
Terminology in Digital 
Signal Processin 

LAWRENCE  R.  RABINER,  JAMES  W. COOLEY, 
HOWARD D. HELMS, LELAND B. JACKSON, 
JAMES F. KAISER,  CHARLES M. RADER, 
RONALD  W.  SCHAFER, KENNETH  STEIGLITZ, 
and CLIFFORD J. WEINSTEIN 

Absfract-The  committee on Digital  Signal  Processing of the 
IEEE  Group on Audio and  Electroacoustics  has  undertaken  the 
project of recommending  terminologg  for use  in  papers  and  texts  on 
digital  signal  processing. The  reasons  for  this  project  are twofold. 
First,  the  meanings of many  terms  that  are commonly used differ 
from  one  author  to  another.  Second,  there  are  many  terms  that 
one would like to have  defined  for which no  standard  term  currently 
exists. It  is  the purpose of this  paper  to propose  terminology  which we 
feel is self-consistent,  and which is in  reasonably good agreement 
with  current  practices. An alphabetic  index of terms  is  included  at 
the  end of the paper. 

Introduction 

As an  aid  to classifying the  different  types of terms 
to  be  defined, we have  placed  each  term  in  one of the 
following groups: 

1) Introductory Terms-General  Definitions 
2) Discrete Systems-Block Diagram  Terminology- 
3) Relations  Between  Discrete  and  Continuous 

4) Theory  and Design of Digital  Filters 
5) Finite  Word  Length Effects-A/D, D/A  Con- 

6) Discrete  Fourier  Transforms  and  the FFT 
7) Discrete  Convolution  and  Spectrum  Analysis. 

Signals 

version 

In  the  above  mentioned  sections of this  paper we will be 
discussing  terminology  related to  the processing of one- 
dimensional  signals.  For  convenience, we will assume 
that  this dimension i s  time-although the  definitions 
apply  equally well to  any single  dimension. 

1. introductory Terms-General Definitions 

1) In discussing  waveform  processing  problems, the 
distinctions  analog  versus  digital  and  continuous  time 
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versus  discrete  time  are  often  made.  Although  they  are 
often  used  interchangeably,  different  meanings  should 
be attributed  to  the two sets of terms. 

2) The  term analog generally  describes  a  waveform 
that  is  continuous in time (or any  other  appropriate 
independent  variable)  and  that  belongs  to  a  class  that 
can  take on a continuous  range of amplitude  values. 
Examples of analog wuveJorms or anulog signals are  thosc 
derived  from  acoustic  sources.  Such  signals  are  repre- 
sented  rnathematically  as  functions of a  continuous 
variable.  The  functions sin (ut) and  the  step  function 
au-l(t) are  examples of common  mathematical  functions 
that could  describe  “analog  signals.” The use of the 
term  “anaIog”  in  this  context  appears to stem  fronl  the 
field of analog  computation,  where a current or voltage 
waveform  serves  as  a  physical  analog of some  variable 
in a differential  equation. 

3 )  The  term continuous t ime  implies that  only  the 
independent  variable  necessarily  takes  on  a  continuous 
range of values. I n  theory  the  amplitude  may,  but need 
not, be  restricted to a  finite  or  countable  infinite  set of 
values  (i.e.,  the  amplitude  may  be  quantized).  There- 
fore,  analog  waveforms  are  continuous-time  waveforms 
with  continuous  amplitude.  In  practice,  however,  “con- 
tinuous-time  waveforms”  and  “analog  waveforms”  are 
equivalent.  Since  most  signal  processing  problems  have 
nothing  to  do  with  analogs as such, the us11 of the  term 
analog  waveform is often  ambiguous at   the least  and 
may  in  fact be  misleading. T ~ L I S ,  the  term  continuous- 
time  waveform is preferable. 

4) Discrete time implies that  time (the independent 
variable) is quantized. T h a t  is,  discrete-time  signals  are 
defined  only  for  discrete  values of the  independent  vari- 
able.  Such  signals  are  represented  rnathcmatically  as 
sequences of numbers.  Those  discrete-time  signals  that 
take on a continuum of values  are  referred t o  as sum$led- 
data signals. 

5 )  The  term digital implies that  lmth timc and mlpli-- 
tude  are  quantized.  Thus  a digital system i s  one i n  w h i c h  
signals. are  represented as  sequences o f  n u m h - r s  which 
take on only a finite set of values. Thlls onc uses d ig i td  
when  discussing actual phJ-sical realizations  (as hard- 
ware or programs) o f  discrete-time  signal processing sys- 
tems,  whereas  the  term discrete t i m e  is a h;tt-er  modifier 
when  considering  mathematical  abstractions of such 
systems  in  which  the  effects of amplitud-  quantization 
are  ignored, A digital  signal or digital ~ ( ~ v e j o s m  is a sc- 
quence  produced,  for  example, b y  digital  circuitry  or by 
an analog-to-digital  converter which is sampling  a COIF 

tinuous-time  waveform. In digital  signal  processing 
these  terms  are  commonly  shortened  to signal 01- wave- 
f o rm.  Sometimes  the  term  signal is restricted to  being a 
desirable  component of a sequence  instead of being  used 
interchangeably  with  waveform. Noise is either  defined 
as a) an  undesirable  component of a sequence, or b) a 
sequence of random  variables. 

6 )  (Digital) simulatiofz i s  the  exact or approxinlate 
representation o f  a given  system  (discrete or contin- 
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uous) called the  source  system,  by a (digital)  system y ( n )  = x ( n  - m), m > 0 (2) 
called the object system. 

7)  Next-state  simulation is a method of digital  simu- 
lation  whereby  the  values of the  digital  system  signals 

m 

( 3 )  

are  represented  by  nodes  in a block diagram  representa- 
tion.  Usually,  there  is a close correlation  between  blocks 
in the  object  system  and  elements of the  source  system. 
The  method  entails  ordering  the  calculations in the 
digital  system so that all the  inputs  to each block a t  a 
given  sample  time  are  computed before the  output is 
computed. 

8) A real-time  process is one  for which, on the  average, 
the  computing  associated  with  each  sampling  interval 
can be completed in a  time less than or  equal  to  the 
sampling  interval. ,4 program  running in 100  times  real 
time  requires 100 times  as  long  to process the Sam(: 
number of samples;  i.e., it is 100  times  too slow for  real 
time  operation. A program  ten  times  as  fast  as it needs 
to  be  could  be  said  to  run in 1/10  real  time.  Obviously, 
the  extra  speed  can  only be used if other  computing  can 
be done in the  interstices, or if the  complete  sequences 
to  be  processed have been stored  beforehand. 

9) Throughp.ut  rate is the  total  rate  at which digital 
information is processed by  a  discrete-time  system, 
measured  in  bits  per  second  or  samples per second.  In  a 
multiplexed  system,  where  several  signals  are  processed, 
we may refer to  the throughput  rate  per  signal, measured 
in  bits  per  second  per  signal  or  samples  per  second  per 
signal. Thus, a multiplexed  system which  processes 10 
signals,  each at 1000 bits/s,  has  a  throughput  rate of 
10 000 bits/s,  and a throughput  rate/signal of 1000 
bits/s/signal. 

10) A multivate  system is a discrete-time  system in 
which  there  are  signals  sampled a t  different  intervals 
which are  usually  integer  multiples of some  basic  or 
fundamental  interval. 

In ( 3 ) ,  X ( z )  appears  multiplied  by z-%. This  result  for 
m'= 1 accounts  for  the  fact  that 2-l is  often  termed  the 
unit delay  operator, since a delay of the  sequence  by  one 
sample  is  equivalent  to  multiplication of the z transform 
by z- l .  ( Similarly, z is  often  called  the unit advance 
operator.) 

2) In  many cases,  sequences  are  defined  over  both 
positive and  negative  values of A. In such  cases, a some- 
what  more  general  point of view  is  called  for.  In  general, 
the z transform is written  as 

m 

X ( Z >  = x(n)z-a. (4) 
n=--m 

I t  should be noted  that a common  usage is to  call (1) 
simply  the z transform,  and (4) the two-sided z transform. 
Since (4) is most  general,  it  would  seem  preferable  to 
refer to  (4) as the z transform,  and  the special  case, ( l ) ,  
as  the one-sided z transform. 

