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Abstract

Alternate table lookup schemes for the operation z mod p
are presented and compared. The cases of a single table and
two tables, including some new schemes, are analyzed
completely and closed-form solutions for optimal designs
are derived. Extension of the analysis and design
techniques to more elaborate decomposition schemes are
also discussed briefly. A novel multi-operand modular
addition scheme is presented that can be used in
implementing some multi-table schemes.
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1. Introduction

Table lookup is an attractive method for function
evaluation in VLSI signal processing applications since it
leads to the replacement of irregular area-intensive random-
logic structures with much denser memory arrays. It is
particularly useful for computing unary operations,
although binary operations can also be handled in the case
of short operands or where limited pre- and post-processing
steps can be used to convert the binary operation into a
unary one (examples are found in logarithmic number
system addition and standard radix-2 multiplication through
squaring) or to a set of smaller problems.

Modular reduction, or computing the residue of an integer
2 modulo a relatively small constant p, arises in many
signal processing and general computing applications,
particularly those involving residue number system (RNS)
representations. Numerous examples of such applications
have been documented in the literature [ALIA91],
[HUNGY4], [HUNG9%4b], [PARH93], [SODE86]. There
are also instances of z mod p computation for large values
of p, e.g., in cryptography [HUNG94a]. Even though we
do not focus on such applications in this paper, some of
our techniques are applicable to problem transformation
and/or reduction in such cases.

Let 0 <z<m. Thus m - 1 is the maximum possible
value for the unsigned integer z. The binary representation
of z has b =[logy m] bits. Residues mod p are represented
as d-bit binary numbers, where d =[logs p1.
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We divide our discussion of tabular methods for computing
z mod p into single-table and multiple-table methods. The
direct single-table approach is only applicable to very short
operands. We propose a modification to this approach that
reduces the table size by a factor of at least p/2 at the cost
of performing two additions after the lookup (Section 2).
This renders the approach practical for somewhat wider
operands and forms a basis against which improvements
provided by multiple-table approaches can be judged.

We next turn to two-table methods as important special
cases of the multiple-table approach, both because of their
practicality of implementation and tractability of the
associated analyses. The standard divide-and-conquer
method, whereby z is divided into two parts, with each part
used to address a separate table, is fully analyzed and a
solution is obtained for the optimal split (Section 3).

We also present and analyze a novel two-table approach in
which several high-order bits of z are used to determine a
negative multiple of p that, if added to z, yields a result z’
in the range O<z'<m’ with p<m’<m, z mod p = 2z’ mod p.
The problem is then reduced to the tabular computation of
z" mod p which is a less complex one (Section 4). We
demonstrate, through an example, some tradeoffs involved
in using one or the other two-table scheme.

More than two tables can be used to compute the d-bit
residues 2/z;;; mod p, where z;;j, i>j, is the binary number
formed by bits i down to j of z. The z mod p operation
can then be completed by modular multi-operand addition
of d-bit integers. The two main parts of the problem are:
(1) Devising a partitioning strategy, and (2) Performing
modular multi-operand addition. Clearly solution of the
first problem depends on the relative costs and delays of
multiple-operand addition with varying number of operands
as well as on the relationship between table size and
complexity (area). Our analysis of the general multi-table
scheme is as yet incomplete, and will be reported in future.
However, a novel design for multi-operand modular
addition, based on carry-save adders and table lookup, is
presented that appears to be promising for the efficient
implementation of multi-table schemes.



2. Using a Single Table
2.1. Direct Table Lookup

The simplest way (conceptually) for computing z mod p
for 0 < z < m is to construct a lookup table of size m
which is indexed by z and from which the d-bit residue is
obtained directly (Figure 1). The table size, in bits, for
this direct approach is

Tl =dm (l)

Clearly, this is impractical for all but very small values of
m. We will use the table size given by Equation (1) as
the basis against which all table size reduction and
optimization schemes will be compared.
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Figure 1. Simple lookup table for modular reduction.

