are intermixed

Arithmetic on AN-coded operands

Add/subtract is done directly: $Ax \pm Ay = A(x \pm y)$

Direct multiplication results in: $Aa \times Ax = A^2 ax$

The result must be corrected through division by A

For division, if $z = qd + s$, we have: $Az = q(Ad) + As$

Thus, q is unprotected

Possible cure: premultiply the dividend Az by A

The result will need correction

Square rooting leads to a problem similar to division

\[
\lfloor \sqrt{A^2x} \rfloor = \lfloor A\sqrt{x} \rfloor \text{ which is not the same as } A\lfloor \sqrt{x} \rfloor \]
b. Residue codes

Represent N by the pair $(N, C(N))$, where $C(N) = N \mod A$

Residue codes are separate (separable) codes
Separate data and check parts make decoding trivial

Encoding: given N, compute $C(N) = N \mod A$

Low-cost residue codes use $A = 2^a - 1$

Arithmetic on residue-coded operands

Add/subtract: data and check parts are handled separately

$$(x, C(x)) \pm (y, C(y)) = (x \pm y, (C(x) \pm C(y)) \mod A)$$

Multiply

$$(a, C(a)) \times (x, C(x)) = (a \times x, (C(a) \times C(x)) \mod A)$$

Divide/square-root: difficult

Fig. 27.4 Arithmetic processor with residue checking.
Example: residue-checked adder

\begin{itemize}
 \item Add
 \item \(x \mod A \)
 \item \(y \mod A \)
 \item Add mod \(A \)
 \item Find mod \(A \)
 \item Compare
 \item \(s \mod A \)
 \item Not equal
 \item Error
\end{itemize}
27.3 Arithmetic Error-Correcting Codes

Table 27.1 Error syndromes for weight-1 arithmetic errors in the (7, 15) biresidue code

<table>
<thead>
<tr>
<th>Positive error</th>
<th>Error syndrome mod 7</th>
<th>Error syndrome mod 15</th>
<th>Negative error</th>
<th>Error syndrome mod 7</th>
<th>Error syndrome mod 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-4</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>-8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>1</td>
<td>-16</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>2</td>
<td>-32</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>4</td>
<td>-64</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
<td>8</td>
<td>-128</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>4</td>
<td>1</td>
<td>-256</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>2</td>
<td>-512</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>1024</td>
<td>2</td>
<td>4</td>
<td>-1024</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>2048</td>
<td>4</td>
<td>8</td>
<td>-2048</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>1</td>
<td>-4096</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>8192</td>
<td>2</td>
<td>2</td>
<td>-8192</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>16384</td>
<td>4</td>
<td>4</td>
<td>-16384</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>32768</td>
<td>1</td>
<td>8</td>
<td>-32768</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Properties of biresidue codes

Biresidue code with relatively prime low-cost check moduli $A = 2^a - 1$ and $B = 2^b - 1$ supports $a \times b$ bits of data for weight-1 error correction

Representational redundancy $= (a + b)/(ab) = 1/a + 1/b$
27.4 Self-Checking Function Units

Self-checking (SC) unit: any fault from a prescribed set
does not affect the correct output (masked)
or leads to a noncodeword output (detected)

An invalid result is
detected immediately by a code checker or
propagated downstream by the next self-checking unit

To build SC units, we need SC code checkers that never
validate a noncodeword, even when they are faulty

Example: SC checker for inverse residue code \((N, C'(N))\)
\(N \mod A\) should be the bitwise complement of \(C'(N)\)
Verifying that signal pairs \((x_i, y_i)\) are all \((1, 0)\) or \((0, 1)\)

= finding the AND of Boolean values encoded as
1: \((1, 0)\) or \((0, 1)\) 0: \((0, 0)\) or \((1, 1)\)

Fig. 27.5 Two-input AND circuit, with 2-bit inputs \((x_i, y_i)\) and
\((x_j, y_j)\), for use in a self-checking code checker.
27.5 Algorithm-Based Fault Tolerance

Alternative to error detection at each basic operation:
Accept that operations may yield incorrect results
Detect/correct errors at data-structure or application level