3 )  I t  is possible to  think of the z transform  as  simply 
a formal  series whose properties  can  be  tabulated,  and 
which never  need be summed.  However,  it  is  generally 
preferable  to  realize  that if certain  convergence  condi- 
tions  are  met,  both (1) and (4) are  Laurent series  in the 
complex  variable z. As such,  all  the  properties of the 
Laurent series  apply.  For  example,  if  the  series  in (1) 
converges, it  must  converge in a region I zI > R+. If the 
series of (4) converges, it  must  converge  in  an  annular 
region R+ < I zI < R-, where R+ may be  zero and R- may 
be  infinity. The  coefficients  of a Laurent series are  deter- 
mined by  an  integral  relationship. In the  context of the 
z transform,  this  relation is 

11. Discrete Systems (5) 

1) The z transform plays  a role in  discrete-time  system 
theory  analogous  to  that of the  Laplace  transform in 
continuous-time  system  theory.  Two  view  points  re- 
garding  the z transform  are common.  One is based  on 
what  may be termed  the one-sided z transform, which is 
defined as 

m 

X ( Z )  = x(n1z-n (1) 
9L-0 

regardless of the  value of x(n)  for n < 0.l One  applica- 
tion of the one-sided z transform'is in the  solution -of 
linear difference equations  with  constant coefficients. 
Solutions  are  obtained for the  interval Osn < ~0 subject 
to  prescribed  initial  conditions.  These  solutions  are 
obtained  with  the  aid of the  equations 

The notation x(%) is used rather  than X,, or x(nT) to denote  a 
sequence because of the  ease of handling  complicated  indices, e.g., 
~ ( N - 1 / 2 ) .  

where C is a closed contour  inside  the region of conver- 
gence of the power  series and enclosing the origin. Equa- 
tion (5) is referred to  as  the inverse z transform. 
4) In  the region of convergence of the series, both (1) 

and (4) represent  analytic  functions of the complex 
variable z. These  functions  can  often be extended  by 
analytic  continuation  everywhere  except at certain 
.singular  points (poles). Since  these  singularities of the 
z transform  are  characteristic of the  particular sequence, 
i t  is  common t,o plot  their  locations  in  the z plane, (Le., 
the complex  plane  determined  by  the  real  and  imaginary 
parts of c). I t  should be noted  that  it  is often  convenient, 
because of the special  functional  form which character- 
izes exponential  sequences,  to  plot  singularities in the 
2-l plane. Furthermore,  some  authors define the z trans- 
form as 

8 ( z )  = x(n)zn. (6 )  
m 

n=-w 
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Clearly, (6) is related  to  our  definition  by 

X ( z )  = X(z-1).  (7) 

If either (6) or  the z-l plane is encountered, i t  is  a  simple 
matter  to replace z with z-l in  order t o  relate  the  z-trans- 
form  definitions  and  to  note  that  the region  inside the 
unit circle of the z plane  corresponds to  the region out- 
side  the  unit  circle  of  the z-l plane. 

5 )  A discrete-time  impulse  at k = k o  is a discrete-time 
signal x ( k )  such  that x ( k )  = 0 unless k = ko, in  which  case 
x ( k )  = 1. This is an  analogy  with  an impulse  at  time t o  in 
the  continuous-time  case,  where x(/) = 6( t - t0 ) ,  the  Dirac 
delta  function.  The  response of a  digital  filter  to a 
discrete-time  impulse a t  k = 0 is called its impulse  re- 
sponse, or  sometimes,  the unit  sample  response. Other 
terms  generally  used  for digital   impulse are unit sample,  
unit   pulse,  or  simply impulse.  

6) A sample  value is the  value  or  number  associated 
with  one  member of a sequence that  represents  a 
discrete-time  signal.  This  term  is  generally  used  regard- 
less of whether  or  not  the  value  represents  a  sample of 
a  continuous-time  signal. 

7) A discrete-time  linear  time-invariant  system or  a 
discrete-time  linear  filter is characterized by its impulse- 
response  sequence h ( n ) .  

8) Discrete-time  convolution is the  operation on a 
signal  or  sequence g(n) by the  impulse  response  sequence 
h(n)  to  yield a digital  signal  (or  sequence)f(n) ; the  opera- 
tion is defined  by  the  expression 

m 

f ( ? Z )  = h(lz)g(n - Irz). (8 )  
k=-m 

This expression is the  discrete-time  counterpart of the 
convolution  integral  for  continuous-time  systems. 

9) An alternate  characterization of a  discrete-time 
linear  system is the z transform of h(n )  : 

m 

H ( z )  = h(n)z-n. (9) 
n---m 

The complex  function H ( z )  is called the sys t em  fund ion  
or  transfer  function.  The  values  taken  by H(z)  when 
evaluated  on  the  unit circle  in the z plane  give  the fre- 
quency  response. Each  point  on  the  unit  circle,  character- 
ized by  its  angle  only,  corresponds  to  a  particular  fre- 
quency.2 Several  different  units of frequency  are in 
common use. Some  authors  express  frequency  in  the 
conventional  units  of Hz, kHz,  etc.  Others use a system 
of rad/s.  Still  other  authors use a normalized  frequency 
with  each  frequency  expressed as a fraction of the  sam- 
pling  frequency (f/fg) or half the  sampling  frequency 
(f/(f8/2)). Finally,  some  authors  express  the  normalized 
frequency in rad/sample.  The following table  relates  the 

units of frequency  to  the  corresponding  angle  in  the 
z-plane ( T =  l/fs is the  sampling  period). 

z-Plane 
Unit of Frequency  Substitution  Around  Unit Circle 

Range of Frequency 

When  the  frequency  response is expressed  in  polar 
form,  its  magnitude as a function of frequency is called 
the amplitude  response, and  its  angle  as  a  function of 
frequency  is  called  the phase  response. 

10) One  class  of  linear  time-invariant  discrete-time 
filters is characterized  by  system  functions of the  form 

k=l 

Such  filters  have a recursive  reali.zation in the  form of the 
difference  equation 

IC= 1 k c 0  

where y is the  output  sequence  and x is the  input se- 
quence. The  system  function  is  generally  written  in 
terms of powers  of z-l as in (10) because i t  places  in  evi- 
dence  the  form of the difference  equation  given  in (1 l),  
i.e., in terms of delays. H(z )  can  also  be  written as 

where i t  is assumed that  the zeros of the  numerator 
[zeros of H ( z ) ]  are  distinct  from  the  zeros of the  denomi- 
nator [poles of H ( z ) ] .  This  form  places  in  evidence  the 
fact  that  regardless of the  relative  values of M and N, 
H(z )  has  the  same  number of poles as zeros. In  most 
cases-especially digital  filters  derived  from  analog 
designs-M will be less than  or  equal to  N ,  and  there 
will be a t  least N- M zeros a t  z = 0. Systems of this  type 
are  called  Nth-order  systems.  When M> N ,  the  order of 
the  system is no  longer  unambiguous.  Here, N gives the 
order  as  the  term  is used to  characterize  the  mathemati- 
cal  properties of the difference  equations. M gives the 
order used to  characterize  the  complexity of a realiza- 
tion of the  system.  There is no general  agreement  as to 

As will be  clear from  the discussion i n  Section 111, each  point on .ivllicll of M or iv best  characterizes  the system 
the unit circle, i n  fact, corresponds to  an infinite  set of uniformly 
spaced  frequencies that  are indistinguishable i n  a  digital system. M > N .  
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U N I T   D E L A Y  
y ( n )  Z x ( n - 1 1  

AOOER / SUBTRACTOR 
r ( n ) = x ( n )   + y ( n )  

CONSTANT  MULTIPLIER 
y ( n )  = k, x ( n )  

MULTIRATE  DELAY 
( r  IS  THE SAMPLING 

BRANCHING  OPERATION f 

MULTIPLYING  TWO  SIGNALS 
r ( n ) =   x ( n ) .   y ( n )  

y ( n  1 

Fig. 1. Recommended terminology for use in block 
diagrams of digital  systems. 

11)  Since the  purpose of a block diagram is to  graphi- 
cally  depict  the  way  in which a particular  system is 
realized, the  terminology  shown  in  Fig. 1 is recom- 
mended. 

111. Relations Between Discrete and Continuous Signals 

1) If a sequence  arises as the  result of periodic sam- 
pling of a continuous-time  signal x c ( t ) ,  i.e., x ( % )  =xc(nT) 
where T is  the  sampling  period,  then X ( z ) ,  the z trans- 
form of x(n), is related  to X c ( s ) ,  the  Laplace  transform 
of xo( t )  by the  relationship 

Fig. 2. The mapping of the s plane  to  the z plane  implied 
by sampling  a  continuous-time  signal. 

uridth 2 r / T ,  each of which maps  into  the  entire z plane. 
The  contributions  from each strip  are  added  to  produce 

2)  The j axis of the s plane  corresponds  to  the  unit 
circle of the z plane.  For  this  reason,  the  point z = 1 is 
often  casually  referred  to as the DC point  since it corre- 
sponds  to  the  point s = 0 of the s plane. The  z transform 
evaluated on the uni t  circle (I z I = 1) is of particular  inter- 
est in digital  filtering of sampled  signals.  For  example, 
there  are  some  sequences  for which the z transform  does 
not converge  (does not  exist)  except on the  unit circle, 
e.g., the ideal  lowpass  digital  filter and  the ideal  digital 
differentiator for band-limited  waveforms. The z trans- 
form  evaluated  on  the  unit circle is called the Fourier 
transform of the sequence. This definition  is  consistent 
with the classical terminology  for  continuous-time sys- 
tems.  Evaluating (4) and ( 5 )  of Section I1 on  the  unit 
circle,  yields 

X ( z )  . 

m 

X(@) = x(nle-j.8 ( 14) 
?&==--a, 

This  pair of equations  is a Fourier  transform  pair  for  the 
sequence x ( % ) .  Alternatively,  any of the  frequency  units 
of the  table  in  Section I1 can  be used in  place of 8. 

3 )  If a continuous-time  waveform, x c ( t ) ,  is band- 
limited to  a frequency f o ,  i.e., X,(j27rf), the  Fourier 
transform of x c ( t ) ,  is  zero  for I f /  > f a ,  then xc( t )  can 
be  recovered  exactly  from  its  samples,  i.e., xc(nT),  
- co <n< m if T<1/2fo. This is  clear  from (13) where 
we can  see  that 
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is called the sampling  interval. The highest  frequenq- 
present in x , ( t ) ,  (defined  above) S o ,  is called the Nypuist  
frequency. The  Nyquist  frequency is sometimes  called 
the folding  frequency. I t  is recommended that  the  term 
Nyquist  frequency  be  avoided  because of the  general 
confusion  with  the  term  Nyquist  rate.  Furthermore, we 
recommend  that  the  term  folding  frequency  refer  to 
half of the  actual  sampling  frequency (see Fig. 3). 

