IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1, JANUARY 1990

89

Generalized Signed-Digit Number Systems:
A Unifying Framework for Redundant
Number Representations

BEHROOZ PARHAMI, SENIOR MEMBER, IEEE

Abstract—Signed-digit (SD) number representation systems
have been defined for any radix » = 3 with digit values ranging
over theset { —c, - -+, —1,0, 1, - - -, e}, where « is an arbitrary
integer in the range 1/2 r < a < r. Such number representation
systems possess sufficient redundancy to allow for the annihila-
tion of carry or borrow chains and hence result in fast
propagation-free addition and subtraction. In this paper, we refer
to the above as ‘‘ordinary’’ SD number systems and define
generalized SD number systems which contain them as a special
symmetric subclass. It is shown that the generalization not only
provides a unified view of all redundant number systems which
have proven useful in practice (including stored-carry and
stored-borrowed systems), but also leads to new number systems
not examined before. Examples of such new number systems are
stored-carry-or-borrow systems, stored-double-carry systems,
and certain redundant decimal representations.

Index Terms—Asymmetric signed-digit number systems, bi-
nary signed-digit numbers, computer arithmetic, number repre-
sentation, redundant number systems, signed-digit arithmetic,
stored-borrow representation, stored-carry representation.

1. INTRODUCTION

OR any radix r = 3, there are one or more signed-digit

(SD) number representation systems [2]-[4]. These
ordinary SD (OSD) number systems correspond to different
values of « in the range 1/2 r < « < r, from the minimally
redundant system (¢ = [1/2 r| + 1) to the maximally
redundant one (@ = r — 1), where « determines the set { — «,
-+, —=1,0,1, -+, o} of the 2a + 1 digit values used. The
most important property of OSD number representation
systems is the possibility of performing carry-free addition and
(by changing all the digit signs in the subtrahend) borrow-free
subtraction.

The carry-free addition property of OSD number systems is
best understood by a conceptual ‘‘recoding’’ process which
replaces each +« value in the digit-by-digit position sum of
two operands by +(« — r) and an outgoing transfer digit of
+ 1. The new digit value, which has a magnitude r — « in the
range 0 < r — o < 1/2r < «, always absorbs an incoming
transfer digit of =+ 1, thus stopping its propagation.

Manuscript received May 15, 1987; revised December 19, 1987. This work
was carried out while the author was a Visiting Professor at the University of
Waterloo and was supported in part by the Natural Sciences and Engineering
Research Council of Canada under Grants G1140, A3055, and A5515.

The author is with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106.

IEEE Log Number 8930844.

Whenever long sequences of computations are to be
performed on particular pieces of data, the one-time conver-
sion and reconversion effort to/from the OSD representation is
more than compensated for by the gain in computation speed.
The crossover point is surpassed much more frequently in the
case of maximally redundant OSD representations (for which
o = r — 1), since conventional radix-r numbers can be
interpreted as maximally redundant OSD numbers, with no
need for the initial conversion [7]. However, maximally
redundant OSD number systems may consume more storage
space than the corresponding minimally redundant or interme-
diate OSD number systems.

The original definition of SD arithmetic uses a symmetric
digit set and precludes the case of r = 2, since such a binary
signed-digit (BSD) number system possesses insufficient
redundancy for the general carry-free addition algorithm to be
applicable. This is also the reason behind the requirement that
o be greater than 1/2 r, even though o = 1/2 r is a viable
selection for a redundant number system if r is even (see
below). However, BSD numbers possess interesting properties
[20] and have been in practical use for representing intermedi-
ate values in two’s complement and high-speed multiplication
schemes ever since multiplier recoding was introduced by
Booth [6]. They have also been used in redundant quotient
representation for the S-R-T division algorithm which was
proposed independently by Sweeney [14], Robertson [22], and
Tocher [24].

The generalization which is proposed here not only unifies
the OSD and BSD number systems, but also covers as special
cases all other useful redundant representations such as those
offered by stored-carry and stored-borrow systems. It also
provides valuable insight into the relationships of various
redundant number representation systems and leads to some
new representation methods which are interesting in their own
right. The stored-carry-or-borrow representation system is
probably the most important of these new methods and is thus
explored in depth.

II. GENERALIZED SIGNED-DIGIT NUMBER SYSTEMS

We define a generalized signed-digit (GSD) number
system as a positional system with the digit set { —o, —a +
1, .-+, 8 — 1, 8} with the conditions « = 0, 8 = 0, and « +
B8 + 1 > r, where r is the number representation radix. The
excluded case of @ + 8 + 1 = r results in nonredundant
number representation systems which cover the conventional

0018-9340/90/0100-0089$01.00 © 1990 IEEE

90

GSD
p=1 p22
Minimal Non-Minimal
GSD GSD
o=p azp o=p ozp
(r even)
Symmetric Asymmetric Symmetric Asymmetric
Minimal Minimal Non-Minimal Non-Minimal
GSD GSD GSD GSD
r=2 a=0 a=1 o<r =1
(r#2) B=r
BSD SC SB 0OSD SCB
or (non-
BSB binary)
r=2 a=Lr/2]+ o=r-1 r=2
BSC Minimaily Maximally BSCB
Redund Redund
[613)] OSD

Fig. 1. The hierarchical relationships of redundant number representation
systems.

radix-r system with @ = Oand 8 = r — 1asa special case.
The redundancy index of a GSD number system is defined as
p=oa+ B + 1 — r. GSD number systems cover the
following systems as special cases [19]:

Binary stored-carry (BSC) number system: r=2, a=0,

B=2,p=1
Radix-r stored-carry (SC) number systems: a=0, B=r,
p=1

BSD (also, binary stored-borrow or BSB) number system:
r=2,a=0=1,p=1

Radix-r stored-borrow (SB) number systems: a=1, B=r
-1, p=1

Binary stored-carry-or-borrow (BSCB) number system:
r=2,a=1,8=2,p=2

Radix-r stored-carry-or-borrow (SCB) number systems:
o= 1, ,3 =r, p= 2

Minimally redundant symmetric SD number systems:
20=28=r=4, p=1

OSD number systems: r=3, 1/2 r<a= B<r,2<p<r
Minimally redundant: «=8=|1/2 r|+1, 2<p=<3
Maximally redundant: a=8=r— 1, p=r—1.

