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Approximate  Design 
Relationships for Lsw- 
Pass FIR Digital  Filters 
LAWRENCE R. RABINER 

Abstract-In this paper, a  set of simple, approximate rela- 
tionships between FIR, linear phase, low-pass filter parameters 
is presented. Based on these relationships, it is shown how an 
existing, readily available, filter design progr2.m car? 5e =sed to 
efficiently design low-pass filters that meet or exceed arbitrary 
input specifications. 

introduction 

Although  a  great deal has been learned about  how 
to design linear phase FIR low-pass digital filters [l] - 
[5] the relationships  between  filter  parameters is not 
yet fully  understood  quantitatively. Fig. 1 shows the 
frequency  response of a low-pass filter  with passband 
cutoff  frequency F p  ; stopband  cutoff  frequency F,  ; 
passband deviation 6 ; and  stopband deviation 6 2 .  

Along with the preceding four parameters,  an  FIR 
low-pass filter is specified by N ,  the  filter impulse re- 
sponse duration in samples. Additional useful low- 
pass filter  parameters  are  transition  width AF and 
deviation  ratio K ,  defined as 

An optimal low-pass filter (in the Chebyshev sense) 
is one  for which N ,  Fp  , F,, and K are specified,  and 6 
and 62 are minimized. Parks and McClellan [4] have 
given the necessary and  sufficient  conditions for such 
an optimal  filter to exist and be unique.  Furthermore, 
they have presented in great detail  a design program 
[6] which on  input accepts values of N ,  Fp , F,, and 
K ,  and  then designs an optimum  filter with the mini- 
mum values  of 6 and 6 . There is little  flexibility in 
the algorithm in that  the user cannot  arbitrarily choose 
any four of the five filter  parameters, but must  instead 
choose the ones listed previously. This constraint  on 
the design program led Herrmann et aE. [7] to investi- 
gate the relationships  between  filter  parameters so as 
to  be able to predict the required value  of N to meet 
given  values of Fp , F, , 6  , and 6z . In this  paper the  de- 
sign relationships  are  extended so as to interface  with 
the Parks-McClellan algorithm in an iterative, but 
straight  forward  manner so as to allow the  filter  de- 
signer the  option of choosing any  four of the five low- 
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Fig. 1. The frequency response and  error curve of an  FIR low- 
pass filter defining, filter parameters Fp , F,, A F ,  6 1 , and 6 2 .  

pass parameters  and having the resulting  filter  meet  or 
exceed the given specifications. 

FIR Design Relationships 

Based on measurements on an extensive set of op- 
timal, linear phase, low-pass filters,  Herrmann et al. 
empirically determined  the relationship 

D = D w ( 6 1 7 6 2 ) -  f ( 6 1 , 6 2 ) ( A F ) 2  (3) 

where 

D = ( N -  1 ) A F  (4) 

and 
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with 

b ,  = 11.01217 

b2 = 0.51244. 

The  coefficients in (5) and (6) were determined by a 
minimum mean-square error  fitting  procedure to  the 
data, whereas the  forms  for (5) and (6) were suggested 
by some simple data  fitting procedures. 

We now consider the original problem-that is, given 
any four of the five parameters N, Fp , F, , 6   , 6  2 ,  how 
can the unspecified parameter  be  estimated:  and  then 
adjusted using feedback  from the Parks-McClellan al- 
gorithm,  until  specifications  on all parameters  are  met 
or  exceeded. We now consider the five possibilities 
for  the unspecified parameter. 

Case 1 : Fp , F, , 6 , 6 2  specified-N unspyified.  In 
this case (3) and (4) may be used to give N,  the esti- 
mate of N, as 

C A S E  1 

w C A L C U L A T E  0 

a = - f ( 6 , ,  6,) ( A F ) 2  + 1. (7)  
A F  

Fig. 2  shows the logic required to obtain  theAactual 
value of N that is required.  After  estimating  N  from 
(7),  the directio?  parameter JD is initialized to 0. 
The  parameters N, Fp , F, , and K = 6 /6 are used as 
input  to  the  optimal design algorithm that  returns  the 
value ŝ, as the  actual deviation in the  stopband. This 
value is compared  with S 2  and if they are equal  (to 
within soAme tolerance)  the algorithm is done. If 6 > 
62 then  N is incremented by 2  (i.e., one filter order) 
and a check is made to see $ the  direction parameter 
JD was - 1, indicating that N  had Rreviously been de- 
creasing. If so, the new value of N is the smallest N 
that meets  or  exceeds  specifications  and the algorithm 
is done. If not,  ihe value of JD is set to 1 and  the  up- 
dated value of N is used as input  to  the  optipal  de- 
sign algorithm.  A similar path is taken if t2 < 6 2  
whereby if JD was 1, the  current value of N is the 
minimum value  of N. Otherwise N is decreased by 2 
and JD set to  - 1 and  the algorithm  repeats. 