4) The  relationship (13) between  the  Fourier  trans- 
form of a sequence of samples x,(nT) and  the  Fourier 
transform of the  continuous  time  signal xc( t )  is depicted 
in  Fig. 4. Part  (a) of this  figure  depicts  a  band-limited 
Fourier  transform X , ( j 2 ~ f ) .  In  Fig.  4(b)  and  (c)  the 
sampling  rate  is  greater  than  or  equal  to  the  Nyquist 
rate  and we note  that  the form of X,(  j27rf) is preserved 
to  within a constant  multiplier 1/T  in the  frequency 
range - l / Z T < f < l / 2 T .  However,  in  Fig.  4(d)  the 
signal x,(t) is undersumpled, i.e., sampled at a rate below 
the  Nyquist  rate. In  this case the  Fourier  transform of 
the  sequence  obtained  by  sampling  is  not  equal  to 
X,(  j27rf)lT due  to  the  fact  that  some of the  other  terms 
in (13) such  as Xc(j27rf-j(27r/T)) are  nonzero  in  the 
frequency  range - 1/2T<Ip< 1/2T. One way of viewing 
this is to  say  that  a set of frequencies  in X,( j271-f‘) is  in- 
distinguishable  from a different  set of frequencies  in 
X,( j21rj-j27r/T). These  frequencies  are  called aliases of 
one  another  and  the process of confounding  frequencies 
as in  Fig.  4(d)  is  called aliasing. 

5 )  Suppose we have a sampled  waveform x ( n )  with z 
transform X ( z ) .  We define a new  sampled  waveform 
y ( n )  using  one of every M samples  as  the  samples of the 
new  waveform,  i.e., y ( n )  = x ( M n ) ,  with 13-6 any positive 
integer.  Clearly,  this  process is equivalent  to  sampling 
a t  a lower rate,  and i t  is to  be  expected  that  aliasing  may 
occur.  When  the  aliasing  occurs  due to  “sampling” a 
discrete-time  signal i t  is called digital  aliasing. I t  is 
readily  shown that Y(z)  can be  written  in  terms of X ( z )  
as 

1 M-I 

M 2=0 

y(z )  = - x ( z l / . ~ f e - j ( z x / ~ w ) z  1. (16) 

IV. Theory and Design of Digital Filters 

1) Discrete filters may be  divided  into  two  classes  on 
the  basis of whether  the  signal  values  can  take on a 
continuum of values  (sampled-data  filters)  or a finite 
set of values  (digital  filter). Thus we have  the following. 

a) A sampled-dala fi l ter i s  a computational  process 
or  algorithm  by which a sampled-data  signal  acting  as 
an  input is transformed  into a second  sampled-data 
signal  termed  the  output.  The  sampled-data  signal is 
considered  only a t  a set of points  (usually  equally  spaced 
in  time  or  space as the  independent  variable); at these 
points  the  signal  can  take on a continuum of values. 

’ . b) A digitul  filter is a computational  process  or 
algorithm  by which a digital  signal or sequence of num- 

- fS - - f, -2fo -f, 0 f, 2f0 fs fs f 

2 

NYQUIST ’ .f FREQUENCY 

NYQUIST  RATE 

SAMPLING 
FREQUENCY 

t 
FOLDING 
FREQUENCY 

Fig. 3. Labeling of terminology  concerned  with frequencies 
related  to  the  sampling process. 

- f S  fS 
2 

(b) 

- f, 0 f, I 3 fo  
2f,=f, 

(c) 

f s  = Zf, 

f, < 2f, 

ALIASING 

(a) 
Fig. 4. An example of the effects of various  sampling  frequencies on 

the frequency  response of the digital  signal. 

hers  (acting  as  input)  is  transformed  into a second se- 
quence of numbers  termed  the  output  digital  signal.  The 
numbers  are  limited  to  a  finite  precision. The algorithm 
may be  implemented  in  software as a computer SUI,-  
routine  for a general-purpose  machine  or in hardware 
as  a  special-purpose  computer.  The  term  digital filter is 
then  applied t o  the specific routine  in  execution  or to  the 
hardware. 

2 )  Further  complexity of filtering  action  may he 
obtained  by  switching.  Thus, a switched filter ,is one .ill 
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which the  input  and  output  are  simultaneously  switched 
in a definite pattern  among a group of input  and  output 
ports.  The filter  being  switched may be either of the 
continuous  or  discrete  types.  Examples of switched 
filters are  commutating filters or n-path filters. 

3 )  A multiplexed Jilter is a restricted  form of a 
switched  filter;  commonly a single discrete  filter which Fig. 5. Block diagram representation of comb filter. 
by  means of a switching  action is made  to  perform  the 
function of several  discrete  filters  virtually  simul- 12)  A frequency-sampling Jilter is an F I R  filter  which 
taneously. Th:: multiplexing is most  commonly  done in is designed by varying one or of its D F T ~  coeffi- 
a time-division  manner  whereby  the  input  to  the  dis- cients (called frequency samples) to minimize 
crete filter is sequentially  switched  from a number of aspects of the filter?s frequency response. F~~ example, 
input signals and  the filter output  sequentially  switched  the DFT coefficients of a frequency-sampling lowpass 
in synchronism  to a corresponding  set of output signal filter are 1.0 in the passband, 0.0 in  the  stopband,  and 
lines. Thus a single  filter may be made  to  do  the work  variable  in the transition  band. one design  criterion 
of many filters  by  this  time  division  multiplexing. would be to  choose the  variable coefficients to  minimize 

realized  via  a  recursion  relation,  i.e.,  the  output  samples 13) extraripfile f i l t er  (also called ripple 
of the filter are explicitly  determined as a weighted  sum filter) is an FIR filter whose frequency response is equi- 

4) A recursive filter is a discrete-time filter  which is peak stopband  ripple. 

of Past  output saInPles as We'' as Past and/or  Present ripple  in both the  passband  and  stopband,  and whose 
input  samples. For  exaInPle, Y(n)  =box(%) + h l x ( f l - l l )  frequency  response  contains  the  maximum possible 
+b2x(n-2)  - a a l y ( n - l )  --2y(n-2). number of ripples6  There is no general  agreement as to 

5) A nonrecursive filter is a discrete-time  filter  for the appropriateness of this  term,  and as no recorn- 
which the  output  samples of the filter are explicitly mendation as to its usage is made. 
determined as a weighted  sum of past  and  present  input 14) equiripple (optimal) filter is an FIR filter wllich 

+bzx(n - 2). to  some  specified frequency  response  characteristic  over 

whose  impulse  response h(n)  is zero  outside  some  finite lowpass filter the  filter may be an extra- 

samples  only. For example, Y(n> =bOx(n)+blx(n-ll) is the  unique  best  approximation in the  minimax sense 

6 ,  A finite imfiulse is a any closed subset of the  frequency  interval.  For  the 

limits,  i.e., h(n)  = O ,  for n>N1 and n<N2 With N12 NZ. ripple  filter, an  equiripple  filter  with  one less than  the 
7) An in$nite ('IR) is a maximum possible number of  ripples,  or a filter  with  the 

for .which either NI = a or N2 = - or both, in 6).  Thus maximum possible number of ripples all except one of 
the  duration of the filter's  impulse  response  is  infinite.  which are of equal  amplitude. 

restricted  to z = 0 or z = a, whereas  there  are no such realization of an FIR filter of duration samples as a 
restrictions on the  positions of either  the poles or zeros  cascade of a comb  filter and a parallel bank of 
of I IR  filters.  plex  pole  resonators. The  filter output is obtained as a 

9) The  terms recursive and  nonrecursive  are  recom- weighted sum of the outputs of each of the parallel 
mended as descriptions for  how a filter is realized and branches;  thk  multiplier On the Kth branch  being  the  kth 
not  whether or not  the filter  impulse  response is of finite DFT coefficient of the filter  impulse response. 
duration.  (Although I IR  filters are  generally realized 16) A Ka~man filter (discrete time) is a linear,  but 

8 )  I t  should be noted  that  the poles  of F I R  filters  are 15) A fyequency-sampling realization is a means of 

recursively, and are generally non-  possibly  time-varying  discrete-time  filter  with  the  prop- 
recursively, I I R  filters  can be  realized  nonrecursively erty that  it provides a least mean-square estimate 
and FIR filters  can be  realized  recursively.) of a (possibly  vector-valued)  discrete-time  signal  based 

lo) A t ra~sversa l  filter is a (either  continuous  or  on noisy observations. The  statistical  description of the 
discrete) in Which the  output signal  is  generated by problem is such that  the Kalman filter has a recursive 

weighted  by a set Of weights termed the tap gains- If  the servations and old The filter design may be 
signal are by a tapped  delay line  based on a more  general  criterion, using a non- 

summing a series of delayed  versions of the  input signal  implementation,  using a linear combination of new ob- 

then  the filter  is  termed a tapped delay line filter. quadratic loss  function. Its  essential  features  are  that 
its design  is  based on a statistical  criterion  in  the  time 

Or difference Of input and Output Of a Of domain,  and  that  it is, in  general,  time  varying. If the 
units  and  unit gain  yielding a transfer  characteristic filter is further restricted to be time invariant i t  becomes 
H(z)  = 1 k z--*' (see Fig. 5 ) ;  this filter has hi" zeros of the Wienerfilter. 
transmission  equally  spaced  on  the  unit circle in  the 

11) A JiZter is a comprised Of the sum 

z plane thus giving  rise t o  a frequency  characteristic 
having M equal  peaks  and Af real  frequency zeros. 

See Section VI-1 for a definition of DFT. 
See  Section IV-29 for a definition of ripple. 
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Fig. 6. Block diagram  representation of direct 
form 1 for  an  Nth-order  system. 