Fig. 1 depicts the hierarchical relationships of these
systems. The BSCB number system is equivalent to a
redundant number representation system proposed for the
design of a systolic binary counter [9], apparently without a
realization that it was a signed-digit number system. Another
systolic binary counter design [18] uses the BSCB number
system in a different disguise.

It is interesting to note that GSD number systems actually do
not cover the most general redundant representations. For

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1, JANUARY 1990

example, the redundant number system with r = 2 and the
digit set {3, 1, 0, 2} is not a GSD system. However, redundant
systems with digit sets whose members are not necessarily
consecutive integers do not appear to offer any advantage over
GSD systems in terms of the speed or simplicity of arithmetic
operations.

Most GSD number systems allow carry-free addition and
borrow-free subtraction, just as OSD number systems do. This
is not a trivial extension of the corresponding OSD property,
since GSD number systems can have very strange digit sets
(e.g., digits 16 to 15 with r = 10). A limited-carry addition
algorithm is applicable to those GSD number systems which
do not support carry-free addition.

III. CARRY-FREE ADDITION OF GSD NUMBERS

We start by considering the following carry-free addition
algorithm which will be shown to be applicable to most GSD
number representation systems.

Algorithm 1 (carry-free addition): Let the two numbers to
be added have x; and y; as the ith digits. For each position i, a
position sum p; = x; + y; is computed which is then broken
into a transfer digit t;, | and an interim sum W, = p; — rti;,.
The final sum digit is s; = w; + ¢; whose computation should
produce no new transfer. @

Let us see what is involved in computing the transfer digit
Zi+1. From the digit set assumption (— o < x;, ¥; <) and the
requirements of Algorithm 1, we have —2a < p; < 28 and

—asw;+5<g0. (0))]
Substituting p; — rt;,; for w; in (1), we get after some
manipulation,
pi—(B-1;) pit{(a+t;)
d p =l = - . #))

Let the range of transfer digits be
Ast=p 3
where A < o and g < 8 are nonnegative integers to be

determined later. So, in the worst case, #,, is in the range
Pi_ B-u Di

a—A
<ty s—+
r r r r

. @

Fig. 2 depicts the range of values for #;. , as a function of p;. A
number of interesting observations can be made in connection
with Fig. 2.

First, let us specialize Fig. 2 to the case of OSD numbers
(Fig. 3). In general, there are overlap regions in Fig. 3 where
two valid choices for ¢, exist. Maximum overlap occurs for
maximally redundant OSD numbers (¢ = r — 1). For such
numbers, the transfer digit can sometimes be selected to be
x2ifr = 4. However, this only complicates the transfer digit
selection process and the subsequent addition to compute s; =
w; + t;. Thus, it is advantageous to restrict the transfer digit
values to the set {1, 0, 1} which is always adequate (see Fig.
3). The overlap amount is zero for even radices with o =
1/2 r+1 and is negative for odd radices with o= 1/2(r+ 1).

PARHAMI: SIGNED-DIGIT NUMBER SYSTEMS

S» 2B+a-A)/r

0

(a-A)/r

B

Fig. 2. The range of transfer digit values as a function of position sum for

carry-free addition.

fir1

Ba-1)r

(a+1)ir

*
| 2a L4
|
'
]

~Go-1yr

Fig. 3. The range of transfer digit values for ordinary signed-digit numbers.
No problem arises in the latter case due to the fact that an
integer value for p; cannot fall in the ‘‘noncovered”” region.
Both of these cases correspond to minimally redundant OSD
numbers.

The overlap region, if present and wide enough, can be used
to simplify and speed up the adder design. As an example,
consider the OSD number system with r 8and a = 7.
Here, the transfer digit may be O for —6 < p; < 6, 1 for p; =
2,and 1 for p; = — 2. Therefore, it is sufficient to compute p;
to an accuracy of =2 and compare it to *=4 for selecting a
proper transfer digit. Assuming sign-and-magnitude represen-
tation of the radix-8 digits, accuracy of +2 can be obtained by
ignoring the least significant bits of the two digits. The sum of
the two high-order bits of the two digits must then be
compared to +2.

91

Lemma 1: A necessary and sufficient condition for the
carry-free addition algorithm to be applicable is
P=N+p. %)

Proof: The existence of an integer value for ¢,,,
satisfying (4) implies

pi B-—p {pi a—)\J
—— =< |+ .

©®

r r r r

Letp;+ a ~ N=ry;, + 6, where §;(0 < §; = r — 1) isthe
remainder of dividing p; + o — A by r. Then, (6) becomes

"Yi+5i—(<¥—)\)_3—ll<
r ro-

i

Simplifying this inequality and noting thato + 3 = r + p —
1 yields

p=N+pu—(r—1-6). ™

Inequality (7) must hold for all possible values of §;. If we
show that §; = r — 1 for some p; in the range —2a < p; <
283, the desired conclusion (0 = N + p) will be immediate.
Consider the case §; = r — 1 with v; = 0. We have in this
case

pi=b6—(a=N)=r—1-(a—X). ®

Clearly, p; in (8) satisfies p; = — 2a«. It satisfies p; < 23 if we
have p = N — B. This concludes the proof for the case p = A
—B.Ifp < N—B,letd; = r — 1 withy; = —1. We have in
this case

pi= —r+8—(a=N)= —1—(a=\). ©)

Clearly, p; in (9) satisfies p; < 2(. It satisfies p; = — 2« if we
have o + A = 1. According to the assumptionp < A — 3, we
can write

<

at+tA>a+p+p=2p+r—-1.

