Scheduling of Replicated Tasks to Meet Correctness Requirements
and Deadlines

Behrooz Parhami and Ching Yu Hung

Department of Electrical and Computer Engineering
University of California, Santa Barbara

Abstract

We consider a coarse-grained mulliprocessing environ-
ment in which multiple task copies or unreliable ver-
sions (henceforth, referred to as task instances) need
to be scheduled to run on unreliable processors in the
face of correctness and timeliness requirements that
are considered met if ¢ task instances run to correct
completion before the deadline d. In this paper, we
study the interplay of correctness and timeliness re-
quirements, providing ezamples of how scheduling poli-
cies that are optimal in other contexts can fail to meet
correciness and timeliness needs in the above environ-
ment. We then present optimal scheduling policies for
certain special cases of the above problem followed by
a discussion of heuristics with reasonable performance
in more general cases.

1 Introduction

The problem of scheduling tasks on multiple pro-
cessors in order to achieve minimal completion time
or to meet deadlines is quite important and has re-
ceived considerable attention (see, e.g., [10]). Similar-
ly, the related problems of scheduling to reduce the
response time in interactive systems and load balanc-
ing, which in its simplest form can be viewed as dy-
namic adjustments to a pre-computed schedule, have
been researched extensively. Unfortunately, almost all
interesting scheduling problems, some with as few as
two processors, are NP-complete [11]. Thus the need
for approximations and heuristic algorithms (see, e.g.,
(8] and the references therein).

Optimal scheduling of tasks becomes even more
complicated if hardware and/or software faults are
taken into account [5, 12]. Here, essentially, there is a
competition for the use of resources (e.g., processors)
between satisfying correctness and timeliness require-

0-8186-1060-3425/93 $03.00 © 1993 IEEE

ments. In other words, processing power can be used
to execute more tasks (meeting more of the deadlines
but with a lower level of confidence in the correctness
of the results) versus executing tasks more reliably.
Aspects of this latter concern are need-based schedul-
ing of multiple task versions [2, 6], adjusting check-
pointing intervals to strike a balance between waste
of computational resources in the event of a detect-
ed fault and waste of the same due to checkpointing
overhead [9], and, finally, tradeoffs between precision
of results and their timeliness [1, 3].

We endeavor to extend and refine the framework
presented in [6] by considering scheduling issues in a
coarse-grained multiprocessing environment in which
multiple task copies or unreliable versions (henceforth,
referred to as task instances) need to be scheduled to
run on unreliable processors in the face of correctness
and timeliness requirements that are considered met if
¢ task instances run to correct completion before the
deadline d. The only work known to us on the schedul-
ing of redundant tasks deals with the establishment of
performance bounds in the case of longest-processing-
time-first scheduling policy[7).

Due to the unreliability of processors and possibly
of task instances, it may be necessary to schedule more
than c instances to assure timely completion of a giv-
en task with high probability. However, if one sched-
ules ¢ >> c instances, sufficient resources may not be
available to meet all deadlines.

To make the problem tractable, we need to make
some simplifying assumptions.

¢ There are m tasks to be executed, and c instances
of each must be correctly completed for a suc-
cessful run. Three, successively less restrictive,
timing models are assumed. In all three models,
the computation times are deterministic; i.e.,
known a priori or upper-bounded (in which case
our analyses are pessimistic), as opposed to being

randomly distributed.

— In the homogeneous (common-deadline)
model, all tasks have identical computation
time r, the same release or starting time
8 =0, and the same deadline d.

In the common-deadline model, task com-
putation times r; can be different, while the
release time 8 = 0 and deadline d are the
same for all tasks.

In the general deterministic model, compu-
tation times, release times, and deadlines
can all be different. They are assumed to
be r;, 8;, and d;, respectively, for task i.

o There are n processors in the system. The pro-
cessors have identical processing speeds and are
synchronized. We do not account for the time
spent on scheduling, voting and communication.

o There is a fixed probability p that an instance is
correctly completed. Correctness of the results of
each instance is thus assumed to be independent
of the task or the processor.

o Whether an instance has produced correct results
is determined solely by voting. When among the
results of ¢ > c instances, there is agreement
among at least ¢ instances, the results are as-
sumed correct. No information coding or con-
sistency checking is required.

e Scheduling, communication, and voting are all
fault-free.

Some of these assumptions may at first appear un-
realistic. However, they are all necessary for tractabil-
ity and in most cases adequately justifiable. For ex-
ample, ignoring the scheduling overhead presents no
problem with preset scheduling, since in this case, the
one-time overhead can be considered as part of com-
putation set-up time. In the general case, since we are
concerned with coarse-grained multiprocessing, com-
munication, scheduling and voting overheads can be
accounted for by slightly inflating task running times.
Similarly, the effects of communication, control, and
decision errors can be modeled by assigning a suit-
ably pessimistic value to p so that, for example, the
probability that ¢ or more task instances agree on an
incorrect value is subsumed by the probability that
they do not agree at all.