17 )  ‘The forms for  realizing digital  filters  include  the 
following: 

a )  Direct f o r m  1 (shown in  Fig. 6) where 

biz-’ 
’Y 

& - I  

i=O 

For  convenience in showing the  realization,  the  order of 
the  numerator  and  denominator  are  set  to be the  same. 
Direct  form 1 uses separate  delays for both  the  numera- 
tor  polynomial  and  the  denominator  polynomial. In 
certain  cases,  e.g.,  floating-point  additions,  the  results 
may  depend on the  exact  ordering i n  n;hich the  additions 
are  performed. 

b) Direct   form 2 is sho\vn i n  Fig. 7. Direct  form 
2 has been  called the canonic   jorm because it has 
the minimunl  number of multiplier,  adder,  and  delay 
elements,  but  since  other c-onfigurations  also have this 
property,  this terminology is not  recommended. 

c) Cascade  canonic fo rm (or series j o rm) ,  which is 
shown  in  Fig. 8, where 

and Hi(z)  is  either  a second-order  section, i.e., 

1 + b1iz-l + b2iz-’ 

1 + a1iz-1 + u2iz-2 
Hi(2)  = > 

or  a first-order  section, i.e., 

and bo is implicitly defined  in (17), where K is the  integer 
part of (N+1)/2.  

d)  Pnmllel   canonic   form,  which  is  shown in Fig. 9, 
where 

K 

H ( z )  = c + H&) (21) 
i=l 

where H,( z )  is either a second-order  section, i.e., 

Fig. 7. Block  diagram  representation of direct 
form 2 for  an  Nth-order  system. 

*-+-+pJ bo ... * 
Fig. 8. Block  diagram  representation of the cascade  form. 

C 

m 

Fig. 9. Block 

’ -  

diagram representation of the  parallel  form. 

and  K=integer  part of (Nfl),” and C is proportional 
to b s  as defined  in  (17). 

18) The  individual  second-  and  first-order  sections 
of the  cascade  and  parallel  forms  are  generally realized 
in  one of the  direct  forms. 

19) Transpose  configurations for  all of the  above  forms 
can be obtained  by  reversing  the  directions of all  signal 
flow (i.e.,  by  reversing the  directions of all  arrows)  and 
by  interchanging all branch  nodes  and  summing  junc- 
tions. The  resulting  circuits  have  the  same  transfer  func- 
tions  but different roundoff noise and overflow  proper- 
ties. 

20) When  the  transfer  function of a  high-order  filter 
is  decomposed into  a  cascade  connection of lower order 
filter  sections  by  distributing  the pole and zero  factors 
among  the lower order  sections,  then pairing refers to  
the associating of a specific zero  factor  with  a specific 
pole factor  to form an  elemental  or  individual  section. 
Ordering refers to  the  sequence or  order  in which the indi- 
vidual  sections  are  connected  in  cascade  to  form  the 
composite  higher  order  filter.  Varying  the  pairing  and 
ordering  can  dramatically  change  the noise properties 
and  dynamic  range of both  discrete  and  continuous 
filters. As an  example, if 

Z 

or  a first-order  section, i.e., 
D j ( z )  
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and I = m = 5 then a possible detailed  realization  would be 

where the  pairing  is NI with D2, N3 with Dl, NZ with Ds, 
Nq with D3, and N5 with De. The implied  ordering is 
Nl/D2 first,  followed  by Ns/Dl,  NJDb, N4/D3, and 
finally N5/D4. 

21) Two  important  properties of digital  filters  are 
stability and causality. The definition of stability most 
often  used  in  digital  filtering  is as follows: a  system is 
stable if every  bounded  (finite)  input  produces a 
bounded (i.e.,  finite) output.  For  linear  time-invariant 
digital  filters, a necessary  and sufficient condition for 
stability is 

m 

n=-w 

22) A system is  said to be causa2 if the  output  for 
n = no is dependent only on values of the  input  for n <no. 
For  linear  time-invariant  digital  filters,  this  implies  that 
the  unit  sample  response  sequence (;.e., the  impulse 
response) is zero  for n < 0. For  the  case of most  interest, 
i.e., causal  linear  time-invariant  filters  with  rational 
transfer  functions,  stability  implies  that a11 the poles of 
H(z )  must be inside  the  unit circle in  the 2; plane. 

23) The gain of a discretejilter is the  steady-state  ratio 
of the  peak  magnitude  (or  any  other  consistent  measure 
like root-mean-square, for example) of the  output  to  the 
peak  magnitude (or other  consistent  measure) of the 
input  signal to the  discrete  filter.  The  usual  input  signals 
are  either  periodic  sequences, e.g., sine  waves, or pseudo- 
random  sequences. 

24) The frequency-scale  factor is  the fact0.r by  which 
all the poles and zeros of a normalized  filter (cutoff fre- 
quency of 1 rad/s)  must be multiplied  to yield the  actual 
filter  pole and  zero  values,  i.e.,  the  ratio of the  unnor- 
malized to  the  normalized  frequency scale of a filter. 

2 5 )  TheJ'ilter bandwidth is the  width, in units of fre- 
quency,  between  the  two  points  that define the  edges 
of the  passband of the  frequency  characteristics of a 
filter. The  frequency  points  are  usually  defined as those 
values of frequency a t  which the  attenuation  or loss is a 
specified amount  and  beyond which the  essential  filter 
characteristic  changes  from  pass (small attenuation) 
to  stop  (larger  attenuation). 

26) A commonly specified frequency  point  is  the  3-dB 
or  half-power  point.  For  the  elliptic  and  Chebyshev 
filters the  frequency  points  are  the  highest  and  lowest 
frequencies a t  which the filter attenuation satisfies the 
equiripple  passband  attenuation  limits.  For  other  filters 
the  frequency  points  may  be  defined in terms of the 
asymptotic  intersections of the  passband  and  stopband 
logarithmic  asymptotes.  Some  examples of typical  filter 
characteristics  are shown. 

27) Typical  magnitude-square  characteristics for sev- 
eral of the  standard  forms of continuous-time  filters  are 
given  below  using the following  terminology. 

1 I I  ; \  
Fig. 10. An example of the magnitude-squared 

characteristics of a typical  filter. 

N ODD N EVEN 

I 

N DDD 

IH(W1 1' 
N  EVEN 

W 
wp w5 wp w2 

Fig. 11. The magnitude-squared characteristics for even and odd 
order Chebyshev types I (top) and I1 (bottom) filters. 

] H(w) 1 2@4agnitude-squared  characteristic (fre- 
quency in rad/s). 

w, Passband  edge  frequency. 
w, Stopband  edge  frequency. 

A typical  response is shown in Fig. 10. 

W = O  

a) Butterworth  jilter: Maximally  flat  magnitude a t  

b) Chebyshev  fillers : 
Type I-Equiripple  passband,  monotone  stop- 

band : 

Type 11-Equiripple stopband,  passband  maxi- 
mally flat a t  w = 0:  

where the CN(W) are  the  Chebyshev  polynomials. Fig. 11 
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shows the response  for the  two  types of Chebyshcv 
filters  for N odd and  even. 

c)  Elliptic (Cuuer)  filters-equiripple passband  and 
stopband : 

4 

where the $N(w)  is a rational  Chebyshev  function  in- 
volving  elliptic  functions.  Fig. 1 2  shows  the  response of 
elliptic  filters  for N both  odd  and  even. 

28) The  term  transition band is used to describe an 
interval of frequencies  where  a  filter  characteristic 
changes  from  one  kind of behavior  to  another,  one ex- 
ample  being  the  transition  band  from a pass  to a stop 
characteristic.  The  transition  ratio  is a relative  measure 
of the  passband  width  to  the  sum of the  widths of the 
passband  and  the  adjacent  transition  band(s).  It  can 
also be  defined  for a single-transition  band-passband 
pair  provided  the  width of the  passband is defined. For 
the filter  shown  in  Fig. 13 the  transition  ratios  are  de- 
fined as  

transition  ratio = ___ (lower region) (31) 
0, - wz2 

wc - (0’2 

transition  ratio = ___ 
wu1 - 

(upper region) (32) 
mu - w, 

where wc may  be defined as  either  the  arithmetic  mean 
of the  band-edge  frequencies, i.e., 

or as  the  geometric  mean of these  same  two  frequencies, 
l.e., 

__- 
w, = dwu1w22.  (34) 

Thus  the  transition  ratio is bounded on the  upper  side 
by  unity.  Transition  ratios  near  unity  imply  sharp  cut- 
off filters. 

29) The  nature of a filter’s  response characteristic 
that  approximates a desired  characteristic  by  being 
alternatively  greater  than  and less than  the desired 
response as the  independent  variable  is  increased is 
called the ripple. The  ripple may  be  expressed as  the 
ratio of the  maximum  to  the  minimum of the response 
in  a specified range, e.g., the  passband of a filter. In  this 
case, the ripple  is  usually  expressed  in  percent  or  in 
decibels by  taking 20 loglo of the  ratio.  Alternatively, 
the ripple may  be  expressed  relative to  some specified 
level of response  such as  plus or  minus  a fixed number 
of units.  For  example,  consider  the  magnitude  response 
shown  in  Fig. 14, where  passband ripple = 2.268/2.160 
= 1.05 which  implies  a (2.268)/42.268x2.160 = 1.0247 
or rt_ 2.47 percent  variation  about  the  geometric  mean; 
thus  passband  ripple . .  expressed  in dB ( = ) 20 loglo (1.05> 

N ODD 

t- 
wp “s 

w 

N  EVEN 

I\ I I 

w 
wp ws 

E L L I P T I C  

Fig. 12. The  magnitude-squared  characteristics  for  even 
and odd order elliptic filters. 