The conclusion @ + A = 1 is immediate. L

It is apparent from our previous discussion that the transfer
digit selection process consists of a number of (approximate)
comparisons between p; and known constants. Thus, the
addition algorithm is simplified if the set of possible values for
transfer digits is of minimal size.

Lemma 2: The set {—X\, —N + 1, «++, u — 1, p} of
possible transfer digit values for carry-free addition of GSD
numbers is of minimal size if we choose

. [67
Amin— | _—
=
min _ i
s r—=1]|°

Proof: To determine the minimal value for N, we set
pi = —2a in (4) to obtain

(10)

an

20+ 68— a+ A
7*'—”‘Smin(ti+1)s _
r p; r

92

To minimize the value of \, we select
. a+ A
max(—\)=max(min(¢;,,))= | —-——
i r

which in turn yields

: l'a+)\'"i“'|
Amin .

(12)
;

To verify that (10) is indeed the solution of (12), we substitute
and verify the following equality:

=D

Letow = (r — 1)y + 6, where 0 < 6 < r — 1. Then, (13)

AR

Equality (14) clearly holds for 6 = 0. For1 < 6 < r — 1, we
have [6/(r — 1)] = 1 and (14) becomes

[6+1]

1= | ——

r

which is cleary satisfied for all the values of 6 in the assumed
range. A similar argument shows that

”minz l’ﬁ_,_umin"

r

(13)

(14)

which is satisfied by (11). o

Corollary 1: In a GSD number system, the set of possible

transfer digit values must have at least [o/(r — 1] + 2

members if the carry-free addition algorithm is to be applica-
ble.

Proof: The set of possible transfer digit values must have

at least A™" + pmin + | members. We have from Lemma 2

)\min+#min+1=lr @ 14_{- 6__-‘+1
r—1 r—1

a[ﬁﬂ r1o [L] 2.
r—1 r—1

This concludes the proof. ®

An immediate implication of Corollary 1 is that at least
three different values are needed for the transfer digit and that
a simple binary carry (or borrow) is insufficient.

Theorem 1: For the carry-free addition defined by Al-
gorithm 1 to be applicable to a GSD number system, it is
necessary and sufficient to have p = 3 if either o or 8 is equal
to 1 and p = 2 otherwise, with 7 > 2 in both cases.

Proof: From Lemma 1, we must have o =X+ u. Thus,
assuming minimal values for \ and x, we can write

pz)\min+”min= {i] + ’(_3_1 > ’Va'f‘ﬁ") (15)
r—1 r—1 r—1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1, JANUARY 1990

Notingthatoe + 8 =r — 1 + p, we conclude that carry-free
addition is possible only if

a+f P
"—L_J:”[mw

Inequality (16) cannot be satisfied for r = 2. Thus, Algorithm
1 is inapplicable to radix-2 GSD numbers, regardless of the
choice of values for « and 3. Similarly, a GSD number system
withp = 1 (or@ + 8 = r) does not lend itself to carry-free
addition and is in a sense insufficiently redundant for this
purpose. For r > 2, necessity of p = 2 is implied by (16). To
prove the sufficiency of p = 2 when «, 8 # 1, we reconsider
(15) and substitute r — 1 + p — « for B:

pz(%]+[%]=‘7%1+’—i—}x-’+l. a7)

For a = 0 mod(r — 1), the sufficient condition given by (17)
is identical to (16) and thus p > 2 is necessary and sufficient.
Now let &« = § mod(r — 1); that is o = (r— 1)y + 6 for
some v, with 0 < 8§ < r — 1. In this case, the sufficient
conditions given by (17) can be reduced to

-6
p=2+ I’p_" .

(16)

18)

r—1

For & = 1, inequality (18) is satisfied iff p = 3. For2 < & <
r — 1, inequality (18) is satisfied iff p = 2. The proof is
complete upon noting that § = 1and p = 2 imply either o = 1
ora =r(B8=1). ®

Algorithm 2 (transfer digit selection for carry-free
addition): The transfer digit ¢, , is selected to be k iff Cy < p;
< Cyy1, Where C_y = — oo, C,.1 = o and each Ci(-\<
J = p) is a known comparison constant to be specified later. @

Clearly, the values of comparison constants in Algorithm 2
directly affect the complexity of the GSD adder. In general,
there may be several valid choices for each C; and thus the one
which results in the simplest possible hardware realization can
be selected. The following theorem specifies the range of valid
choices for C;.

Theorem 2: For carry-free addition of GSD numbers, the
comparison constants Cy (—\ < k = y) of Algorithm 2 must
satisfy the following constraints:

kr—(a—=N=C,=<(k-1)r+8—-p+1. (19)

Proof: From inequality (4), we see that the selection iy
= k — 1is valid only if

pi=(k—1r+B—p. (20)
Similarly, the selection #;,; = k is valid only if
pizkr—(a—N\). @1

So the boundary between choosing ¥ — 1 and choosing & (i.e.,
Cy) must lie between kr — (@ — Nyand (k ~ 1)r + 8 — u+

PARHAMI: SIGNED-DIGIT NUMBER SYSTEMS

1, provided that we have
kr—(a—N)<s(k—Dr+pg—p+1.

Considering that « + 8 — r = p — 1, the above condition is
equivalent to p = A + u which is the same as the condition of
Lemma 1.

IV. LimiteD-CARRY ADDITION OF GSD NUMBERS

Next, we consider a limited-carry addition algorithm which
is applicable to all GSD number systems. This algorithm finds
applications in cases where Algorithm 1 cannot be used.
According to Theorem 1, this happens when we have one of
the following situations: 1) r = 2,2) p = 1, or 3) p = 2, with
either o or 8 equal to 1. Examples of GSD systems in these
categories are the SC, SB, and SCB representation methods,
including of course their radix-2 special cases.