2.2. Reducing the Table Size

Consider the identity:

z =282/28 ]+ zmod 26 =282, . 42, 4
Reducing both sides of Equation (2) modulo p, we have
zmod p=[282,_1.,mod p+z,_j.omodplmodp  (3)

Let us take g =d — 1 so as to eliminate the second
modulo computation. Noting that z;_ 5.9 mod p =z4 5.0,
we can rewrite (3) as :

@

@
Assuming that the second modulo computation in
Equation (4) is carried out by a trial subtraction (to
determine if the value within the brackets is greater than or
equal to p) and selection, a single table will be required to
carry out the entire computation.

zmodp=[24"1z, ;.;, 1 modp +2z4 5.9l mod p

The required hardware architecture for this scheme is
shown in Figure 2. The most significant b —d + 1 bits of
z are used to address a u-word table (with u =[m/24-17)
which yields the needed d-bit residue 24-1z;,_;.; ; mod p.
This d-bit value is added to the least significant d-1 bits of
z to produce a (d+1)-bit result representing 291z, ;.4
mod p +z4_5.9. We subtract p from this result and use
the sign of the difference to control a d-bit two-way
multiplexer whose inputs are the original value and the
computed difference. The table size in this case is:

Ty = du = d[mf24-1] ®
The table size can thus be reduced by a factor of

approximately 24-1, or at least p/2, compared to (1) at the
cost of two adders and a multiplexer.
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Figure 2. Single-table scheme with a smaller table.
Example 1: p=13,m=216:d=4,b=16
T =4 x 216 = 218 pjg
Ty =4 x[216/23] = 215 pits
so a factor of 8 in size reduction is achieved by using a 4-
bit and a 5-bit adder plus a 4-bit multiplexer. ll
Example 2: p=13,m =256,d=4,b=8
Ty =4 x 256 = 210 bits
Ty =4 x|256/23] = 27 bits

The original table was small enough so that the savings
are perhaps not worth the extra hardware in this case. ll

3. Using Two Tables
3.1. A Divide-and-Conquer Method

For g 2 d, Equation (2) can be the basis for the following
two-table method. The least significant g bits of z, viz
Zg_1:0, index a v-word table (v = 2%) to obtain a d-bit
residue. The most significant b - g bits, z,_,.,, index a
second table with v’ = m/28] words to obtain another d-
bit residue. Adding of these residues and obtaining the
final d-bit residue is done in a manner similar to that
discussed in Section 2, just before Example 1. The above
discussion leads to the table size:

T3=dw+v)=d (28 +[m/281)
3.2, The Optimal Split

Theorem 1: The table size T3 is minimized if we choose
g =Llogy m2]=Lb2] )

©



Proof: The result is trivial for m = 26. We must show
that it is valid for any m in the range 26-1<m <28, To
show this, we prove that T3(g+1) — T3(g) <0 for g <
Lb/2] and T3(g+1) — T3(g) 2 0 for g 2 b/2].

T3(g+1) — T3(g) = d(25+ 14T m/28+1T) - d(28+m/2%0)
=d(28 + [mf28+11 - [m/28T) ®)

For g <|b/2], we use the inequality [x/2]12[xV/2 to

rewrite Equation (8) as:

Ta(g+1) — T3(g) = d(28 + [m28+1] - [my287)

<d28 +[m28V2 - Tm2%7) = d(2% - Tm2%112)
Lor2-1 [2b-1 ﬂl_bﬂl—l-b

<dQ2
- d(2|.b/2J-1 _2rb/21—1) <0

The next to the last step above is justified by substituting

the maximum value for g (i.e., L6/2] — 1) and a lower
bound for m (i.e., 25-1).

For g 21 5/2], we use the inequality [2x] < 2 x] to rewrite
Equation (8) as:

T3(g+1) — T3(g) = d(2% + m/28+17 —[2xm/28+17)
2 d(28 + [m/28+1] = A my28+17) = d(2% - [mf28+17)
> 4@ P ool b2 1y gL J bR 5

Again, the next to the last step above is justified by
substituting the minimum value for g (i.e., Lb/2]) and an
upper bound for m (i.e., 2). This concludes the proof. W
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Figure 3. Two-table modular reduction scheme based on
divide-and-conquer strategy.