I 
TRANSITION 

rn BAND 

c ‘  wm w1* wc wut wu 

Fig. 13. The  attenuation  characteristics of a typical bandpass filter 
showing  passband,  stopbands,  and  transition  bands. 
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Fig. 14. The magnitude  characteristic of a typical filtel 
showing  its ripple  characteristics. 

=0.424 dB overall  or f O . 2 1 2  dB  ripple about  the geo- 
metric  mean. 

30) The  passband ripple  is  also  termed  the  in-band 
ripple. The  terms stopband ripple  and out-of-band ripple 
have  also  been used  when the  out-of-band  frequency 
response has  the  characteristic of a ripple;  numerically 
this  has been  used to express the  ratio of the  minimum 
out-of-band  attenuation to the  mean  in-band  attenua- 
tion. We  recommend  that  this  ratio  be  termed  minimum 
stopband  attenuation and  that  the  terms  stopband ripple 
and  out-of-band  ripple  not be used except  qualitatively. 
In  the example,  minimum  stopband  attenuation 
=0.0082( =)  -41.7 dB  and  the  relative  minimum  stop- 
band  attenuation = (0.0082)/~2.268X2.160=0.003705 
(= )  -48.6 dB. 

Methods for Designing Digital Filters 

31) An important class sf techniques  for  designing 
infinite  impulse  response  filters to  be  realized  recursively 
is based  on  a  transformation of a continuous-time filter. 
This class  consists of at least  three  techniques. 

a) Tmpulse invariance  (also  called the standard z 
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transformation  or  standard z )  is a  technique  in  which 
the  impulse  response of the  derived  digital  filter is identi- 
cal to  the  sampled  impulse  response of a continuous-time 
filter. If the  continuous-time  filter  has a transfer  func- 
tied 

k=O 

then  the  requirement  that 

h(n)  = h,(t) 1 t=ny, o 5 n I ca (36) 

implies that  H ( z )  is obtained  from  the  partial  fraction 
expansion of H,(s) by  the  substitution 

(37) 

It   can be shown that 

Thus,  impulse  invariance is only  satisfactory  when 
H,(sj is band  limited. If as in  most  instances, H,(s) is 
not sufficiently band  limited, H ( z )  is an aliased  version 
of H,(s) .  Therefore,  this  technique is primarily  used  for 
narrowband  filter  designs  or else the  transformation  is 
applied to  the  cascade  combination of a guard  jilter and 

.Another important  point is clear  from (38). Due  to 
the 1/T multiplier,  digital  filters  derived  by  impulse 
invariance  have a gain  approximately 1/T that  of the 
continuous-time  filter.  This is generally  compensated  by 
multiplying  each  factor  in  the  partial  fraction  expansion 
by T ,  so that  the  digital filter will have  approximately 
the  same  gain  as  the  continuous-time  filter  from  which 
it was  derived. 

h j  Bilinear  transformation (also  called the  bilinear 
z transform,  the  bilinear z transformation  or z form) is 
a  technique  used to  circumvent  the aliasing  problem of 
the  impulse  invariant  technique.  This  approach uses the 
algebraic  transformation 

Hds) .  

(39) 

to  derive  the  system  function of the  digital  filter as 

H ( z )  = U,(sj I ~-(~/*)(l-~-l)/(l+z-'). ~- (40) 

This  transformation  has  the effect of mapping  the  entire 
s plane  into  the z plane  in  such a way  that   the left-half 

modifications  can  be made  to deal  with multiple  order poles. 
This formulation assumes that all poles are  distinct.  Appropriate 

s plane  maps  into  the  inside of the  unit circle and  the 
right-half s plane  maps  to  the  outside of the  unit circle. 
This  results  in a nonlinear  warping of the  frequency 
scale  according to the  relation 

% T a a  T 
2 2 

__ - - tan - (41) 

where wc is  the  continuous-time  frequency  variable  and 
wd is the  discrete-time  frequency  variable.  Because of 
this  warping of the  frequency  scale,  this  design  tech- 
nique  is  most  useful in obtaining  digital  designs of 
filters  whose  frequency  response  can  be  divided  into  a 
number of pass  and  stop  bands in  which the  response  is 
essentially  constant.  Generally i t  is necessary to  take 
appropriate  account of the  warping of the  frequency 
scale. 

c) Matched z transform (also  called the  matched z 
transformation,  mapping poles and zeros,  or  matched z )  
is a technique  based on mapping  the poles and zeros of 
the  continuous-time  filter  by  the  substitution 

s - si -+ 1 - e*i*z-l. (42) 

This  means  that  the poles of H(z )  will be  identical  to 
those  obtained  by  impulse  invariant  method,  however 
the zeros will not  correspond. 

32) In the  context of designing  a  discrete-time  system 
and especially  a  digital  filter, an optimization  technique 
is a procedure  for  minimizing a prescribed  performance 
function  based  on  design  requirements. An example is 
the design of a discrete-time  filter to  have  the  minimum 
mean-square  deviation  from  a  desired  frequency-domain 
characteristic. An iterative  optimization  technique is a 
procedure for generating  successive  approximations  con- 
verging  (hopefully) to  an  optimum.  This is opposed to  
an analytical  design  technique, which  yields  a closed form 
solution,  such as  the  Chebyshev design  for a lowpass 
filter. 

V. Finite Word length Effects-A/D, D/A Conversion 

1) A digital-to-analog ( D / A )  converter is  a  device 
t ~ h i c h  operates  on  a  digital  input  signal s(nT) t o  produce 
a continuous-time  output  signal s ( t )  ideally  defined by 

s(t)  = s(nT)h(t  - nT) (43) 
n 

where h(t)  characterizes  the  particular  converter.  For 
example, h(t) is a square pulse of duration T for  a  zero 
order  hold D / A  converter.  The D / A  converter is usu- 
ally followed by  a  linear  time-invariant  low-pass  con- 
tinuous-time  filter  called a postfilter. The  combination 
of D/A converter  and  postfilter  is  called a reconstru.ction 
device or reconstruction  jilter. 

2) An analog-to-digital ( A / D )  converter is a device 
which  operates on a  continuous-time  waveform  to  pro- 
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duce a digital  output  consisting of a sequence of numbers 
each of which approximates a corresponding  sample of 
the  input waveform.  Expressing  the  numerical  equiva- 
lent of each  sample  by a finite  number of bits  (instead 
of the infinite  number  required to  completely  specify 
each  sample) is the quantizing inherent  in  the  conversion 
process. The  error produced by  quantizing  is called 
quantizing  noise or A / D  conversion  noise. 

Representation of Numbers 

3) Various  systems  are used to  represent  the  numbers 
in a digital  filter.  In $xed-point  number representation, 
the position of the  binary (or  decimal)  point is assumed 
fixed. The  bits  to  the  right of the (fixed) binary (or 
decimal)  point  represent  the  fraction  part of the  number 
and  the  bits  to  the  left  represent  the  integer  part.  For 
example,  the  binary  number 011.001 has  the  value 
OX2~+1X2~f lX2~+0X2-1+0X2-~ f lX2-3 .  

4) A seating-point number is  formed by  two fixed 
point  numbers,  the mantissa7 and  the exponent. The 
floating-point  number  is  equal to  the  product of the 
mantissa  with  the  quantity  resulting  when a given base 
is raised to  the power denoted  by  the  exponent.  The 
base  is the  same  for  every  floating-point  number  in  the 
digital filter. Consequently,  the  numerical  value of an 
entry in  a specified position  in the  mantissa is deter- 
mined by  the  exponent.  The  mantissa is generally  nor- 
malized to  be as large as possible but less than some 
number (e.g., 1.0). For  example, 0.1 X l o2  is legitimate, 
whereas 0.01 X l o3  and 10.0 X loo are  usually  considered 
to be illegitimate  floating-point  decimal  representations 
of the  number  10.  The  most  commonly used base is two 
(binary  representation). The  base 16 (hexadecimal  repre- 
sentation) is used in some  general  purpose  computers. 
The base 8 is called octal representation. 

5)  The  representation of block floating-point numbers 
is determined  by  examining  all  numbers  in a block  (i.e., 
array).  The  largest  number is represented as an  ordinary 
floating-point  number  with a normalized  mantissa. The  
remaining  numbers in the block use the  exponent associ- 
ated  with  this  largest  number.  This use of a single  ex- 
ponent  for  the whole  block saves  memory.  This  type of 
arithmetic is popular  in  realizations of the  fast  Fourier 
transform. 

Representation of Negative Numbers 

6) The discussion so far  has  dealt with the  repre- 
sentation of nonnegative  numbers.  There  are  three  com- 
mon  systems  used for representing  signed  numbers. The 
representation of positive  numbers is the  same in thes-e 
three  systems.  The  first,  and  most  familiar,  is sign and 
magnitude, i.e., the  magnitude (which is, of course, 
positive) is represented as a binary  number  and  the sign 
is represented  by an additional  binary  digit in the  lead- 

as the  term  mantissa commonly used i n  logarithm  tables.  The  defini- 
’ The  term n1;mtissa as defined  here is unfortunately not the  same 

tion  presented  here is dictated by its  extensive  occurrence  in the 
literature: 

ing  position  which, if 0 corresponds  to  a + and if 1 
corresponds  to a - (or vice  versa). Thus ,  for  example, 
in sign and  magnitude 0.0011 represents  3/16  and 
1.001 1 represents  -3/16.  Two  related  representations 
of signed numbers  are  ones  complement  and  twos  com- 
plement.  In  each of these  systems a positive  number is 
represented  as  in  sign  and  magnitude.  For Iwos-comple- 
ment representation  the  negative of a particular  positive 
number is obtained  by  complementing  all  the  bits  and 
adding  one  unit in the position of the  least  significant 
bit. For  example,  -(0.0110) would  be represented  in 
twos  complement  as (1.1001)+(0.0001) = 1.1014). A 
carry  out of the  sign  bit is neglected  in the  addition, so 
that - (0.0000) = (1.1111) +(O.OOOl) =O.OOOO. For ones- 
complement representation  the  negative of a given  posi- 
tive  number is obtained  simply  by  complementing  all 
the  bits. 