Algorithm 3 (limited-carry addition): Let the two num-
bers to be added have x; and y; as the ith digits. In stage 1, for
each position i, a position sum p; = x; + y; is computed and
used to generate a range estimate e; ., for the final transfer
digit #;,;. In stage 2, the position sum p; and the range
estimate e; are used to compute a fransfer digit t;,, and an
interim sum w; = p; — rt;,;. The final sum digitis s; = w;
+ ¢; whose computation should produce no new transfer. @

The new aspects of this algorithm with respect to Algorithm
1 are 1) computation of range estimates, and 2) computation of
%41 as a function of both p; and e;. The range estimate ¢; may
be presented in many different formats. In the simplest case, it
is a binary indicator restricting #; to one of two subsets (not
necessarily disjoint) of the set { — N\, — A + 1, -+, u — 1, u}
of possible transfer digit values. In the most general case, the
range estimate e; is kK-valued and identifies one of k (possibly
overlapping) subintervals of the closed interval [—\, u] as
containing #;.

In our subsequent discussion, we consider the simplest case
where a binary range estimate is used and show that this is
sufficient for limited-carry addition in all cases. Let A" and p’
be constant integers satisfying

AN =N'=p' <p. (22)
Unlike A and g which are assumed to be nonnegative, A’ and
p' can also be negative. The minus sign of —\’ in (22) is only
used for convenience since it allows simple application of our
previous results in this case. The binary range estimate e; €
{1, h} restricts the transfer digit #; into one of the two closed
subintervals; the /low subinterval [—\, p’] and the high
subinterval [-A’, u]. For example, if \” = p’ = 0, then the
range estimate determines the sign of the transfer digit (with 0
considered both positive and negative).

Let us see what is involved in computing e;,, and #;,,.
Inequalities (1) and (2) remain valid here. The correspondence
between range estimates and possible transfer digit values is as
follows:

if e;=1then —\<t;=p’ (23a)

if =hthen —N' <t;=<pu. (23b)

93

i+l

{(2B+a-A")/r

(2B+a-A)/r

[B/(r-1)l=pmin

3 4]

- t“l:v).'

7/%-»-
AT

—amin . Tai(r-1)1

Fig. 4. The range of transfer digit values as a function of position sum for
limited-carry addition.

Using inequalities (23), in the worst case, #;,; is in the range

; -’ i 01—)\
ife—lthen P f <Py (24a)
r r r
;. B-— ;i a—N
ife=hthen PPl <Py . (24b)
r r r r

Fig. 4 depicts the range of #;,, as a function of p; and the
incoming range estimate e;.

Intuitively, the key to the success of the limited-carry
addition algorithm in cases where the carry-free algorithm
fails is the ‘‘expanded’” range of #;,; which permits the
selection of a value for ¢, ; when no acceptable value exists in
the original nonexpanded range.

Obviously, we must make sure that the range estimate e;,
for the value of #;, | can be generated based on a simple test of
bi.
Algorithm 4 (range estimate for limited-carry addition):
Selecte;,, = liff p;, < Eand e;, | = hiff p; = E, where E is
a known comparison constant to be specified later. {

Theorem 3: For limited-carry addition of GSD numbers,
the comparison constant £ of Algorithm 4 must satisfy the
following constraints:

—(N+Dr+B—u' <E=s(u' +Dr—(a—N). (25
Proof: Referring to Fig. 5, we note that for p; < F (F
being the value of p; at the intersection of the horizontal line
ti;1 = p’ + 1 with the uppermost oblique line), #;,, is at
most equal to u’ regardless of the value of ¢;. Thus, a range
estimate e¢;,; = / can be generated for p; < F. Similarly, for
pi > D (D being the value of p; at the intersection of the
horizontal line ¢;,; = —\’ — 1 with the lowermost oblique
line), #;,, is at least equal to A’ regardless of the value of e;.
Thus, a range estimate e;,; = & can be generated for p; > D.

94

fial

Fig. 5. Generating a binary range estimate e;., for the transfer digit #;,,.

Therefore, valid choices for E are in the range D < E < F.
Substituting the expressions for D and F from Fig. 5, we
obtain the desired result. @

Algorithm 5 (fransfer digit selection for limited-carry
addition): The transfer digit ¢, , is selected to be & iff Cy(e;)
= pi < Giia(@), where C_\(I) = C_\(h) = —oo,
C,ii(l) = Cuii(h) = o, andeach Ci(e) (-N < j = pu, &
€ {I, h}) is a known comparison constant to be specified
later. {

Because of the need for taking e; into account, Algorithm 5
implies a more complex hardware implementation than its
carry-free counterpart (Algorithm 2).

Theorem 4: For limited-carry addition of GSD numbers,
the comparison constants Cy (/) and Cy(h) (—N < k < p) of
Algorithm 5 must satisfy the following constraints:

kr—(a=-N=C(H)s(k—Dr+B8-p’+1 (26a)

kr—(a—N)=C(W)=(k-Dr+B—-p+1. (26b)

Proof: Similar to Theorem 2, with p replaced by g’ in
one pass to get the constraints on Cy (/) and N replaced by N’
in another pass for Cy(#) conditions.
Lemma 3: Necessary and sufficient conditions for the
limited-carry addition algorithm to be applicable to a GSD
number system are

pzmax(A+u’, N +pu)

o
N+p' =|—| .
K l‘r+lJ

Proof: The necessity of (27) is established similar to the
proof of Lemma 1, with u replaced by ¢’ in one pass (giving o
= u’ + M) and X replaced by N\’ in another pass (giving p =
u + A\’). The necessity of (28) results from the requirement D
< F in the proof of Theorem 3. Substituting the expressions

@n

28

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1, JANUARY 1990
for D and F from Fig. 5, we obtain
—N+Dr+B—p' <(p’ + Dr—(a—N\").