I t  has been found  that  two  to  three  iterations  suf- 
fice for  a large range of filter  parameters. 

Case 2: N,  F,, and 6 2  specified-Fp pspecified. 
In this case ( 3 )  and (4) are used to give F, , the esti- 
mate of Fp , as 

or 
A gP = F ,  - A F .  (9 1 

Fig. 3 shows a flow chart of the logicArequired to ob- 
tain  the  correct value of Fp . First F, is calculated 
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Fig. 2. Algorithm for choosing smallest N for FIR low-pass 
filter to meet  specifications on F,, F,, 6 and 6 2 .  

C A S E  2 

USING EONS e a 9  
F S T  = S F / I O  

JD: 0 

r\ 

Fp K Fs N 

r I 

I DESIGN ALGORITHM I INVOKE OPTIMAL 

Fig. 3. Algorithm for choosing value of Fp for FIR low-pass 
filter to  meet specifications on N ,  F,, 6 , and 6 2 .  

and the  frequency  step size (FST) is set to AF^/10, 
and  the  direction  parameter JD is set to 0. The  initial 
value fip along  with N, F,, and K are  the  inputs to  the 
design algorithm that returnshthe value 62 as the ac- 
tual  stopband deviation. If a 2  = S2 to within  some 
specified tolerance  (typically 1 percent  or 0.1 percent), 
the algorithm is done. If 82 > ?i2 , and  the  direction 
parameter JD is - 1, the  step size is divided by 3 to 
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take  into  account  the  fact  that  the search has changed 
direction,  and  hence significantly narroweg  down the 
interval  under investigation. The value of F p  is decre- 
mented by the  step size FST (giving aJarger  transi- 
tion  width, hence a smaller value ,of a 2  ), and  the 
direction  parameter is set tg 1. If 6, < t i 2 ,  a similar 
path is executed  whereby F p  is incremented by the 
current  step size. 

Case 3: N ,  F p  , 6  , , and t i 2  specified-F, unspecified. 
This case  is almost identica! to Case 2. Equation (!) 
is  used to estimate A F ,  and F,  is obtained  as Fp + A F .  
The  flow  chart of Fig. 3 can be uszd for  this case with 
two simple modifications.  First F p  andAP, are  inter- 
changed,Aand second,  for  the  box  where Fp was decre- 
Fented, F, is  incremer$ed, whereas for  the  box where 
F p  was incremented, F, is decremented.  The similar- 
ity between Cases 2 and 3 should  be clear. 

Case 4: N ,  F p  , F, , 6 , specified-6, unspecified. A 
formula  for  estimating t i 2  may be  obtained by rewrit- 
ing (5) and (6) in the  form 

(61 , 6 2 )  = c1 log10 6 2  + cz (10) 

f ( 6 ,  , 6 2 1  = dl - bz log10 6 2 (11 1 
where 

and  then solving for log,, l i 2 ,  the  estimate of log,, 6 2  
from (3) as 

A 

A (N - 1) AF + d l  ( A F  )' - ~2 - 
log,, 6 2  = c1 + b2 ( A F  )2 

- -CY (15) 

or 

s ,̂ = 10". (16) 

The i%itial estimate 6 2  serves to give an  initial es- 
timate K since a 2  is not  explgitly used as an in- 
put parameier.  The  parameter K is then varied until 
the value 6, returned  by  the design algorithm is 
within a specified tolerance of 6 , , the inEut  specifica- 
tion. Fig. 4 shows  a  flow  chart of how K is  varied to  
achieve the desire: specgications  on 6 . 