7) The choice of representation  for  negative  numbers 
in a particular  system  is  based  almost  entirely  on  hard- 
ware  considerations. With  ones-complement  and  twos- 
complement  numbers,  subtraction  can  be  performed 
conveniently  with  an  adder.  For  example,  in  twos  com- 
plement,  the difference A-B is formed by  simply  adding 
to A the  twos  complement of B. 

Finite Word Length  Effects 

8) Even  though  the  input  to a digital filter is repre- 
sented  with  finite word length (e.g. through A/D con- 
version),  the  result of processing will naturally lead to  
values  requiring  additional  bits fo, their  representation. 
For  example, a b-bit data  sample  multiplied  by a b-bit 
coefficient results  in a product which  is 2b bits long. 
If in  a recursive  realization of a filter we do  not  quantize 
the  result of arithmetic  operations,  the  number of bits 
required will increase  indefinitely,  since  after the first 
iteration 2b bits  are  required,  after  the  second  iteration 
3b bits  are  required,  etc.  Two  common  methods  are 
used to  eliminate  the  lower  order  bits  resulting  from 
arithmetic  operations  in a digital  filter. 

a) Truncation is  accomplished  by  discarding all bits 
(or digits) less  significant than  the  least significant bit 
(or  digit) which is retained. 

b) Rounding of a number  to b bits,  when  the num- 
ber  is  initially specified to  more  than b bits,  is  accom- 
plished by choosing the  rounded  result as the b-bit num- 
ber closest to  the original unrounded  quantity.  When 
the  unrounded  quantity lies equidistant  between two 
adjacent b-bit numbers, a random choice ought  to be 
made as to which of these  numbers  to  round to. For 
example, 0.0101 1 rounded  to  three  bits would  he  0.01 1 ; 
but 0.01010  rounded  to  three  bits  can  be  chosen as either 
0.011 or 0.010, and  the choice  should be random.  In 
many  situations,  however,  one  can choose to  always 
round  up  in  this  midway  situation  with negligible  effect 
on the  accuracy of the  computation. 

9) Roundof  error (or roundof noise) or truncation 
error (or truncation  noise) is caused  by  rounding off or 
truncating  the  products formed  within  the  digital filter. 
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The roundoff  or  truncation  error is sometimes well puting,  or  otherwise  forming,  the  discrete  Fourier  trans- 
modeled as a random process. On the  other  hand, if the form of the  sequence. 
data  sequence to  a  recursive  realization of a digital  filter 2) From  the  definition,  the  sequence { f ( O ) , f ( l ) ,  . . . , 
consists of constants (e.g., zero)  or some  other  periodi- f ( N - 1 )  1 has  the  DFT* f F(O) ,   F(1) ,  . . , F ( N -  1) 1 
cally  repeating  samples,  the  roundoff  or  truncation  error 
is periodic  and  causes a deadband  efect or limit cycle in ~ ( h )  = j (n)e- i (2~/~7)nk.  
the filter output.  A  common  type of limit  cycle  is  a n-0 

zero-input  limit  cycle where  the  output of a digital  filter 

set  to zero. Dither is  a  sequence of numbers  that  is  added its DFT by the ‘peration 
to ’the input  to  a  recursive  digital  filter  to  ameliorate  the 1 N-1 

deadband effect. Even  though  dither  increases  the  mean- j(n> = - F ( ~ ) ~ ~ ( z T / N I ” ~  (46) 
square  error in the  output,  it  can  disrupt  the  pattern of 
roundoff  errors  causing  the  deadband  effect,  thereby  giving a sequence of N samples ( f ( o > ,  f(l) ,  . . . , 
permitting  the  output  to  return  to zero. f ( N -  1) 1 as the  inverse  discrete  Fourier  transform of 

number  that is too  large  to  be  represented  in  the  arith- inverse discrete ~~~~i~~ transformation or IDFT, and is 
metic  used in that  filter. If no  compensation is made  for remarkably similar in form to the  discrete ~~~~i~~ trans- 
the overflow  then  large  errors  in  the filter output  can formation. 
result  either in the form of transients or of overjiow oscil- 4) some authors  have  defined  the DFT in  related  but 
lations. A technique  used to  compensate  in  part for over- different ways, involving e i ( ~ T / ~ ) n k ,  or a multiplicative 
flow is saturation  arithmetic where  a  sum tha t  is too factor of 1 / ~  or 1/dr. B,, considering the expressions 

sentable  number  in  the  filter. 1/N or l /dx  and  the possible  use of ei(2T/N)nk in other 

and  smallest  signals  which  can  be  represented  in  the the  other  definitions of the  IDFT. 
filter with a given  fidelity  criterion. Unfortunately  the 5) suppose for an ~ - ~ ~ i ~ ~  sequence we are interested 
fidelity  criterion is often  vague  or unspecified. in computing  its  DFT,  and  suppose N is a  composite 

within a digital  filter  produces  a  resultant  noise a t   the  
output of the  digital filter. A signal-to-noise  ratio can be A 7  = T I  X r2 X . . . X r, (47) 
defined  in  this  context, for example, as the  ratio of the 
ideal mean-squared  output  signal (filter output  in  the 

where the r; are a set of factors of N ,  not  necessarily 

absence of any  rounding)  to  the  mean-squared  output 
prime  factors. Of the  various  algorithms for computing 

noise due  to  rounding or truncation.  Expressing  this 
such a DFT,  some  require a number of operations pro- 

ratio in bits,  as (1/2) log3 of the  ratio,  gives  an  approxi- 
portional to  NE‘, rl (since the  word  proportional  al- 

mate  indication of the  number of accurate  bits in the 
lows  considerable  latitude,  it is not  necessary  to  be  too 

filter output.  Different  definitions of signal-to-noise 
specific about  the  meaning of “operation”);  such algo- 

ratio  may be appropriate in different  contexts. 
rithms  are called fast  Fourier  transforms (FFT).g  An 

13) Another effect of finite  word  length is coeficient important special case is  when 

quantization  error (or parameter  quantization  error), y l = y z = . . .  

which  occurs  when  the coefficients of a digital  filter, 
= r , = 2  

initially specified with  unlimited  accuracy,  are  quantized SO that 
by  rounding or truncation. Coefficient quantization 
error  appears as error in the  digital  filter’s  response (e.g., 
impulse  response,  transfer  function,  frequency  response, 
etc.).  For  fast  Fourier  transforms  in  this  case,  the  propor- 

N- 1 

(45) 

remains  periodic  and  nonzero,  after  the  input  has  been 3,  I t  Possible  to  recover  the  original  sequence from 

N k=o 

10) Overjiow occurs  when a digital  filter  computes a { F ( O ) ,   F O ) ,  * . ‘ , F(N- 1) 1. The  operation is called 

large to  be  represented  is  set  equal  to  the  largest  repre-  for  the DFT  and   IDFT  i t  is  evident  that  the  constants 

11) Dynamic  range is  the  ratio  between  the  largest  definitions of the  DFT  can easily  be  compensated  for  in 

12) The roundoff  or  truncation noise introduced integer 

P 

rk 2 log2 N .  
k-1 

tionality  is  to N logz N. 

VI. Discrete  Fourier  Transforms and the FFT 

1) For a sequence of N numbers,  possibly  complex, 
the discrete  Fourier  transform ( D F T )  is another  sequence 
of exactly N numbers  which  are  the  values of the z trans- 
form of the  original  finite  sequence for N values of z ,  
specifically 

= , 9 ( 2 a / N ) k  ~ , K = 0,  1, . * . , N -  1. (44) 

Discrete  Fourier  transformation is  the  operation of com- 

6 )  A  subclass of FFT algorithms is known  which use 
high  speed  convolution  techniques  to  compute  the  DFT 
of a sequence  through a formula  in  which i t  is expressed 
as a convolution.  Examples of such  algorithms  are  the 
chirp z transform  and  the  prime  algorithm. 

7) In  order  to  classify  different FFT algorithms  and 

efficients rather  than F(ei@.’N)k). 

cably  in  the  literature. 

For convenience, the  notation of F(k)  is used to  denote DFT co- 

-a The word  transform  instead of algorithm is embedded  ineradi- 
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to  relate  them  to  one  another it is  useful to  consider  the 
following  procedure  applied to  a sequence f (n) of  length 
N where N has a factorization Px Qx R. The  reader 
should  generalize to  more  complicated  factorizations. 
Let  us  replace  the  index n by  the  triplet (no, nl, nz) where 

(no, nl, n,) = n = no + Rnl + QR 922 (48) 

and 
0 5 ?zO < R 

O I % l < Q  

0 5 n:! < P. 

Similarly, we replace  the  index k by  the  triplet ( k o ,  k l ,  
kz) where 

(KO, k l ,  k z )  = k = K O  + Pk1 + PQ kz (49) 

and 
O _ < k o < P  

O I k l < Q  

0 _< k2 < R. 

Then (4.5) can  be  manipulated  into  the  form 

Here (PA and (PB are of unit  magnitude  and  have  argu- 
ments  dependent on the indices. Equation (SO), if fol- 
lowed as  a  recipe,  suggests  a  way of computing  an N- 
point DFT  as  a  collection of smaller  DFT’s.  There  are: 
QR DFT’s of P-point  sequences; P R  DFT’s of Q-point 
sequences;  and PQ  DFT’s  of X-point  sequences. 