One can question the assumption of independence
of fault occurrences. Studies have shown that most

507

hardware malfunctions are caused by random, uncor-
related intermittent or transient faults. Voting is quite
effective for masking such random faults. When per-
manent or catastrophic faults occur in the hardware,
the system would normally be reconfigured to isolate
the faulty unit(s). Software faults can cause incorrect
results on the same or even different versions of a pro-
gram, and would have to be dealt with by more so-
phisticated probabilistic models.

We assume that the correctness of computation re-
sults is determined solely by voting. Ideally, there is
a reliable, yet simple, acceptance test that can be uti-
lized to verify the correctness of each set of generated
results. Then, adaptive scheduling schemes can yield
significant benefits by avoiding the execution of extra
instances with very high probability. In most prac-
tical cases, however, such an acceptance test simply
does not exist. Thus, we will assume that agreement
of computation results among ¢ instances is used to
judge correctness. Although, strictly speaking, there
is always a nonzero probability that ¢ instances agree
on an incorrect result, this probability can be made
negligibly small compared to other sources of error.

In this paper, we study the interplay of correct-
ness and timeliness requirements, providing examples
of how scheduling policies that are optimal in other
contexts can fail to meet correctness and timeliness
needs in the above environment. We then present op-
timal scheduling policies for certain special cases of
the above problem, followed by a discussion of heuris-
tics with reasonable performance in more general cas-
es. Evaluation of the algorithms along with directions
for further research concludes the paper.

2 The Homogeneous Model

We begin with the homogeneous (common-
deadline) model. Every task instance has the same
computation time r = 1, as well as the same release
time 8 = 0 and deadline d. Both preset scheduling
and adaptive scheduling are considered. With preset
scheduling, we do not know in advance which sched-
uled instance will produce correct results, so it is op-
timal to distribute the resources evenly among tasks.
With adaptive scheduling, we can concentrate the re-
sources on tasks that have not yet had enough correct
completions.

2.1 Preset Scheduling

With the preset scheduling strategy, we wish to find
the optimal number of task instances to be scheduled

for execution in order to maximize the probability of
successful runs. Since every task has the same timing
parameters, it is intuitively obvious that the optimal
strategy is to divide the resources evenly among the
m tasks. This is formalized in the following theorem.

Theorem 1 Let tasks be numbered from 1 through m
and b; denote the number of instances of task i in an
optimal schedule. If cm < nd, the optimal schedule
has 3°b; = nd and, for any two b; and bj, | b; — b; |
< 1. In other words, resources are evenly distributed
among all tasks.

Proof Define the function f(b) as the probability
that a task having b instances scheduled will have ¢
correct completions.

®=3 (D)rra-pr-.

k=c

The value of f(b) is defined to be 0 for b < ¢ and is
a strictly increasing function of b for b > ¢. Let P be
the probability of a successful run. We have

P= ﬁf(bi)

i=1

Note that cm < nd implies that there is an assignment
of b;’s so that b; > ¢, and consequently P > 0. Fur-
thermore, n processors in time d cannot execute more
than nd instances, so }_ b; < nd.

The first assertion,)~ b; = nd, is easy to prove by
contradiction. To prove the next assertion, we com-
pute:

Af®) = f(o+1) - f(¥)

3+1

=3 ("11)ra-prn-rso

-:i(() + (1)) pa-pra-t— s

=a-a@+or®)+ (2o -pp- - 0
= (.2,)ra—pren

Next, we show that f(b)/A f(b) is a strictly increas-
ing function of b for b > c.

f(® Thee (:)p"(l —py-t
Af(b) (c)P (1= p)b-ct+t

508

- b —e—
‘=‘(:) (c+k)Pc+k(l _p)b k
(c ')P‘(l —p)i-et?

;_c d(b~1)- b-c—k+1 v
c+ c+ —1).) 4

b(d-1)-- D—c+2 (1 _p)k-l-l

k—o e—~1)(e—
(b—c—k+1) p*

b—e
_ XS Get1)(b—o).-
Z (c+k)(c+k-1)...c (1=p*

k=

The above expression is clearly a strictly increasing
function of b for b > ¢, and is positive. Thus we know
that its reciprocal, A f(b)/ £(b) is a strictly decreasing
function of b for b > c.