Using the identity « + 8 = r — 1 + p, the above condition
becomes
P
N+p ' >——-1. 29
SR @)
Condition (29) is the same as (28) since A’ + u’ is an
integer. ®
Theorem 5: The limited-carry addition defined by Al-
gorithm 3 is applicable to all GSD number systems.
Proof: Substituting the values of ™" and p™" in (27),
we obtain

pZmax(’Vi-‘ +u’s N+ "i" > .
r—1 r—1

Inequality (30) and the conditions A’ < A™" and p’ < pmn

dictate
A’smin("i-l -1, p— "i-l) (31a)
r—1 r—1
,,Smin< S T)
r—1 ’ r—1 ’

We need only check that valid choices for A" and p” satisfying
(28) and (31) exist for cases where carry-free addition is
impossible; namely for the cases 1) r = 2,2)p = 1,3)p = 2,
with either « or 8 equal to 1. For r = 2, conditions (28) and
(31) become

(30)

(31b)

N o4p > EJ (32a)
N <min(fa—1, p—B)=a—-1 (32b)
p'<min(B—1, p—a)=B-1. (320)

It is sufficient to show that at least one pair of values for A’
and p’ satisfy the conditions of (32). Let A’ = o — 1 and p’
=8 - 1.Then, N’ + u’ =a + B —2=p — 1, whichis
clearly not less than |p/3] since p = 1. This concludes the
proof for r = 2. Next consider the simplified versions of (28)
and (31) for p = 1:

N +pu =0

=] o
=) f2])

(33a)

(33¢)

PARHAMI: SIGNED-DIGIT NUMBER SYSTEMS

Consider the three cases@ = 0, @ = r,and 0 < o < r. For «
= 0, the values \’ = —1and ' = 1 satisfy the conditions
given by (33). For @ = r, the values N\’ = land p’ = —1
satisfy the conditions given by (33). Finally, for0 < a < r,
the values A’ = p’ = 0 satisfy the required conditions. This
concludes the proof for p = 1. For the final case of p = 2 with
either o or B equal to 1, we consider the two possibilities: o =
1 and o = r. The required conditions in this case are

N 4+p 20 (34a)

1-
, . r+l—-o o
u smm(" 1 “ -1,2- [:-’) . (340

It is easily seen that in both cases of « = 1 and o = r, the
values A" = u’ = O satisfy the conditions given by (34). @

V. OrDINARY SIGNED-DIGIT NUMBER SYSTEMS

Ordinary signed-digit (OSD) number representation sys-
tems have been defined for any radix r = 3 with digit values
ranging over the set { —a, *++, —1,0, 1, - -, }, where a is
an arbitrary integer in the range 1/2 r < « < r. An OSD
number system has a redundancy index in the range 2 < p <
r. The factthat 1 < 1/2r < a < rimplies that « # 1 mod (r
— 1) and thus the carry-free addition algorithm is applicable
even when p = 2. We have for all OSD number systems

)\min=umin: ’-rfl.l =1.

For minimally redundant odd-radix OSD systems, p = 2.
From Theorem 2, the comparison constants Cy and C, are

c (0 r—1
= —(g—1)= ——
0 2
r+1
Ci=r—(a¢—1)=— .
1 (a) 5

Minimally redundant even-radix OSD systems have the
following comparison constants (here p = 3):

)= 4 C r+l
— —D==-=-< <
(a) 2_ 0__2

r r
-—<=Ci==- +1=q.

This is slightly different from Avizienis’s original algorithm
which uses Cp = — (o — 1) and C, = « in all cases, and
results in simpler hardware realizations for some values of r;
including the very important special cases of r = 29,

Let us take r = 8 as an example. The digit set of a
minimally redundant radix-8 OSD system is {3, ---, 1, 0, 1,
-+, 5}. According to Avizienis’s OSD addition algorithm,
tiy1 = 1forp; < —4and f;,; = 1 for p; > 4. The method

95

presented here allows replacing the second condition by p; =
4 which is easier to test in hardware (only the sign bit and a
single value bit need to be examined).

Maximally redundant OSD number systems have o = r —
1. Let r > 4, since for r = 3 or r = 4, maximally redundant
and minimally redundant OSD systems are identical. For such
systems, p = r — 1 = 3 and we find the following ranges for
the comparison constants:

—(r=2)<Co=< 1
2SC]Sr—1.

Selection of values for C, and C; is governed by the
implementation details. For example, consider the case of r =
8. If p; is formed in sign-and-magnitude or one’s complement
form, then Cy, = —3 and C, = 4 are the best choices, since
the comparisons p; = — 3 and p; = 4 involve the testing of the
sign and a single value bit. If negative values are represented

in two’s complement form, then C, = —4 and C, = 4 are the
best choices. Note that both cases are different from Avi-
zienis’s original OSD proposal which specifies Cy = —6 and
C, = 7forr = 8.

Such changes to the original OSD proposal can also be
applied to intermediate OSD systems with 1/2r + 1 < a <'r
— 1 to obtain similar improvements.

VI. STORED-CARRY NUMBER SYSTEMS

Stored-carry number representation systems can be defined
for any radix r as having the digit set {0, 1, 2, -, r},
although only the binary stored-carry (BSC) system has found
wide applications. The main application of BSC numbers is in
multioperand addition and hence multiplication. A BSC
number can be added to a conventional binary number,
producing a BSC result, by a set of full adders without carry
propagation. The usual encoding for BSC digits in this context
is to represent 0 by (0, 0), 1 by (0, 1) or (1, 0), and 2 by (1,
1). We call this the unary encoding of the digit set {0, 1, 2}.