The  only  other  operations  called for in (SO) are  the 
multiplications  by (PA,  ( P l j .  These  have  been  called 
twiddle  factors,  phase  fuctors, and rotation  factors by 
various  authors. 

8) T o  save  multiplications (SO) is commonly modified 
in  one of two  ways. The first  \vay  is to  combine  the 
factors ( P d f  and e--i(2T’P)7b2k0 inside the  sum  over n2 and  the 
factors (PB and e+(zx/Q)nlkl inside the  sum  over nl. The 
algorithm so produced  has  been  called a decimation-in- 
frequency algorithm or a Sande-l‘ukey algorithm. 

9) A second  way to  save  multiplications is to  combine 
the  factors (PA and e--j(2a!Q)nlkl inside  the  sum  over  nl  and 
the  factors (PB and e--j(2x/R)f10k2 inside the  sum  over no. 
The resulting  form of the  algorithm  is  called a Cooley- 
T u k e y  or decimation-in-time algorithm. 

10) An algorithm  with  the  twiddle  factors  explicitly 
present,  as  separate  multiplications,  is  neither Cooley- 
Tukey  nor  Sande-Tukey. 

11) There  is  a  third  way  to  save  multiplications, 
which works  only  when  the  factors P ,  Q, R are  relatively 
prime.  By  permuting  the  data  sequencef(n)  and  accept- 
ing  a  permuted  transform  sequence,  a  formula like (SO) 

can  be  derived in which (PA =(PB = 1. This  algorithm  is 
called the prime  factor  algorithm. 

12)  Any of the basic  forms  can  be  programmed so 
that  each  summation is computed  and  the  result  stored 
in the  memory  formerly  occupied  by  its  input  data  as 
soon as  that   input  data is  no  longer  needed. In  the  case 
of (SO), the  amount of extra  storage  over  the N cells 
needed for the  sequence itself is onl~7 the  greater of P ,  
Q, or R cells. 

A programnled  version of an  algorithm which takes 
advantage of this possibility is called in pluce. Unfortu- 
nately, when  storage  use  is  minimized  in  this  way,  either 
the  input  sequence  or  the  output  sequence  must  be 
unusually  ordered.  An  example of this  unusual  order 
might be that 

F(ko  + P k l  + PQk2) (5 1) 

ends  up in  storage  location  kz+Rkl+QRko. The  unusual 
ordering  may  also  take  place in the use of weights  in  the 
algorithm. All such  effects  are  called  “digit  reversal.” If 
N is a power of two,  and P = Q =  R = 2,  the effect is 
called bit  reversal. 

13) If the  factors  of N are  equal,  say  to r ,  the algo- 
rithm is  called a base-r or radix-r algorithm  and, if the 
factors  are  different, it is  called  a mixed-radix algorithm. 

14) A common  notation is to  let W or WA?r represent 
the reciprocal of the  Nth  principle  root of unity, 

Some  authors  have used 

1.5) For  the base-2  Cooley-Tukey  form of the FFT 
algorithm,  the  most  fundamental  operation  is of the 
form x = A + W’”B 

Y = n - 14’”. (53) 

The  Sande-Tukey  form  can  be  obtained  by  solving for 
A and B in terms of X and Y, 

A = O S ( X  + Y) 
B = 0.5(X - Y)LVJC. (55) 

This  gives  an  elementary  operation of an  inverse  trans- 
form.  The  Sande-Tukey  form of the  forward  transform 
(DFT) is obtained  by  eliminating  the 1/2 and  replacing 
W-k by Wk. From  the  appearance of the  system flow 
graph  for  these  operations,  each  operation is called a 
butterJy. 

16) For  diagramming  the flow of processing data for 
the FFT, a flow graph  notation is used. The flow graph 
for a trivial  eight-point FFT appears as follows: 

7 

F ( k )  = x f ( n ) W n k ,  k = 0, 1, . . . , 7 (56) 
n=O 

where 
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1 \ L  1 2 3 
= exp (- j -:). 

The flow graph is shown  in  Fig.  15. 
17)  Each  node  represents  a  variable  and  the  arrows 

terminating at that  node  originate  at  the  nodes whose 
variables  contribute  to  the  value of the  variable  at  that 
node. The  contributions  are  additive,  and  the  weight of 
each  contribution, if other  than  unity, is indicated  by 
the  constant  written close to  the  arrowhead of the  con- 
tribution.  Each  node  is  assigned a pair of indices n, L. 
Variables at nodes  in  row n replace  each other  as  they 
are  computed  and  are  stored in the cell with  index n. All 
nodes  in a column L are  computed  on  iteration L. In 
this  form of the  algorithm,  the  exponent of W on the 
line  entering  node (n;  L) is n.23-L (mod 8). I t  can  also 
be  seen that for  each  pair of operands,  the  second W is 
W4 = - 1 times  the  first  and  that  the  "butterfly"  opera- 
tion is indeed  given  by (54). 

VII. Discrete Convolution and Spectrum Analysis 

1) The  Fourier  transform (i.e., the z transform  eval- 
uated  for z = ej2TfT) of a sampled  waveform is periodic  in 
frequency, i.e., X(eizrZ"f+fa)) = X(ei2T-Tf )  where f a  = 1 / T  
=sampling  frequency.  For  this  reason i t  is convenient 
to  represent a negative  fyeguency as the  equivalent @ m i -  
tive  frequency below the  sampling  frequency,  i.e., f 
= -fs/20  is  equivalent to  f =  -f,/20+fs=19/20fs.  In 
this  manner  one  need  only  describe the spectrum  in  the 
positive  frequency  range of 0 5 f < fs. For  the DFT this 
convention  also holds. Thus a typical  spectrum of a 
16-point D F T  is shown in  Fig. 16. For  the  above  exam- 
ple the  number of D F T  points was even  (16). The first 
DFT  point,  X ( 0 ) ,  corresponds  to  the  Fourier  transform 
evaluated a t  0 frequency. The (N/2+l)st D F T  point, 
X ( N / 2 ) ,  corresponds  to  the  Fourier  transfordevaluated 
a t  half the  sampling  frequency.  The  index k corresponds 
to  a frequency f = k / T N  in X ( e i Y r T f ) .  

2) If the  number of points  in  the D F T  were odd,  say 
N =  15, a typical  spectrum would  be as  shown  in  Fig. 17: 
In this  case  there is no D F T  point  which  corresponds to 
evaluating  the  Fourier  transform  at half the  sampling 
frequency. 

3 )  The discrete  convolution of two  sequences  can  be 
computed  from  the  inverse  discrete  Fourier  transform 
of the  product of the  discrete  Fourier  transforms of the 
two  sequences.  Thus, if X ( k )  and Y ( k )  are  the  discrete 
Fourier  transforms of x ( n )  and y ( n ) ,  the  inverse  discrete 
Fourier  transform of the  product of these  discrete 
Fourier  transforms  produces a periodic  discrete  convolu- 
t ion,  also  called a cyclic or circular  discrete  convolution or 
simply a cyclic  convolution. 

4) The  cyclic convolution  can be written  algebraically 
as 

N- 1 c X((. - 4 ) y ( ( m ) >  (58) 
Wl=O 

Fig. 15. The flow graph  for an eight-point  FFT. 

x ( k )  

I, 
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I 
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I 

Fig. 16. The locations (in frequency) of the  DFT 
points for a 16-point transform. 

I X ( k )  

0 I 
FREQUENCIES 

POSITIVE +I--+ NEGATIVE 
FREQUENCIES  N=15 

Fig. 17. The locations (in frequency) of the  DFT 
points for a 15-point  transform. 

where ( ( m ) )  means  the  index is taken  modulo N .  Equa- 
tion (58) can be  written as 

n c X((% - m))y( (m))  + c X((% - m))y((m)>,  (59) 
N- 1 

m=O m=n+ 1 

or,  alternately, 

m=O 
N- 1 + x((m))r((% - m + N ) ) .  (60) 

WZ=n+l 

The  simultaneous  presence of both  summations  is  gen- 
erally  undesirable  for  computing  ordinary  convolutions. 
For  example, if the  first  summation  in (60) is chosen  to 
represent  the  desired  convolution,  then  the  second  sum- 
mation  represents  an  error  term.  By  augmenting  both 
sequences  with  zeros so that  they  have  the  same  length 
N ,  which is at least  as  great as one less than  the sum of 
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the  lengths of the  two  sequences, cyclic convolution  can 
be  made  to yield the  same  result  as  ordinary convolu- 
tion. 

5) This use of the  fast  Fourier  transform  to  compute 
discrete  convolutions  is  sometimes  calledfast convolution 
or FFT convolution. This  technique  can be  easily 
adapted for  computing  acyclic  (i.e.,  nonperiodic)  corre- 
lation  functions.  In  this  form,  it  is  called fast  correlation 
or FFT correlation. 

6) If one of the  two  sequences  is  much  shorter  than 
the  other,  the longer  sequence can  be sectioned into 
pieces  whose discrete  convolutions  can  be  computed 
separately.  These  discrete  convolutions  can  be  com- 
bined to  produce  the  discrete  convolution of the whole 
sequence. (Sectioning is used  because i t  reduces  the  re- 
quired  amounts of computation  and  memory.)  One of 
these  sectioning  techniques (overlap-save or select-save) 
involves  computing  the  inverse DFT of the  product of 
the  DFT’s of a) N samples of the  input  sequence,  and 
b)  the  shorter sequence  augmented  with a sufficient 
number of zeros so that  its  sequence  contains N samples. 
(Usually N is at least  twice as  large  as  the  length of the 
shorter sequence.) Some of the  members of the  sequence 
resulting  from  the  inverse DFT  are  members of the 
sequence  formed  by  the  desired  acyclic (i.e., nonperi- 
odic)  convolution.  (This  number of members  equals  one 
more  than  the  number of zeros  originally  augmenting 
the  shorter sequence.) The longer  original  sequence is 
advanced  by  this  number of members.  Iterating  this 
process  gives the whole convolution.  The overlap-add 
technique  for  sectioning uses a  similar  technique  but 
additionally  requires  adding  shifted  sequences of partial 
convolutions. 