Now back to the problem of m tasks. Assume
that in some opt.lma.l schedule, the instances are not
evenly allocated, i.e., there are b; and b; such that
b—22>8 >ec We want to show that substitut-
ing one mst.ance of task j for one instance of task i
would increase the success probability. Let P’ be the
success probability for the schedule resulting from this
substitution. We have:

P fe)f(a)- - fbi =) £ +1)... £(bm)
P SO T) F(55) - Fom)
Flb = 1)1 (b +1) _ £(b +1)/£(B;)
FEFG) - F®)/FGi - 1)

(F(5 +1) - f(b;))/f(b;) +1
(F(b:) = £(b: — 1))/ f(b; — 1) +1
Af(b;)/f(b;) +1
AT~ D/ f(bi —1) 1

Since we know that Af(b)/f(b) is strictly decreasing,
and b;—1 > b;, the above expression is strictly greater
than 1 leadlng to the conclusion P/ > P. This contra-
dicts the optimality of the original schedule. Therefore
the numbers of scheduled instances must not differ by
more than one in an optimal schedule. (u]

2.2 Adaptive Scheduling

With preset scheduling, we schedule some number
of instances of each task and perform voting only after
all scheduled instances are completed. There is some
waste of processing power when, for certain tasks,
more than ¢ instances turn out to be correct. Wlth
adaptive scheduling, it is possible to tell, some of the
times, if ¢ correct instances of a task have already been
completed and to concentrate our resources on the re-
maining tasks. The overall probability of successful

runs should be much higher than for preset schedul-
ing. The price we have to pay is more voting and the
extra scheduling activity during run time.

Even with the simplest model, there are many pos-
sible scheduling strategies:

o Selection of task instances can be depth-first,
breadth-first, or random. Depth-first selection
would concentrate on one task until the required
number of correct completions are observed, then
move on to the next task. Breadth-first selection
would try to advance all tasks together.

o The number of instances to be immediately ex-
ecuted can be projective or on-demand. Assume
that at one point, b instances of some task have
run to correct completion. On-demand schedul-
ing would schedule ¢ — b instances, while projec-
tive scheduling would schedule more, say g(c—b),
instances, where g is a suitable projection func-
tion. On-demand scheduling doesn’t waste re-
sources, but there is a possibility that some of
the instances will not yield correct results and
thus there will be some more demand in the next
unit of time. Projective scheduling has a higher
probability of obtaining an adequate number of
correct completions sooner, but there is a possi-
bility that some resources are wasted.

e Cooperation of the processors can be global or
partitioned. Partitioned systems let each group
of processors work on its share of task instances,
and may be preferred if the network topology fa-
vors such partitioning, or if higher communication
overhead of global cooperation is to be avoided.
Global cooperation would allow all processors to
work on instances of the same task if needed. We
assume uniformity and close coupling of proces-
sors, so global cooperation is chosen here.

The following theorem states that selection of task
instances would not be an issue if no time is wasted
executing extra (in excess of c) task instances.

Theorem 2 Any scheduling scheme that does not
force processors to be idle or to ezecule extra task in-
stances has the same probability of a successful run.

(¥)pa-pre

Proof First we describe a way to compute the prob-
ability of successful runs for any scheduling scheme.
We have assumed that each task instance has an

nd

Pr= E

k=cm

509

identical probability of being correct, and that each
instance is independent. The scheduling activity can
thus be modeled by a program S, an input vector
X = (X1, Xa,...,Xn4), and an output variable Y. X;
is boolean; X; = 1 indicates the instance run on a par-
ticular processor at a particular time step is correct.
Y is also boolean for deterministic schemes where
Y = 1 indicates that the run is successful. For ran-
dom schemes, Y is the conditional probability that
given the input vector X, the program would lead to
a successful run. In either case, a scheduler S can be
viewed as a function from input X to output Y.

Each input vector X has a probability Pr(X) asso-
ciated with it. Specifically, if X contains k ones, the
“: p*(1 — p)*4-%. The overall prob-
ability of success of the scheduler is then the sum of
Pr(X)Y(X) over all possible X’s.

Now we consider two programs. The first program
is a general one with m tasks, with c instances of each
required, n processors and d units of time, and is writ-
ten a8 Sm,cn,d)- The second program S(1 cm,1,nd) is
for a single-processor, single-task scheme with equiv-
alent load. All the scheduling schemes that do not
waste time can differ only in the assignment of tasks
and processors, and thus behave the same when ap-
plied to the single-task single-processor case. In other
words, S(1,em,1,nd) 18 the same for all schedulers that
do not waste time.

We assert that, if the scheduler does not waste
time, both programs S(m ¢,n,4) 30d S(1,¢m,1,nd) aTe the
same function from X to Y. This is because any in-
put vector X such that Sm cn,a)(X) = 1 must have
at least ¢cm 1's, and 80 S(1,em,1,nd)(X) = 1. And,
any input vector X such that Siy c.n,4)(X) = 0 must
have less than cm 1’s (no time is wasted in doing
tasks that already have ¢ correct completions) , and
80 S(l,cm,l,nd)(x) =0.

Since any scheduler that doesn’t waste time repre-
sents the same function from X to Y as S(1 cm,1,n4)
the probability of a successful run is the same as well.
Clearly, the probability of success for S(;,em,1,nd) i8 a8
shown in the statement of the theorem. o

probability is (

Theorem 2 seems to simplify the task of designing
scheduling algorithms, since some aspects of schedul-
ing are irrelevant to the performance. However, the
condition that no time be wasted is realistic only with
one or two processors or when m = 1. Otherwise,
there is some chance that time will be wasted.