By Theorem 1, the minimal table size in this case is :
T;“i“ = d(2Lbr2] 4 | mplbr2l )y ()
Example 3: p=13,m=216.d=4,b=16

T™ = 4(28 + 216/28) = 211 bits

Comparing the above to 218 bits or 215 bits derived in

Example 1, with one or two tables respectively, reveals
the extent of savings. Il

Example 4: p=13,m=256,d=4,b=8

T3'" =4 x (2* + 2872%) = 27 vits

The above result should be contrasted to 210 bits obtained
form Equation (1) and 27 bits obtained in Example 2. In
general, the savings are less significant when b is not
much larger then d. l

4. A Novel Two-Table Scheme
4.1. The Basic Idea

The approach presented in this section consists of two
phases. In Phase 1, several high-order bits of z (0<z<m)
are used to determine what negative multiple of p should
be added to z to yield a result 2z’ in the range 0<z'<m’ with
p<m’<m and z mod p = 2’ mod p. In phase 2, the simpler
computation z’ mod p is performed.

Assuming d' =[logy m’], we have the two-table scheme
depicted in Figure 4. The most significant b — A bits of z,
Viz 2;, ;.5 are used to access a w-word table (w =m/2h7)
to obtain a d*-bit value. This value is the least significant
d’ bits of a negative multiple of p such that when it is
added to z, the result z° is guaranteed to satisfy 0 <z’ < m’".
A second m’-word table is used to obtain the d-bit final
result z’mod p. The total table size required is thus:

T4=d'w+dm' =d'[mf2k + dm’ 10
In the special case of m’ < 2p, this second table can be

eliminated and replaced by a subtractor and a multiplexer if
desired, thus leading to a single-table scheme.
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Figure 4. Two-table scheme based on successive refinement.




4.2. The Optimal Split

The key parameter here is m’ which determines the number
h of bits that can be ignored in Phase 1.

Theorem 2: The number A of bits that can be ignored in
Phase 1 of the above scheme is at least Llogy(m’ — p)J.

Proof: Consider the interval [0, m) divided into
subintervals of width 2%, In each subinterval, a certain
negative multiple of p is added to z and the result must be
in the interval [0, m"). consider the kth subinterval of
width 24, where 0 < k <Lm/2}). The values of z in this
subinterval range from kx2% to (k + 1)x2% - 1. Let the
negative multiple of p to be added be —My for the kth
subinterval. Then, for each k, we must have:

kx2h - Myxp 2 0 (11a)
k+ 1)x2h -1 -Mpxp<m’ (11b)
Conditions (11a) and (11b) restrict My in the range:

[k + 1)x2% — m'Yp < My < [kx2h)/p (12)

A sufficient condition for (12) to yield an integer solution
is for the right-hand side and left-hand side to differ by 1
unit or more. Hence the sufficient condition becomes

m-2h2p (13)

which is equivalent to & < Llog,(m’ — p)). Since the
sufficient condition given by Inequality (13) is not always
necessary, in some cases it may be possible to take 4 to
be larger than Llogy(m’ - p)). B

Using the result of Theorem 2, the table size T4 given by
Equation {10) can be rewritten as:

Ty = d' Tmp2 082 p)] 4 g’ (14)
The stage is now set for determining the optimal value of
the key parameter m’,

Theorem 3: The table size T4 given by Equation (14) is
minimized if 4 is selected so as to minimize the function

fidy=d'Tm24=11+ dd-1 (15)
and the parameter m’ is chosen to be:
m'=24"14p (16)