7)  A window is a  finite  sequence,  each  element of 
which  multiplies  a  corresponding  element of the  main 
sequence. (This is called windowing.) The  sequence of 
products  formed  by  this  element-by-element  multiplica- 
tion is often  more useful than  the  main sequence. The 
Fourier  transform of a typical  window  (sometimes 
called the spectral  window) consists of a mainlobe, which 
usually  contains  a  large  percentage of the  energy  in  the 
window, and sidelobes which contain  the  remaining 
energy  in  the  window. 

8) Windows  can be used in estimating power spectra. 
In  the direct  method, the power spectrum  is  estimated  by 
computing  the  square of the absolute  value of the DFT 
of the windowed  sequence. The   DFT of the windowed 
sequence is the  convolution of the  DFT’s of the window 
and  the original  sequence. This  convolution  smoothes 
the  input power spectrum,  consequently  values of the 
power spectrum at frequencies  separated  by less than 
the  width of the rnainlobe of the  spectral  window  can- 
not be resolved. In addition to this  limit  on resolution, the 
estimate of the power spectrum  may  contain  significant 
leakage, Le., erroneous  contributions  from  components 
of the power spectrum  at frequencies  possibly distant 
from the  frequency of interest  because of the  nonzero 
energy  in  the  spectral xy-indow sidelohes, 

9) Windows  are useful in determining  the coefficients 
of a finite  impulse  response  digital filter. In  this case, the 
original  sequence  consists of samples of the impulse 
response  corresponding to  a transfer  function which is 
approximated  by  the  Fourier  transform of the sequence 
of pairwise  products;  the  product  sequence  is used as  the 
coefficients of the finite  impulse  response  digital  filter. 

10) Windows  are  used  also in the indirect  method of 
computing a power spectrum.  In  this  method,  the se- 
quence  consisting of samples of the  autocorrelation  func- 
tion is multiplied  by  the window. The   DFT of the 
resulting  sequence is an  estimate of the power  spectrum. 

11) Windows  can  be used  also in estimating  cross 
spectra  where  the  estimates  are  obtained  by  multiplying 
the  products of the  DFT’s of two  or  more  distinct 
sequences. 

12) The  determination of a  finite  impulse  response 
described by  an  ordinary  convolution is called decon- 
volution or FIR identification. 
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D 
DC  Point: 111-2 
Deadband  Effect: V-9 
Dgrimationvin-Frequency: VI-8 
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Decimation-in-Time:  VI-9 
Deconvolution:  VII-12 
Digital: 1-5 
Digital  Aliasing: 111-5 
Digital  Filter:  IV-1 
Digital  Filter  Realizations: IV-17 
Digital  ImDulse: 11-5 

o------ - - 

Digital  Siinal: 1-5 
Digital  Simulation: 1-6 
Digital  System: 1-5 
Digital-to-Analog (D/A)  Converter: V-1 
Digital  Waveform: 1-5 
Direct  Form 1: 1V-17 
Direct  Form 2: 1V-17 
Direct  Method:  VII-8 
Discrete  Convolution:  VII-3 
Discrete  Filters:  IV-1 
Iliscrete  Fourier  Transform (DFT): V I - 1  

Discrete  Time: 1-4, 1-5 
Iliscrete  Fourier  Transformation:  Vi-1 

Discrete-Time  Convolution: 11-8 
Discrete-Time  Impulse: 11-5 
Discrete-Time  Impulse a t  k = k o :  11-5 
Discrete-Time  Linear  Filter: 11-7 
Tliscrete-Time  Linear System: 11-7 
Dither: V-9 
Dynamic  Range: V-1 1 

E 
Elliptic  (Cauer)  Filter: IV-27 
Equiripple  (Optimal)  Filter: IV-14 
Exponent: V-4 
Extraripple  Filter: IV-13 

F 
Fast Convolution:  VII-5 
Fast Correlation: V I I J  
Fast  Fourier  Transform  (FFT) : V I 4  

FFT Correlation:  VII-5 
FFT Convolution: VI14 

Filter  Bandwidth: IV-25 
Finite  Impulse Response (FIR): IV-6 
F I R  Identification:  VII-12 
First-Order  Section: IV-17 
Fixed-point  Number: V-3 
Floating-point &'umber:  V-4 
Flow  Graph:  VI-16 
Folding  Frequency: 111-3 
Fourier  Transform: 111-2 

Frequency Samples: IV-12 
Frequency Response: 11-9 

Frequency-Sampling  Filter: IV-12 
Frequency-Sampling  Realization: IV-15 
Frequency-Scale  Factor: IV-24 

G 
Gain of a Discrete  Filter:  IV-23 
Guard  Filter: IV-31 

H 
Hexadecimal Representation: V-4 

1 
Impulse: 11-5 
Impulse  Invariance: IV-31 

In-Band  Ripple: IV-30 
Impulse  Response: 11-5 

Indirect  Method:  VII-10 
Infinite  Impulse  Response (IIR): IV-7 
In-Place:  VI-12 

Inverse  Discrete  Fourier 
'Transformation (IDFT): VI-3 

Inverse z Transform: 11-3 
Iterative  Optimization  Technique: IV-32 

K 
Kalman  Filter  (Discrete  Time): IV-16 

L 
Leakage:  VII-8 
Limit  Cycle: V-9 

M 
Mainlobe:  VII-7 
Mantissa: V-4 
Matched z Transform: IV-31 
Minimum  Stopband  Attenuation: IV-30 
Mixed  Radix:  VI-13 
Multiplexed Filter: IV-3 
Multirate  System: 1-10 

N 
Negative  Frequency:  VII-1 
Next-State  Simulation: 1-7 
Noise: 1-5 
Nonrecursive Filter: IV-5 
Nth-Order  Systems: 11-10 
Nyquist  Frequency: 111-3 
Nyquist  Interval: 111-3 
Nyquist  Rate: 111-3 

0 
Object  System: 1-6 
Octal  Representation: V-4 
Ones  Complement: V-6 
One-sided z Transform: 11-1,  11-2 
Optimization  Technique: IV-32 
Ordering:  IV-20 

Overflow: V-10 
Out-of-Band  Ripple:  IV-30 

Overflow  Oscillations: V-10 
Overlap-Add:  VII-6 
Overlap-Save:  VI 1-6 

P 

Parallel  Canonic  Form: IV-17 
Pairing:  IV-20 

Parameter  Quantization  Error: V-13 
Passband  Ripple: IV-29 
Periodic  Discrete  Convolution: VII-3 
Phase  Factors: VI-7 

Positive  Frequency:  VII-1 
Phase  Response: 11-9 

Postfilter: V-1 
Prime  Factor  Algorithm: VI-11 
Principle  Root of Unity: VI-14 

Q 
Quantizing: V-2 
Quantizing  Noise: V-2 

R 
Radix R: VI-13 
Real-Time  Process: 1-8 
Reconstruction  Device: V-1 
Reconstruction  Filter: V-1 
Recursive  Filter:  IV-4 
Recursive  Realization: 11-10 

Resolution:  VII-8 
Resolved : VI 1-8 
Ripple:  IV-29 
Rotation  Factors:  VI-7 
Rounding: V-8 
Roundoff Error: V-9 
Roundoff  Noise: V-9 

5 
Sample  Value: 11-6 
Sampled Data: 1-4 
Sampled-Data  Filter: IV-1 
Sampling  Frequency: 111-3 
Sampling  Interval : 1 11-3 
Sampling  Rate: 1 11-3 
Sande-Tukey:  VI-8 
Saturation  Arithmetic: V-10 
Second-Order  Section:  IV-17 
Sectioned:  VII-6 
Sectioning:  VII-6 
Select-Save: VII-6 
Sequences: 1-4 

Sidelobes:  VII-7 
Series Form: IV-17 

Sign  and  Magnitude: V-6 
Signal:  1-5 
Signal-to-Noise Ratio: V- 

Spectral  Window:  VII-7 
Source System: 1-6 

Stability: IV-21 
Stopband  Ripple: IV-30 
Switched  Filter: IV-2 
System  Function: 11-9 

12 

T 

Throughput  Rate: 1-9 
Tapped  Delay Line:  IV-10 

Transition  Band: IV-28 
Throughput  Rate per  Signal: 1-9 

Transpose  Configurations:  IV-19 
Transition  Ratio: IV-28 

Transversal  Filter: IV-10 
Truncation: V-8 
Truncation  Error: V-9 
Truncation Noise: V-9 
Twiddle  Factors: VI-7 
Twos  Complement: V-6 
Two-sided  z  Transform: 11-2 

U 
IJndersamnled : 1 11-4 
Unit  Advcnce: 11-1 
Unit Circle: 111-2 
Unit  Delay  Operator: 11-1 
Unit  Pulse: 11-5 

. 

Unit  Sample: 11-5 
Unit  Sample  Response: 11-5 

W 
Waveform: 1-5 
Wiener Filter: IV-16 
Window:  VII-7 
Windowing:  VII-7 

1 

2; Plane: 11-4 
z-1 Plane: 11-4 
z Transform: 11-1 
Zero-Input  Limit  Cycle: V-9 