That two unary-encoded BSC numbers can be added by a
limited-carry circuit consisting of two levels of full adders is
well known. This property follows for SC numbers in all
radices from our Theorem 5, although the circuit implied by
our limited-carry addition procedure is different. In adding
two BSC numbers, we have A™® = 0 and p™" = 2 from (10)
and (11). To design the needed circuit, we start by selecting
appropriate values for A\’ and p’ satisfying (28) and (31)
which for the BSC number system becomes

N+u =0
N=-1
w' =1.

Clearly, the only possible choices are A\’ = —land p’ = 1.
The comparison constant E of Theorem 3 must satisfy

1<E=<3.

The most convenient value for E depends on the encoding used
to represent p;. For example, with a 3-bit binary encoding for

96

Di, the choice E = 2 is more convenient since the condition p;

= F of Algorithm 4 can be checked by examining the logical
or of the two most significant bits of p;. It is possible to
generate the range estimate directly as a function of x; and y;
(four logic variables) rather than waiting for the computation
of p;. This speeds up the addition process at the expense of a
somewhat more complex design. If the encoding (1, 0} is
disallowed for representing the BSC digit 1, then the choice E
= 3 turns out to be more convenient and simplifies the overall
design considerably. If the unary encoding is used, the absence
of (1, 0) can be ensured by adding an initial pair of gates that
convert each digit encoding (a;, a,) to (a1a,, a; + a3).

VII. STorRED-BORROW NUMBER SYSTEMS

Stored-borrow number representation systems can be de-
fined for any radix r as having the digit set {1,0, 1, -+, r —
1}. In the special case of r = 2, we obtain the binary stored-
borrow (BSB) or binary signed-digit (BSD) number system
with the digit set {1, 0, 1}. In addition to having been used for
representing temporary values in high-speed multiplication
and division [6], [14], [22], [24], BSD numbers have been
proposed for application over the entire range of data storage
and processing functions in special-purpose arithmetic engines
[20]. A BSD number can be added to a conventional binary
number, producing a BSD result, by a set of adder-like cells
without carry or borrow propagation.

That two BSD numbers can be added by a limited-carry
circuit is well known [8], {23]. This property follows for SB
numbers in all radices from our Theorem 5, although the
circuit implied by our limited-carry addition procedure is
different from the previously proposed implementations. In
adding two BSB or BSD numbers, we have A\™" = 1 and p™®
= 1 from (10) and (11). To design the needed circuit, we start
by selecting appropriate values for A’ and p’ satisfying (28)
and (31) which for the BSB number system become

N+u' =0
N =<0
p' =<0.

Clearly, the only possible choices are A’ = p” = 0. The
comparison constant £ of Theorem 3 must satisfy

-1<FE=<l.

The most convenient value for E depends on the encoding used
to represent p;. In most cases, however, the choice E = 0 is
convenient since the condition p; = E of Algorithm 4 can
be checked by determining the sign of p;. It is also possible
to generate the range estimate directly as a function of x; and y;
(four logic variables) rather thap waiting for the computation
of p;, as was the case for BSC numbers.

In two-valued logic, each binary signed digit can be
represented by two bits, using several possible encodings.
Two natural encodings are

1) the (s, v) encoding, consisting of “‘sign’” and ‘‘value’’
bits for each digit, whereby 1, 0, and 1 are represented by (1,
1), (0, 0), and (0, 1), respectively,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1, JANUARY 1990

2) the (n, p) encoding, consisting of ‘‘negative’’ and
““positive’” flags for each digit, whereby 1, 0, and 1 are
represented by (1, 0), (0, 0), and (0, 1), respectively.

If a digit d is represented as (d*, d*) with the first and as
(d", dP) with the second encoding, then the following
equalities hold:

d=(1-2d%)d"=dP—-d".

It has been shown that the second encoding results in much
simpler implementations for most arithmetic circuits of inter-
est [20]. Both encodings allow the implementation of normal-
ized significant digit arithmetic [15] if the extra combination
({1, 0) in the {s, v) encoding and (1, 1) in the {r, p) encoding)
is used to denote nonsignificant zeros. On the other hand, the
extra combination (1, 0) of the (s, v) encoding and the unused
combination (1, 1) of the (n, p) encoding can be used as DON'T
CARE conditions to obtain simpler designs. It is also possible to
use a l-out-of-3 encoding where a binary signed digit is
represented by the triple (n, 0, p), with the middle flag denoting
the value zero. Such an encoding can provide complete
unidirectional error detection capability with a relatively low
overhead in terms of added hardware complexity.

An important property of BSD numbers is that there exists a
propagation-free recoding algorithm which transforms any
BSD number X = X;_;Xx_2 *"* Xp into an equivalent BSD
number z = zxZx_1 " * %o, such thatz;°z;_ # 1 (1 = j <
k). This recoding enables the use of a special carry-free
addition process instead of the limited-carry process and also
leads to higher-speed serial or parallel multiplication. The
details can be found in [20] and thus will not be discussed here.

As BSD numbers require the same amount of storage as the
stored—carry representation (2 bits per digit position), it is
natural to ask whether BSD numbers offer any advantage over
the BSC system. The answer is positive for the following
reasons:

1) ease of multiplication, division, and other arithmetic
operations,

2) ease of zero detection,

3) suitability for use with arithmetic error codes.

These points have been dealt with elsewhere [20].

VIII. STORED-CARRY-OR-BORROW NUMBER SYSTEMS

The stored-carry and stored-borrow properties can be
combined to obtain the SCB number representation systems
which in radix r use the digit set {I, 0, 1, ---, r}.
Unfortunately, despite the higher redundancy index (o = 2)
compared to the SC and SB systems (o = 1), carry-free
addition is still not possible because we have a = 1 (refer to
Theorem 1). Furthermore, other arithmetic algorithms (such
as multiplication) can only become more difficult due to the
extra digit value. It is therefore quite surprising for SCB
number systems to find any application at all.