First 6, and K = 6 /a2 are  computed using (15) 
and (16); the  step size multiplier on K ( K M )  is set to 
2.0; and the  direction indicator is initialized to 0. 
The  initial parametersAare u%eg in the design algorithm 
that  returns th%value 6 ,  = K 6 2  as the  actual passband 
deviation. If 6 ,  = S 1  to within theprescribed  toler- 
ance,  the algorithm  terminates. If F 1  > F 1  , the esti- 
mate K is decressed  by the  factor (1 + KIM) where KM 
is the  current  step size multiplier. If a change in di- 
rection was detected,  the  step size multiplier is halved. 

A 

C A S E  4 

CALCULATE $2 AND 
K=S, /8 ,   FROM 

EQUATIONS 15 8 16 
K M  = 2.0 
JD = 0 

Fig, 4. Algorithm for  choosing value of K for FIR low-pass 
filter to meet  specifications  on N ,  F p ,  F,, and 6 , . 

The  direction  indicator is the2 set to 1. If $1 < 6 , , a 
similar path is executed  with K being iEcreased  by the 
factor (1 + KM). The new estimate K is used as up- 
dated  information  for the design algorithm. 

Case 5: N ,  Fp , F,, 6 2  specified-6, unspecified. A 
formula  for  estimating 6 , may be obtained by rewrit- 
ing (5) and (6) as 

Dm ( 6 1 , 6 2 )  = e1  (log10 6 1  ) 2  + e2 (log,, 6 1 ) + e3 (17)  

f(61,62) =g1 + b2 log1061 (18) 

where 

e, = a l  log,, 6 2  + a4 (19) 

e2 = a2 log,, 62 + a ,  (20) 

e3 = a3  log,, h 2  + a6 (21) 

g1 = bl  - b2 log10 6 2  * (22) 
Equations (3) and (4) can be used to give a  quadratic 
equation  in log,, F 1 ,  i.e., 

(log10 6112 +gz log,, 61 +g3 = 0 (23) 

where g2 and g3 are  defined as 

g2 = - b: (AF)2)  1 (24) 

e3 - g, ( A F ) 2  - ( N -  1 ) A F  
e1 g3 = -  (25) 

A 

Solving for log,, ti1, the estimate of log,, 61, we get 
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Fig. 5. Algorithm for  choosing value of K for FIR low-pass 
filter to meet  specifications on N ,  F p ,  F,, and 62.  

or 

g1 = l o @ .  (27) 

(We have  used the positive sign for  the square root be- 
cause  the*negative  value leads to unrealistically small 
values of 6 .) 

From  the estimate gl, an estimate K = 6 IS2 is  ,Ob- 
tained.  The  flow diagram of Fig. 5 shows how K is 
adjusted  until the filter  specifications  are  achieved. 
Since this  flow  chart is so similar to  the  one of Fig. 4, 
we will not discuss the details. 

A h  

Example of Use of Design Formulas 

To  illustrate  how the above  formulas  are  used, the 
parameters N = 19, Fp = 0.14, F, = 0.3182422, ti1 = 
0.01, and = 0 . O O O i  were  used  as input  to  the pre- 
ceding design rules  with one of the parameters  left 
unspecified.  (These  parameters  are  those  for an opti- 
mal filter which had previously been designed.) 

For Case 1, N was unspecified.  The  initial  estimate 
& was 17. Table I  shows values for 8, fi2, and JD for 
the  two  iterations  that were required.  In  this  case, for 
a 1 .O percent  accuracy  criterion. the value N = 1 9  was 
selected.  The total rtm time on  a Honeywell 6000 
computer was 0.20 s. 

For Case 2, Fp was unspecified.  The  initial es;ima,te 
FP was 0.1605246. Table I1 shows values for F p ,  a 2 ,  

TABLE I 
~~ 

A 

Iteration N $7 JD 

1 
2 

17  0.0001931 0 
19  0.0001001 1 

TABLE I1 

Iteration F D  62 FST JD 
A 

1 0.1605246  0.000151  0.0157718 0 
2 0.1447529  0.000110  0.0157718 1 
3 0.1289811 0.000078 0.0157’718 1 
4 0.1342384 OI000088 010052573 -1 
5 0.1394956  0.000099  0.0052573 -1 