For example, let n = 3 and m = 2, and assume that
at one point there is one remaining correct instance to
be completed for each of the 2 tasks. If we schedule

2 instances of task 1 and 1 instance of task 2, we are
at the risk of getting 2 additional correct instances of
task 1 and none of task 2, and thus one time step that
could have been used to run task 2 is wasted on task
1. Scheduling 1 instances of task 1 and 2 instance
of task 2 runs a similar risk. The success probability
deteriorates in either case.

Theorem 2 also suggests that on-demand schemes
are superior to projective schemes because they waste
less time. Time is wasted only when the demand is
less than the available processing power, n, and that
usually happens near the end of computation. Projec-
tive schemes, on the other hand, might waste at most
max.(g(z) — =) units of time for each task. For on-
demand schemes, the upper bound for wasted time is
reduced if the surplus, defined as n minus the total
demand in any time step, is evenly distributed among
tasks not having enough correct completions. Theo-
rem 3 gives the upper bound, and Theorem 4 provides
a lower bound for the success probability, given an
upper bound for the wasted time.

Theorem 3 For on-demand scheduling, if the surplus
is evenly distributed among tasks that have not had
enough correct completions, the worst case wasle is

1
Warax = Z[n/k] —1+1, wherel= max(n — 1,m).
k=2

Proof The above expression is obtained by observing
that the kth tardiest task to finish can waste no more
than [(n — k)/k] = [n/k] — 1 units of time. a

Theorem 4 Suppose a scheduler has an upper bound
w for the total wasied time among all processors. Then
the probability of successful runs is

('f) PP —pit.

nd

Pr> Z

k=em+4w

Proof Similar to the proof of Theorem 2, we con-
struct a program S from a no-waste scheduler and
another program S’ from a scheduler that wastes at
most w units of time. Any (random) input vector X
that has at least cm ones would produce Y =1 on S,
but may or may not produce Y = 1 on S’. Howev-
er, an X that has at least cm + w ones must produce
Y =1 on §’, because in the worst case, after ignor-
ing w ones, there are still at least cm ones left for the
useful executions. The probability of successful runs
is thus at least the probability of getting cm+w heads
in nd coin-flips, with p being the probability of head
in each flip. u]

510

Table 1: Worst-case wasted time for on-demand
scheduling (m > n — 1 assumed)

WMAX

SO®Io o b s
AROR G AN~

Table 2: An example for the worst-case wasted time

— advancing time
P11 1 1
P2 | 2 2 1

processor P3 | 3 2 2*
P4 | 4* 3+ 2+
P5 | 4« 3* 2*

wasted time | 1 1 2

Table 1 shows the worst-case wasted time for some
small values of n, assuming m > n — 1. To show that
the bound is tight, we present an example. Assume
at one point of time there are 5 processors named
P1 through P5, and 4 tasks numbered 1 through 4,
and each task requires 1 additional correct comple-
tion. Table 2 shows a schedule and the correctness
of task instances that causes the worst-case wasted
time. Instances marked by asterisk (*) are the correct
ones, while the unmarked ones are incorrect. The total
wasted time is 4, as suggested by Table 1.

Theorems 3 and 4 together provide a lower bound
on success probabilities. The distribution of wasted
time and its exact effect on the success probability de-
pends on the scheduling algorithm and is thus very
difficult to analyze. For large m and n, the worst-
case wasted time predicted by Theorem 3 is large, and
might give too pessimistic a measure of performance.
In such cases, simulation may be used to obtain a clos-
er estimate.

2.3 Example

In this example we consider m = 5 tasks, each re-
quiring ¢ = 3 correct instances, and result correctness
probability of p = 0.8. The number of processors n
and the deadline d are chosen to first form a constant
product of 30, and then d is fixed at 10 while n varies.
For the preset schedules, the probability of success is
computed as [] f(;), as defined in Section 2.1. For

Table 3: Prob. of success for a homogeneous example

Adaptive Preset

lower depth- brdth- with
n d Preset bound first first cancell.
1 30 | 0.91803 | 099995 0.99995 0.99995 | 0.99995
2 15 | 0.91803 | 0.99995 0.99996 0.99996 | 0.99939
3 10 | 091803 | 0.99977 0.99887 0.99990 | 0.99438
5 6 091803 | 0.99051 0.99981 0.99978 | 0.99464
[5 0.91803 | 0.97438 0.99974 0.99975 | 0.91867
10 3 0.91803 | 0.42751 0.99848 0.99733 | 0.96723
2 10 | 0.36893 | 0.80421 0.80450 0.80450 | 0.36961
3 10 | 091803 | 0.98977 0.99987 0.99990 | 0.99398
4 10 | 0.99386 | 1.00000 1.00000 1.00000 | 1.00000
5 10 | 0.99961 | 1.00000 1.00000 1.00000 | 1.00000
6 10 | 0.99997 | 1.00000 1.00000 1.00000 | 1.00000

adaptive scheduling, Theorems 3 and 4 are used to
find a lower bound on the success probability, and two
scheduling schemes are evaluated with simulation pro-
grams to obtain the respective probabilities. Table 3
shows the results.