One possible application area for SCB number systems is in
the design of systolic up/down counters. The binary SCB
(BSCB) number system was first used in the design of a
systolic up/down counter in 1982 [9], apparently without any
attention to its arithmetic properties. A later systolic binary
counter design by the author [17] also used the BSCB number

PARHAMI: SIGNED-DIGIT NUMBER SYSTEMS

system in a different disguise. It was this application of the
BSCB number system that prompted the author to study the
properties of GSD number systems.

In the systolic binary counter application, the magnitude of
the count can be stored as a BSCB number, with the sign
maintained separately. Assuming that the count value O is
detectable without a need for signal propagation and that the
value 0 is always given the positive sign, then the various
counter operations can be performed as follows.

1) To count up from a nonnegative value, increment the
magnitude.

2) To count up from a negative value, decrement and change
the sign if the result is 0.

3) To count down from a nonnegative value, first change the
sign if the starting value is O and then decrement.

4) To count down from a negative value, increment the
magnitude.

~ Increment and decrement operations affect only the least
significant counter position directly. At each clock pulse, the
value of the ith counter digit is recomputed based on its
current value and the value of the (i — 1)th digit according to a
simple set of rewriting rules which essentially transfer a
stored carry or borrow from one position to the next higher
position, enabling the absorption of the incoming carry or
borrow (increment or decrement) at the least significant
position.

This method is also applicable to higher radix systolic
counters which have the advantage of lower overhead. In
particular, for r = 10, no storage overhead is involved since a
decimal counter requires at least 4 bits per digit position
anyway. The logic of each counter stage is of course more
complex for a systolic decimal counter than for an ordinary
counter and this is the price one pays for the added speed.

IX. CoNcLuUsIONS

We have presented a unified framework for the study of
redundant number representation systems, providing a general
theory for carry-free and limited-carry addition properties of
such systems. In fact, carry-free addition can be considered a
special case of limited-carry addition where the estimate e; is
not needed because we have A’ = Aand o’ = p. So, we could
have chosen to present the limited-carry results first and then
derive the carry-free property as a special case by seeking
conditions under which the equalities A\’ = Aand p’ = pcan
be satisfied. However, it is felt that the present order of
presentation is more natural and easier to understand.

Does the generalization considered in this paper suggest
new classes of redundant number representations which have
not been dealt with in the past? The answer to this question is
positive. An immediate example is provided by the SCB
subclass which has been previously examined in a limited
context and only for r = 2. Consider as another example an
interesting subclass of GSD number systems which is obtained
if we choose o = 0 and 8 = r + 1. This subclass, which may
be called the stored-double-carry (SDC) number system,
implies the same amount of storage overhead and redundancy
as the SCB subclass but offers the advantage of carry-free
addition. The obvious disadvantage with respect to SCB

97

systems is the use of digits with larger magnitudes and thus the
potential for more difficult multiplication and division. The
suitability of such new number systems must be evaluated in
the context of particular application areas. However, one can
immediately conclude that SDC number systems are attractive
for applications where add/subtract operations are dominant.

Other potentially useful subclasses are decimal number
systems with higher redundancy indexes than the decimal SDC
system. For example, the hex-digit decimal (HDD) number
system with the digit set {0, 1, ---, 15} implies no storage
overhead compared to conventional decimal representation but
offers the advantage of carry-free addition using a two-stage
circuit (an ordinary hex adder and a ‘‘correction’ circuit
which is only slightly more complex than the conventional
decimal ‘‘adjuster’’). Compared to low-redundancy OSD
number systems (digit set {6, -+, 0, -+, 6} or {7, -+-, 0,
.-+, 7}), the HDD representation has the advantages of no
initial conversion from decimal and simpler adder logic and
the disadvantage of needing an extra sign bit. The properties of
this and other new redundant decimal number systems are
currently under investigation.

In general, the use of redundant number representation
systems is particularly effective when long sequences of
computations and/or long operands are involved. Such condi-
tions prevail in many special-purpose systems such as those
used for high-precision scientific computations and signal
processing [11], [26], [10], [13]. Further work is thus needed
to identify strategies for the evaluation of various redundant
representations with respect to suitability for particular classes
of applications.

Finally, from the point of view of practical implementation,
our discussion in this paper is incomplete due to inadequate
treatment of subtraction as well as zero detection and sign test
for GSD number representations. Because GSD number
systems may have asymmetric digit sets, we need to consider
subtraction (or at least sign change for representations with o
> 0and 8 > 0) explicitly. Most results presented here carry
over directly to subtraction, using the position difference g;
= x; — y;, the interim difference u; = q; + rt;,, and the
final difference digit d; = u; — ¢t;in the algorithms. Details of
the procedures and related results along with methods for zero
detection and sign test have been worked out in a companion
paper [21].

REFERENCES

S. F. Anderson et al., *‘The IBM System/360 Model 91: Floating-point
execution unit,”” IBM J. Res. Develop., pp. 34-53, Jan. 1967.

A. Avizienis, ‘‘Signed-digit number representation for fast parallel
arithmetic,”” IRE Trans. Comput., vol. EC-10, pp. 389-400, 1961.
, “‘On a flexible implementation of digital computer arithmetic,”’
in Inform. Processing ’62. Amsterdam: North-Holland, 1963, pp.
664-670.

, “‘Binary-compatible signed-digit arithmetic,”” in AFIPS Conf.
Proc. (1964 Fall Joint Comput. Conf.), pp. 663-672.

, “‘Arithmetic error codes: Cost and effectiveness studies for
applications in digital system design,”’ IEEE Trans. Comput., vol. C-
20, no. 11, pp. 1322-1331, Nov. 1971.

A. D. Booth, ‘A signed binary multiplication technique,” Quarterly
J. Mech. Appl. Math., vol. 4, part 2, pp. 236-240, 1951.

[71 T. C. Chen, “Maximal redundancy signed-digit systems,”” in Proc.
Symp. Comput. Arithmetic, Urbana, IL, June 1985, IEEE Computer
Society Press, pp. 296-300.