Example: multiplication of matrices X and Y yielding P
Row, column, and full checksum matrices (mod 8)

$$M = \begin{bmatrix} 2 & 1 & 6 \\ 5 & 3 & 4 \\ 3 & 2 & 7 \end{bmatrix} \quad M_f = \begin{bmatrix} 2 & 1 & 6 & 1 \\ 5 & 3 & 4 & 4 \\ 3 & 2 & 7 & 4 \end{bmatrix}$$

$$M_c = \begin{bmatrix} 2 & 1 & 6 \\ 5 & 3 & 4 \\ 3 & 2 & 7 \\ 2 & 6 & 1 \end{bmatrix} \quad M_f = \begin{bmatrix} 2 & 1 & 6 & 1 \\ 5 & 3 & 4 & 4 \\ 3 & 2 & 7 & 4 \\ 2 & 6 & 1 & 1 \end{bmatrix}$$

Fig. 27.6 A 3×3 matrix M with its row, column, and full checksum matrices M_r, M_c, and M_f.

Theorem 27.3: If $P = X \times Y$, we have $P_f = X_c \times Y_r$
With floating-point values, the equalities are approximate

Theorem 27.4: In a full-checksum matrix, any single erroneous element can be corrected and any three errors can be detected
27.6 Fault-Tolerant RNS Arithmetic

Residue number systems allow very elegant and effective error detection and correction schemes by means of redundant residues (extra moduli)

Example: RNS(8 | 7 | 5 | 3), Dynamic range $M = 8 \times 7 \times 5 \times 3 = 840$; redundant modulus: 11. Any error confined to a single residue is detectable.

The redundant modulus must be the largest one, say m.

Error detection scheme:

1. Use other residues to compute the residue of the number mod m (this process is known as *base extension*).
2. Compare the computed and actual mod-m residues.

The beauty of this method is that arithmetic algorithms are totally unaffected; error detection is made possible by simply extending the dynamic range of the RNS.

Example: RNS(8 | 7 | 5 | 3), redundant moduli: 13, 11

$25 = (12, 3, 1, 4, 0, 1)$, erroneous version = $(12, 3, 1, 6, 0, 1)$

Transform $(-, -, 1, 6, 0, 1)$ to $(5, 1, 1, 6, 0, 1)$ via base extension.

The difference between the first two components of the corrupted and reconstructed numbers is $(+7, +2)$ which is the error syndrome.
28 Past, Present, and Future

Chapter Goals
Wrap things up, provide perspective, and examine arithmetic in a few key systems

Chapter Highlights
One must look at arithmetic in context of
- computational requirements
- technological constraints
- overall system design goals
- past and future developments
Current trends and research directions?

Chapter Contents
28.1 Historical Perspective
28.2 An Early High-Performance Machine
28.3 A Modern Vector Supercomputer
28.4 Digital Signal Processors
28.5 A Widely Used Microprocessor
28.6 Trends and Future Outlook
28.1 Historical Perspective

1940s

Machine arithmetic was crucial in proving the feasibility of computing with stored-program electronic devices.

Hardware for addition, use of complement representation, and shift-add multiplication and division algorithms were developed and fine-tuned.

A seminal report by A.W. Burkes, H.H. Goldstein, and J. von Neumann contained ideas on choice of number radix, carry propagation chains, fast multiplication via carry-save addition, and restoring division.

State of computer arithmetic circa 1950: overview paper by R.F. Shaw [Shaw50]
1950s

The focus shifted from feasibility to algorithmic speedup methods and cost-effective hardware realizations

By the end of the decade, virtually all important fast-adder designs had already been published or were in the final phases of development

Residue arithmetic, SRT division, CORDIC algorithms were proposed and implemented

Snapshot of the field circa 1960:
 overview paper by O.L. MacSorley [MacS61]
1960s

Tree multipliers, array multipliers, high-radix dividers, convergence division, redundant signed-digit arithmetic were introduced

Implementation of floating-point arithmetic operations in hardware or firmware (in microprogram) became prevalent

Many innovative ideas originated from the design of early supercomputers, when the demand for high performance, along with the still high cost of hardware, led designers to novel and cost-effective solutions.

Examples: IBM System/360 Model 91 [Ande67]
 CDC 6600 [Thor70]
1970s

Advent of microprocessors and vector supercomputers

Early LSI chips were quite limited in the number of transistors or logic gates that they could accommodate.

Microprogrammed control (with just a hardware adder) was a natural choice for single-chip processors which were not yet expected to offer high performance.

For high end machines, pipelining methods were perfected to allow the throughput of arithmetic units to keep up with computational demand in vector supercomputers.

Example: Cray 1 supercomputer and its successors.
1980s

Spread of VLSI triggered a reconsideration of all arithmetic designs in light of interconnection cost and pin limitations.