The depth-first on-demand scheme imposes a fixed
priority on tasks and in each unit of time schedules
c—b, instances of task 1, c— b2 instances of task 2, and
so on, until the available processors are exhausted!.
In case there are surplus processors, they are even-
ly distributed among the instances of all tasks. The
breadth-first on-demand scheme chooses the tasks in
a circular order while skipping the tasks that already
have enough correctly completed instances.

Optimal preset schedules can be made adaptive by
a simple cancellation rule. We call such a scheme
preset with cancellation. A task instance on the sched-
ule is cancelled if enough correct instances of the task
have already been observed, and the next item on the
schedule is executed. In case the preset schedule runs
out, the remaining processing power is evenly dis-
tributed among instances of tasks that have not had
enough correct completions.

As predicted, adaptive schemes have higher proba-
bility of success than the preset scheme. Performance
of the preset with cancellation scheme is between the
preset and adaptive schemes. As for the two adap-
tive schemes, they appear to be very close; simulation
programs give only estimates of the probabilities. Al-
though the worst case wasted time is the same for
both, intuitively the depth-first scheme should waste
less time, on the average, because there are usually
fewer unfinished tasks when the processors begin to
have surplus time steps.

1}, is the number of instances of task ¢ that have already run
to correct completion.

511

3 The Common-Deadline Model
3.1 Preset Scheduling

In the common deadline model, the computation
time for each task can be different, with task ¢ having
running time r;. Thus uniform distribution of sched-
uled task instances is not always optimal. Intuitively,
replacing a long instance with several short instances
might increase the overall chance of success.

The scheduling problem can be formulated as an
integer programming problem with linear constraints
and a nonlinear value function. Let b;; be the number
of instances of task i executed on processor j. The
problem is:

Maximize v

f1s

n
(z b;,-) subject to

j=1

v

bi; 0, foralll<i<m,1<j<m,

m
Zb.'jr,-

i=1

A

diorall1<j<n.

This optimization problem is very difficult even for
modest numbers of tasks and processors. As the con-
text is preset scheduling, sufficient resources should be
invested to obtain the optimal solution.

The following approximation algorithm can be used
if optimal solution is too expensive to obtain or if op-
timality is not required.

The algorithm is described in terms of bin-packing.
Sizes of objects correspond to task computation times,
while the capacity of each bin is d. We have an un-
known number of objects being packed into n bins.

In the first stage, we pack em objects, which rep-
resent c instances of each task, into a number of bins.
The objective is to pack as few bins as possible and
to leave as little room on the partially packed bins as
possible.

Next we pack more objects into the bins, starting
from the object that gains most on the value function
per unit space used, and pack it into the smallest avail-
able space. As the free space on the bins dwindles, the
best task might not fit into any bin. In such cases, the
next best task is tried, until free space on every bin is
smaller than the smallest object.

We take the logarithm of success probability as our
value function.

log(f(b1)£(52) - - - f(bm)) =

log f(b1) +log f(b2) + ... + log(bm).

Table 4: Logarithmic gain L(b) (¢ = 3,p = 0.8)

)
0.4700036
0.1397619
0.0425596
0.0124225
0.0034508
0.0009182
0.0002360
0.0000590

DO®NO ;e wo

The per-unit-time gain by scheduling one more in-
stance of task { is thus

log(f(b: + 1)/ £(:)) ,

LK

where ¥; is the number of instances of task { already
scheduled. Logarithm is used so that the gains in suc-
cessive actions can be added to find the final gain.
In addition, dividing the logarithmic gain over a size,
log(f(b+ 1)/f(b))/r, gives a correct measurement of
the per-unit-time gain. We define L(b) to be

log(f(b+1)/(3))
log(1+ Af(b)/f(3)), for b> c.

For b < ¢, the value of L(b) is conveniently defined to
be infinity to reflect the urgency to schedule at least ¢
instances of each task. Table 4 shows several values of
L(b) for c = 3 and p = 0.8. Since L(b) needs to be used
many times in the bin-packing, we can precompute
values of L(b) and store them in a table. Finding
the per-unit-time gain can thus be accomplished by a
table-lookup step followed by a division.

L(®)

3.2 Adaptive Scheduling

Adaptive scheduling for the common-deadline mod-
el is more difficult than adaptive scheduling in the
homogeneous case because the computation time can
be different for each task. First, we explain why the
heuristics for the homogeneous case do not work as
well in this model. Then, we discuss a unit-time-gain
scheme for this model.

The on-demand approach aims to schedule no more
than the necessary number of instances of every task.
With the common-deadline model, the computation
times are different, and so a uniform distribution of
the number of instances is not always optimal. Fur-
thermore, neither the depth-first on-demand nor the
breadth-first on-demand schemes takes the computa-
tion time into account.