(1
2]
131

[5]

i6]

98

(8

(91

(10]

[11]
[12]

[13]
(14]

{13]

[16]

[17]

(18]

{191

[20]

[21]

(221

[23)

{24]

[25]

C. Y. Chow and J. E. Robertson, ‘‘Logical design of a redundant
binary adder,” in Proc. Symp. Comput. Arithmetic, Santa Monica,
CA, Oct. 1978, pp. 109-115.

L. J. Guibas and F. M. Liang, ‘‘Systolic stacks, queues, and
counters,”” in Proc. Conf. Advanced Res. VLSI, MIT, 1982, pp.
155-164.

L. B. Jackson Digital Filters and Signal Processing. Boston, MA:
Kluwer, 1986.

R. W. Hockney and C. R. Jesshope, Parallel Computers.
England: Adam Hilger, 1981.

D. E. Knuth, The Art of Computer Programming: Vol. 2 Seminu-
merical Algorithms, 2nd ed. Reading MA: Addison-Wesley, 1981,
pp. 179-197.

S.-Y. Kung, R. E. Owen, and J. G. Nash, Eds., VLSI Signal
Processing II. New York: IEEE Press, 1986.

0. L. MacSorley, ‘‘High-speed arithmetic in binary computers,”
Proc. IRE, vol. 49, pp. 67-91, Jan. 1961.

N. Metropolis and R. L. Ashenhurst, ‘‘Significant digit computer
arithmetic,”” IRE Trans. Electron. Comput., vol. EC-7, pp. 265~
267, 1958.

G. Metze and J. E. Robertson, ‘‘Elimination of carry propagation in
digital computers,” in Inform. Processing 59 (Proc. UNESCO
Conf., June 1959), 1960, pp. 389-396.

B. Parhami and A. Avizienis, ‘‘Detection of storage errors in mass
memories using low-cost arithmetic error codes,”” [EEE Trans.
Comput., vol. C-27, no. 4, pp. 302-308, Apr. 1978.

B. Parhami, *‘Systolic up/down counters with zero and sign detection,’”
in Proc. Symp. Comput. Arithmetic, Como, Italy, May 1987, pp.
174-178.

——, ““A general theory of carry-free and limited-carry computer
arithmetic,”’ in Proc. Canadian Conf. VLSI, Winnipeg, Canada, Oct.
1987, pp. 167-172.

——, ‘““Carry-free addition of recoded binary signed-digit numbers,”’
IEEE Trans. Comput., pp. 1470-1476, Nov. 1988.

, **On the practical implementation of arithmetic functions with
generalized signed-digit number representation,”” submitted for publi-
cation.

J. E. Robertson, ‘‘A new class of digital division methods,”” IEEE
Trans. Comput., vol. C-7, pp. 218-222, Sept. 1958.

N. Takagi, H. Yasuura, and S. Yajima, ‘‘High-speed VLSI multiplica-
tion algorithm with a redundant binary addition tree,”” JEEE Trans.
Comput., vol. C-34, no. 9, pp. 789-796, Sept. 1985.

K. D. Tocher, ‘‘Technique for multiplication and division for auto-
matic binary computers,’’ Quarterly J. Mech. Appl. Math., vol. 11,
part 3, pp. 364-384, 1958.

C. S. Wallace, ‘A suggestion for a fast multiplier,”” IEEE Trans.
Electron. Comput., vol. EC-14, no. 1, pp. 14-17, Feb. 1964.

Bristol,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1, JANUARY 1990

[26] V. Zakharov, ‘‘Parallelism and array processing,”” IEEE Trans.
Comput., vol. C-33, no. 1, pp. 45-78, Jan. 1984.

Behrooz Parhami (5°70-M’73-SM’78) was born
on February 1, 1947 in Tehran, Iran. He received
B.S. and M.S. degrees in electrical engineering
from Tehran University and Oregon State Univer-
sity, in 1968 and 1970, respectively, and the Ph.D.
degree in computer science from University of
California at Los Angeles in 1973.

He was a Research Assistant/Engineer (1970-
1973) and Acting Assistant Professor (1973-1974)
at UCLA before joining Sharif (then Arya-Mehr)
University of Technology (SHUT) in Tehran, Iran,
where he was Professor of Computer Science until 1988. During his tenure at
SHUT, he was active in the areas of educational planning and curriculum
development and also taught a wide variety of courses. This led to his
involvement in the development of a standard nationwide computer science
and engineering program which has been in effect in all major Iranian
universities since 1983. Since 1972, he has acted as a consultant to various
organizations, been involved in standardization activities, participated in
many conference organizing and program committees, and served on the
editorial and advisory boards of several technical publications (including a
five-year term as Editor of Computer Report, a Farsi-language computing
periodical). In 1986-1988, he was on sabbatical leave as Visiting Professor at
the University of Waterloo and Carleton University in Canada, before joining
University of California at Santa Barbara as Professor of Computer
Engincering in 1988. Dr. Parhami has published more than 60 research papers
in the areas of computer architecture, computer arithmetic, dependable
computing, Farsi-language information processing, and informatics educa-
tion. He has also authored two Farsi-language texts entitled Computer
Appreciation and Computer Organization, Vol. 1: Basics of Hardware
and has coauthored a 6000-term English-Farsi Glossary of Computers and
Informatics. His current research-interests are in the general areas of
computer hardware and organization, including high-performance systems
and dependability issues.

Dr. Parhami is a Distinguished Member of the Informatics Society of Iran
(ISI), and a member of the Association for Computing Machinery, and the
British Computer Society. He was the founder of ISI and served as its first
president from 1978 to 1983. He also served as Chairman of IEEE Iran
Section from 1977 to 1986, following a one-year term as Vice-Chairman and
received the IEEE Centennial Medal in 1984.