. . ~~ 

~~~~~~~~~ 

FST,  a2d JD for the five iterations  that were required 
to get 6 2  to within 1.0 percent  tolerance.  The total 
run  time was 0.47 s. The  final value of F p  was 
0.1394956 as opposed to  the exact value of 0.140 for 
which 6 2  = 0.0001. 

For Case 3, F, was unspecified.  The  initial  estimate 
3, was 0.2977276. In  this case ten  iterations were re- 
quired to get t j 2  to within 1.0 percent  tolerance.  The 
run  time  here was 0.95 s. The final value  of F, was 
0.3181625  for  which a 2  was 0.000099. 

For Case 4, 6 2  was umpecified.  The  initial  estimate 
g2 was 0.0000166  or K was 601. Seven iterations 
were required to get a 1  to, wikhin 1.0 percent of tjl. 
Table I11 shows values of ti1, K ,  KM,  and JD for  the 
seven iterations.  The  run  time was approximately 
0.63 s. 
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TABLE I11 

Iteration K $1 KM JD 
A 

1 
2 

601.0  0.025003 2.0 0 

3 
200.4  0.015567 2.0 

66.8  0.007426 2.0 
1 
1 

4 
5 

133.6  0.012181  1.0 
89.0  0.009207  0.5 

-1 
1 

6  111.3  0.010786 0.25 -1 
7 98.9  0.009933 0.125 1 

Finally,*for Case 5, 6 was u>specified. The  initial 
estimate 6 1  was 0,002655  or K = 26.55. I t  required 
ten  iterations  for 6 2  to  be within 1 percent of h 2 .  The 
run  time  for  this case  was about 1.0 s. 

Summary 

An optimal  FIR low-pass filter can now be designed 
where any  four of the five parameters N ,  Fp  , F,, t i1,  

and t i 2  are  specified, and  the remaining  parameter is 
chosen so as to  meet or exceed  specifications on all 
gven parameters. A set of simple,  approximate  for- 
mulas  was  given for  obtaining initial  estimates of the 
unspecified parameter.  Finally, simple iterative rules 

Least pth Optimization 
of Recursive  Digital 
Filters 
JOHN W. BANDLER and BERJ L. BARDAKJIAN 

Abstract-The application of the Bandler-Charalambous 
method using extremely large values of p ,  typically 10 000 to 
the  problem of choosing the  coefficients,of a recursive digital 
filter to  meet  arbitrary  specifications  on  the  magnitude  charac- 
teristics, is described. The  Fletcher (1970) method is used  in 
conjunction with least pth  optimization  and is compared with 
the well-known  Fletcher-Powell method. Some  relevant  de- 
sign ideas, such as local optimality  checking  by  perturbation, 
increasing the  order  complexity of the  filter  through growing 
filter  sections,  and  meeting  the  stability  requirements  by using 
a pole inversion technique, have been  implemented. A  general 
description of a computer program  package that uses these 
ideas, along  with some illustrative examples  are given. 

were  given for varying the unspecified parameter  from 
its  initial  estimate so as to meet input specifications 
to  within  a given tolerance. 
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I. Introduction 

Two main approaches have  been taken to approxi- 
mation  problems in digital filter design. The  first of 
these is an analytical  approach  through classical ap- 
proximation  theories [ 11 -[3]. The second is an 
iterative  approach that is particularly  appropriate for 
use on a digital computer [4] -[6] . Sablatash [ 71 dis- 
cussed many contributions  to  both approaches. 

Haykin [3] presented  a  unified treatment of re- 
cursive digital filtering  by using the  convolution 
integral to derive an  integro-difference  equation for 
defining the  input-output relation of a  linear  time 
invariant  filter.  Then he used that  equation  to  obtain 
various analog-to-digital  filter  transformations for  the 
digitization of a continuous transfer function, with 
each transformation  corresponding  to  a specific way 
of approximating  the  continuous  time  excitation. 

An iterative method  for designing recursive digital 
filters  with  arbitrary prescribed magnitude  character- 
istics .was described  by Steiglitz [4]. The  method 
uses the Fletcher-Powell algorithm [ 81 to minimize a 

Manuscript received November 10, 1972; revised May 7, square-error  criterion in the frequency  domain. A 
1973  This  work was supported  by  the National  Research 

was presented  at  the  1973  International  Symposium  on Circuit mum phase  constraints were observed, while still using 
Theory,  Toronto, Canada, April 9-11,  1973. 

ing, McMaster University, Hamilton,  Ont., Canada. Helms [ 51 reviewed and occasionally extended  tech- 

Council of Canada under  Grants  A7239  and C154.  This paper was described whereby and mini- 

The  authors  are with the  Department of Electrical  Engineer- the unconstrained Optimization 