512

We suggest a unit-time-gain heuristic for the adap-
tive scheduling of tasks in the common-deadline mod-
el. The same function L(b) as in the previous subsec-
tion is used for the logarithmic gain. Again we might
want to precompute and store L(b) to obtain the unit-
time-gain quickly. The value of L(b) for b < ¢, defined
to be infinity, can assume a suitably large value.

The scheduler selects tasks with the highest unit-
time-gain, i.e., max; L(b;)/r;, with b; being the num-
ber of instances scheduled for task i. Note that b; is
a most optimistic projection of the number of correct
completions. Every extra instance scheduled increases
bi by exactly one. This has the effect of regulating the
number of processors running in parallel for any task
according to the value function.

The unit-time-gain heuristic suffers from fragmen-
tation when the deadline is tight. There might not
be enough time to do the tasks having the highest
unit-time-gain if they happen to be longer ones and
the deadline is close. In these cases, using the preset
schedules with cancellation or even without cancella-
tion, might yield a higher success probability.

3.3 Example

In this example we consider m = 3 tasks, each re-
quiring ¢ = 3 correct instances, and the result correct-
ness probability of p = 0.8. The execution times are
r1r =1, r, = 2, and r3 = 2. The same set of val-
ues for the number of processors and deadlines as in
Section 2.3 is used.

The optimal assignment of number of instances for
the single-processor case is found to be by = by = b3 =
6, ie,, a uniform assignment. In general, especially
when the computation times vary over a wider range,
the optimal assignment might not be uniform. This
uniform assignment fits into schedule for the next 4
cases. Consequently the success probabilities for the
first 5 cases are the same. For n = 10 and T = 3, al-
though the processor-time product remains the same,
the uniform assignment would not fit. The best sched-
ule has b; = 10,2 = b3 = 5, and has lower probability
than the first 5 cases. In the constant deadline part,
b1 = by = b3 = 2n is optimal.

Unit-time-gain heuristic is used for the adaptive
scheduling. In the constant processor-deadline prod-
uct part, this scheme is better than the preset scheme
for n =1,2,3,5 and 6. For n = 10, the preset scheme
is better. In the constant deadline part of the table,
adaptive scheme is consistently better, and the suc-
cess probability approaches one much faster than for
the preset scheme.

Table 5: Probability of success for a common-deadline
example

Preset with

n d Preset | Adaptive | cancellation
1 30 | 0.94998 0.99788 0.99823
2 15 | 0.94998 0.99710 0.99124
3 10 | 0.94998 0.99052 0.97937
5 6 | 0.94998 0.97821 0.98970
6 5 0.94998 0.95911 0.94959
10 3 0.88744 0.70802 0.88701
2 10 | 0.54976 0.71902 0.55228
3 10 | 0.94998 0.99052 0.97937
4 10 | 0.99631 0.99993 0.99947
5 10 | 0.99977 1.00000 1.00000
6 10 | 0.99999 1.00000 1.00000

We also have the preset with cancellation scheme
that takes the optimal preset schedule for each case
and adaptively replaces unnecessary task instances
with useful ones. The order in which task instances
are scheduled does not make any difference in the pre-
set scheme, but with cancellation it matters; a larger
number of different tasks being run tends to waste few-
er time steps and thus leads to higher probability of
success. Finding an optimal preset schedule to be run
adaptively with cancellation is harder than finding an
optimal preset schedule. In this example, we avoid
the problem by considering a fixed order for the tasks,
longest task first. The success probability we obtain is
not very predictable; in some cases it is between that
of the preset and adaptive schemes, while in others it
is the best among the three.

4 The General Deterministic Model
4.1 Preset Scheduling

In our most general deterministic model, each task
has its own release time s;, computation time r;, and
deadline d;. Execution of tasks can be preemplive
or nonpreemptive. Nonpreemptive scheduling is more
difficult so we assume preemptive scheduling.

This is an even harder problem than the optimiza-
tion problem for the common-deadline mode. Algo-
rithms exist for preemptive scheduling of tasks with
arbitrary release times, computation times, and dead-
lines (see, e.g., [4]). Using such an algorithm as
a filter, we may screen all possible combinations of
by,bs,...,bn, then pick among the schedulable ones
the one with greatest value of [] f(b;). One variation
is to prescreen the sets of b; values using simple feasi-

513

bility tests such as

Zb;r.- < n{max d; — min s;), and
c<bh< [M-I .

T

The search space can still be huge for a modest num-
ber of tasks. If resources are not available to find the
optimal solution, approximation algorithms may have
to be used.