Proof: Let m”—p =x. Then, since dp is a constant, to
minimize T4, the quantity

T4-dp=d rm/2L1°32’J-| +dx an
must be minimized. For a given value of Llog, xJ in the
denominator, dx is smallest when x is a power of 2; say,
27, Recall that &' =[log, m’|. Therefore, we know that
24-1 ¢’ <24’ (18)
Hence, from (18) we get 241 ~p<x= V<2 _p,
which leadstoy=d'~ 1 and m'=2 d-1 + p, proving (16).
The objective functlon to be minimized results from
substituting x = 2¢_1in(17). B
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In the special case of m = 2P, the function f{d") to be
minimized becomes:

fd) =d x25-9%1 4 god™-1 (19)
Differentiating (19) with respect to d’ and equating with 0,
we get:

d =bf2 + 1 - (logz d)2 + (1/2)loga(d’ - 1/In 2) (20)
Since (1/2)loga(d’ - 1/In 2) is small compared to d’,
Equation (20) can be solved by ignoring the last term on
the right-hand side, and then adjusting the resulting
solution to account for that term.

Example 5: p=13,m=216,d=4,b=16

From Equation (20), we get d’'°Pt = 9. This leads to m’
269, h =8, w = 2b-% = 28 and the total table size:

=d'w + dm’ = 9x28 + 4x269 = 3380 bits
The above result should be contrasted to the results
obtained in Examples 1 and 3. We note that the table size
here is larger than that of Example 3 but that the simpler
additional logic in Figure 4 compared to Figure 3 may
make this approach more cost effective overall. ll

Example 6: To use the single-table version of our new
scheme with the data as in Example 5, we must pick m’
to be less than 2p. Let us pick m’ = 21 so that h = 3 bits
of z can be ignored in the table lookup (Theorem 2). This
results in &’ = 5 and w = 215, Hence:

Ts =d'w = 5x215 bits

The resulting table is almost as large as the one needed for
direct lookup and much larger than the one needed with the
single-table approach of Subsection 2.2 (see Example 1).
The fact that the peripheral logic needed here is somewhat
simpler that than that of Figure 2, does not adequately
compensate for the additional table size. ll

5. Using Multiple Tables

One can use more than two tables to compute the residues
Yz .j mod p for various non-overlapping intervals [i:j]
such that they cover the entire index set [5—-1:0]. The z
mod p operation can then be completed by modular multi-
operand addition. Two questions immediately arise:

(1) What is a good partitioning strategy?
(2) How to perform modular multi-operand addition?

The above questions cannot be answered independently, as
the optimal number and size of partitions is dependent on
the cost function of the multi-operand addition scheme.
There has been limited discussion of multi-operand
modular addition in the literature [KOCC90], [PIES91],
[PIES94] and even less discussion of its cost. Thus, at
this point, the above questions cannot be answered in a
reasonably general way.



We are working on new strategies for multi-operand
modular addition that seem quite general and efficient.
One scheme is based on a mix of carry-save adders and
table lookup, as depicted in Figure 5. In this figure, solid
lines represent d-bit numbers, unless otherwise specified,
and dotted lines represent single bits. The idea in this
example is to reduce six d-bit numbers to three d-bit
numbers with the same modular sum. The 8-entry table
contains the d-bit residues kx2¢ mod p, for 0<k<3.

] 1
m{-

&+l g

8-by-d
Table

Figure 5. A strategy for multi-operand modular addition
based on carry-save adders and table lookup.

Repeating such reductions, one can convert the multiple
operands to a final set of 2 or 3 which can then be added
and reduced by one of the methods discussed earlier.

Analysis of this modular reduction method and its effects
on the initial partitioning will be reported in the near
future. Different partitioning schemes yield several known
methods of binary-to-residue conversion as special cases
[ALIA84], [ALIA90], [ALIA93], [CAPOS88], [PARH93a],
[PARH94], [SHENS9].

6. Conclusion

Alternate table lookup schemes for performing the
operation z mod p, where p is a relatively small constant,
were presented and analyzed. Optimality results were
obtained in the case of a single table and two different two-
table schemes. Extension of these techniques to more
elaborate decomposition schemes was briefly discussed.
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