For example, carry-lookahead adders, that appeared to be ill-suited to VLSI, were shown to be efficiently realizable after suitable modifications. Similar ideas were applied to more efficient VLSI tree and array multipliers.

Bit-serial and on-line arithmetic were advanced to deal with severe pin limitations in VLSI packages.

Arithmetic-intensive signal processing functions became driving forces for low-cost and/or high-performance embedded hardware: DSP chips.
1990s

No breakthrough design concept

Demand for performance led to fine-tuning of arithmetic algorithms and implementations (many hybrid designs)

Increasing use of table lookup and tight integration of arithmetic unit and other parts of the processor for maximum performance

Clock speeds reached and surpassed 100, 200, 300, 400, and 500 MHz in rapid succession; pipelining used to ensure smooth flow of data through the system

Example: Intel’s Pentium Pro (P6) → Pentium II
28.2 An Early High-Performance Machine

Fig. 28.1 Overall structure of the IBM System/360 Model 91 floating-point execution unit.
28.3 A Modern Vector Supercomputer

Fig. 28.2 The vector section of one of the processors in the Cray X-MP/Model 24 supercomputer.

Pipeline setup and shutdown overheads
Vector unit not efficient for short vectors (break-even point)
Pipeline chaining
28.4 Digital Signal Processors

Fig. 28.3 Block diagram of the data ALU in Motorola’s DSP56002 (fixed-point) processor.
Example DSP instructions

- **ADD** A, B \{ A + B → B \}
- **SUB** X, A \{ A – X → A \}
- **MPY** ±X1, X0, B \{ ±X1 \times X0 → B \}
- **MAC** ±Y1, X1, A \{ A ± Y1 \times X1 → A \}
- **AND** X1, A \{ A \text{ AND } X1 → A \}

Fig. 28.4 Block diagram of the data ALU in Motorola’s DSP96002 (floating-point) processor.
28.5 A Widely Used Microprocessor

Performance trends in Intel micros

![Graph showing processor performance trends from 1980 to 2010. The x-axis represents calendar years, and the y-axis represents processor performance in MIPS, MIPS, MIPS, and GIPS. The graph includes points for 80286, 68000, 80386, 80486, 68040, Pentium, Pentium II, and R10000. The trend line crosses these points and indicates a growth rate of ≈1.6 / yr.]
Fig. 28.5 Key parts of the CPU in the Intel Pentium Pro (P6) microprocessor.
28.6 Trends and Future Outlook

Present focus areas

Design: Shift of attention from algorithms to optimizations at the level of transistors and wires

This explains the proliferation of hybrid designs

Technology: Predominantly CMOS, with a phenomenal rate of improvement in size/speed

New technologies cannot compete

Applications: Shift from high-speed or high-throughput designs in mainframes to embedded systems requiring

- low cost
- low power
Trends and ongoing debates

Renewed interest in bit- and digit-serial arithmetic as mechanisms to reduce the VLSI area and to improve packageability and testability

Synchronous versus asynchronous design (asynchrony has some overhead, but an equivalent overhead is being paid for clock distribution and/or systolization)

New design paradigms may alter the way in which we view or design arithmetic circuits

- Neuronlike computational elements
- Optical computing (redundant representations)
- Multivalued logic (match to high-radix arithmetic)
- Configurable logic

Arithmetic complexity theory
THE END!

“You’re up to date. Take my advice and try to keep it that way. It’ll be tough to do; make no mistake about it. The phone will ring and it’ll be the administrator — talking about budgets. The doctors will come in, and they’ll want this bit of information and that. Then you’ll get the salesman. Until at the end of the day you’ll wonder what happened to it and what you’ve accomplished; what you’ve achieved.

“That’s the way the next day can go, and the next, and the one after that. Until you find a year has slipped by, and another, and another. And then suddenly, one day, you’ll find everything you knew is out of date. That’s when it’s too late to change.

“Listen to an old man who’s been through it all, who made the mistake of falling behind. Don’t let it happen to you! Lock yourself in a closet if you have to! Get away from the phone and the files and paper, and read and learn and listen and keep up to date. Then they can never touch you, never say, ‘He’s finished, all washed up; he belongs to yesterday.’ ”

Arthur Hailey, *The Final Diagnosis*

How to keep up to date:

IEEE Trans. Computers
Symp. Computer Arithmetic, aka ARITH-*n*, in odd years

[Go to TOC](#)