One possible strategy is as follows. First we com-
pute an optimal assignment of number of task in-
stances with the least restrictive timing constraints,
i.e., n’ = 1 and &' = nd, where d = maxd; — min s;.
Then, we try to fit this assignment into the originally
imposed release times and deadlines, using a tradition-
al scheduling algorithm. If the assignment does not fit,
we try to accommodate as many instances as possible,
by successively cutting down the number of instances
for some tasks. If an assignment fits, we then try to
accommodate more (possibly smaller) task instances.
This method should give a reasonably good solution
if timing constraints are not tight. In evaluating the
simple example in Section 4.3, this method is used.

4.2 Adaptive Scheduling

Many possible adaptive schemes can be derived
from scheduling schemes found in the context of real-
time computing, such as earliest deadline and mini-
mum slack. Also, preset schedules may be used adap-
tively with cancellation.

As the preset scheduling problem for the general
deterministic model is very difficult, one might expect
the preset with cancellation scheme to perform better
than a strictly run-time scheduling scheme. However,
the generality of timing constraints and the nonlinear-
ity of the objective function makes it is very difficult to
find a scheme that is universally better than others, or
even one that is better than others most of the times;
some distribution functions for the timing parameters
will have to be specified first.

In this study we experiment with an eariiesi-
deadline projective scheme. The scheme orders the
tasks in ascending order of their deadlines, and tries
to keep [(c— b;)/p] instances of task i running, where
b; is the number of completed instances known to be
correct. Processor time is allocated according to the
deadline order. The number [(c — 4)/p] is a projec-
tion of how many extra instances are required to reach
the goal of ¢ correct completions. This linear projec-
tion function may not appear to be aggressive enough,

but the idea is to give the task with the earliest dead-
line enough processing power without jeopardizing the
other tasks or wasting too much resources on unnec-
essary task instances.

4.3 Example

In this example we consider m = 3 tasks, each re-
quiring ¢ = 3 correct instances, and the same result
correctness probability of p = 0.8 as in the previ-
ous examples. To compare with the less restrictive
common-deadline model, a comparable set of number
of processors and timing parameters are used. The
release time, computation time, and deadline for task
i are denoted as s;, ry, d;, respectively. Computation
time for task 1, ry, is always 1. Computation times for
tasks 2 and 3 are always 2. Task 1 is assumed to have
a release time of 0, and deadline d; about one third of
the total time d. Task 2 starts at the deadline for task
1, 82 = dy, and has deadline at the end of total time,
dy = d. Task 3 can use the total available time; 85 = 0
and d3 = d. The product nd is again kept constant
for the first part of the example, and then d is fixed at
10 while n varies in the second part. The results are
shown in Table 6.

For the preset schedules, the optimal assignment of
number of task instances for n = 1,d = 30 is b
bz = b3 = 6. Similar to Section 3.3, The first 5 cases
can fit this assignment into schedule. For n = 10,
again by = 10,b; = b3 = 5 is the best assignment. For
the second part, the optimal assignment is b, = by =
bs = 2n, and fits into the schedule in all 5 cases, as
in Section 3.3. Results in the first column are thus
identical with those in the first column of Table 5.

Results for the earliest-deadline projective and pre-
set with cancellation schemes are shown as well. With
the extra timing constraints, the preset with cancella-
tion scheme does not perform as well as the adaptive
scheme. For all cases except for n = 10,d = 3, the
adaptive scheme has the highest success probability,
the preset with cancellation scheme has the next high-
est, followed by the preset scheme. For n = 10,d = 3,
the adaptive scheme is the worst, and the preset with
cancellation scheme should have the same probability
of success as the preset scheme, since no cancellation
can occur in this case.

We note that the adaptive scheme is better than
both preset and preset with cancellation in all but the
tightest deadline case. The poorer performance of the
adaptive scheme in the tightest deadline case may be
due to the stingy projection function, but stinginess
may contribute to the good overall performance. This

514

Table 6: Probability of success for a general determin-
istic example

| l Preset with
n d Preset | Adaptive | cancellation
1 30 | 0.94908 0.99788 0.97621
2 15 | 0.94998 0.99089 0.98356
3 10 | 0.94998 0.98934 0.97823
5 6 | 094998 | 0.97272 0.97125
6 5 0.94998 0.97623 0.95140
10 3 | 0.88744 0.88050 0.88705
2 10 | 0.54976 0.55068 0.54991
3 10 | 0.94908 | 0.98934 0.97823
4 10 | 0.99631 0.99990 0.99865
5 10 | 0.99977 1.00000 0.99994
6 10 | 0.99999 1.00000 1.00000

is an example of how a simple heuristic would do well
in some of the cases and not so well in others.

5 Conclusions

A framework has been constructed to investigate
scheduling multiple instances of tasks in a coarse-
grained multiprocessor environment. Three succes-
sively less restrictive timing models, the homogeneous
model, the common-deadline model, and the general
deterministic model were dealt with. For each of the
three models, we considered preset schedules, adaptive
schedules, and adaptive use of preset schedules.

For the homogeneous model, theoretical results
were presented that allow the construction of optimal
preset schedules, and aid in the design of heuristics
for adaptive scheduling. Optimal schedule was shown
for preset scheduling and two heuristics (depth-first
on-demand and breadth-first on-demand) were pro-
posed for adaptive scheduling. For both the common-
deadline and the general deterministic model, preset
scheduling is a hard problem. Algorithms were pre-
sented to find approximate solutions to the problems.
For adaptive scheduling, a unit-time-gain heuristic for
common-deadline model, and an earliest-deadline pro-
Jective heuristic for general deterministic model were
provided.

We conclude our study by presenting an example
where neither the earliest-deadline-first nor the least-
laxity-first algorithm (both of which are quite effective
in other contexts) yields an optimal adaptive scheme.
Letc=2andn=4,r=rs=2,r,=4,d, =6,d; =
7, d3 = 8. Both of the above algorithms yield optimal
preset schedules as shown in Figures 1 (a) and (b) (T} g
represents instance j of task i). If cancellations are
allowed, neither of the above schedules can make use of

Figure 1: An example in which optimal preset sched-
ules are not optimal preset-with-cancellation schedules

dydads dydads
ER] RR;
Ty By Ty | Top T sy
TNy T2 Tsp | Tha T2 T2
Ty Tas Tz T3 3 Tas
T4 Ta Tsa T Tig T4

(a) Earliest Deadline (b) Least Laxity

Figure 2: A better preset-with-cancellation schedule

dldzds
ER
_ T Ty o
L Tz'z |T1'4|T3;21

At this point if 71 and T12
.Tl,l, T28 .T3vj. both have yielded correct re-
T Ty s sults, 6 instances of task 3 can
| u be scheduled (Ti3s and Ti4
are cancelled).

1 T8,4.

the resultant flexibility. However, the schedule shown
in Figure 2 can achieve a higher success probability.

This study can be extended in a number of direc-
tions. Since the two heuristics for adaptive scheduling
in the homogeneous model appear to have very good
performance, it might be possible to establish their op-
timality. In the common-deadline and general deter-
ministic model, there is a tradeoff between on-demand
and projective scheduling, and thus a more complex
heuristic that adaptively adjusts the projection func-
tion may be worth investigating. The deterministic
running times of tasks can be changed to randomly
distributed ones. Tasks with precedence constraints
can be modeled by making the release time of a de-
pendent task later than the deadline of the prereg-
uisite task. However, this approach adds to timing
constraints and is likely to decrease the probability of
meeting all deadlines. It is more desirable to have a
model that allows the precedence constraints to begin
with. Finally, one may consider soft deadlines by in-
troducing some penalty or cost function for missing a
deadline.

515

References

1] J.-Y. Chung,J. W.S. Liu, and K.-J. Lin. Schedul-
ing periodic jobs that allow imprecise results.
IEEE Trans. Computers, 39(9):1156-1174, Sep.
1990.

[2] A. L. Liestman and R. H. Campbell. A fault-
tolerant scheduling problem. IEEE Trans. Sofi-
ware Engineering, 12(11):1089-1095, Nov. 1986.

[3] 3. W. S. Liu, K-J. Lin, W. K. Shih, A. C.-S.
Yu, J.-Y. Chung, and W. Zhao. Algorithms for
scheduling imprecise computations. Computer,
24(5):58-68, May 1991.

[4] C. Martel. Preemptive scheduling with release
times, deadlines, and due dates. Journal of the
ACM, 29(3):812-829, July 1982.

[5] 3. K. Muppala, S. P. Woolet, and K. S. Trivedi.
Real-time systems performance in the presence of
failures. Computer, 24(5):37—47, May 1991.

[6] B. Parhami. A unified approach to correctness
and timeliness requirements for ultrareliable con-
current systems. In Proc. Int’l Parallel Processing
Symp., 733-747. Fullerton, CA, Apr. 1990.

D.-T. Peng. Performance bounds in list schedul-
ing of redundant tasks on multi-processors. In
Proc. Int’l Symp. Faull-Tolerant Computing, 196—
203, Boston, July 1992.

K. Ramamritham, J. Stankovic, and P-F. Shi-
ah. Efficient scheduling algorithms for real-time
multiprocessor systems. IEEE Trans. Parallel &
Distributed Systems, 1(2):184-194, Apr. 1990.

[9] K. G. Shin, T-H. Lin, and Y.-H. Lee. Optimal
checkpointing of real-time tasks. IEEE Trans.
Computers, 36(11):1328-1341, Nov. 1987.

[10] J. A. Stankovic and K. Ramamritham (Editors).
Tutorial: Hard Real-Time Systems. IEEE Com-
puter Society Press, 1988.

(7

(8]

[11] J. D. Ullman. NP-complete scheduling prob-
lems. Journal of Computer and System Sciences,
10(3):384-393, June 1975.

[12] J. Xu and D. L. Parnas. On satisfying timing
constraints in hard-real-time systems. In Proc.
ACM SIGSOFT, Software for Critical Systems,
New Orlean, Dec. 1991.

