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Linear Programming Design of hR Digital Filters with Arbitrary

Magnitude Fnt0
LAWRENCE R. RABINER, MEMBER, m, NANCY Y. GRAHAM, AND

HOWARD D. HELMS, SENIOR MEMBER, IEEE

Abstract—This paper discusses the use of linear programming
techniques for the design of infinite impulse response (IIR) digital
filters. In particular, it is shown that, in theory, a weighted equiripple
approximation to an arbitrary magnitude function can be obtained
in a predictable number of applications of the simplex algorithm of
linear programming. When one implements the design algorithm,
certain practical difficulties (e.g., coefficient sensitivity) limit the
range of filters which can be designed using this technique. How-
ever, a fairly large number of hR filters have been successfully
designed and several examples will be presented to illustrate the
range of problems for which we found this technique to be useful.

INTRODUCTION

ALARGE NUMBER of techniques are available for
designing infinite impulse response (IIR) digital

filters [1], [2]. The techniques of impulse invariant de-
sign, bilinear transformation, and matching poles and
zeros [3], for transforming a given analog filter to an
"equivalent" digital filter are well known and widely
used. These techniques, however, are limited in that they
are generally applied only to the case of transforming
standard analog filters—e.g., low-pass, bandpass, band-
stop, or high-pass filters. When one is interested in design-
ing a digital filter with a nonstandard frequency response,
i.e., one which has not been exhaustively studied, then
some algorithmic (as opposed to closed form) design pro-
cedure is generally used. Several frequency domain (e.g.,
[4]—[7]) and one time domain algorithmic design proce-
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dure [8] have been recently proposed for designing hR
filters. One difficulty with almost all of these procedures
is that convergence of the optimization procedure that
is used to design the filter is not guaranteed, and even
when the procedure converges, the optimality of the re-
sulting filter is also not guaranteed. In this paper a fre-
quency domain hR filter design procedure is discussed
which uses linear programming techniques (the simplex
algorithm) to choose filter coefficients to approximate an
arbitrary magnitude characteristic. Theoretical conver-
gence of the optimization algorithm is guaranteed, and
the resulting filter can be shown to be optimal in the given
design sense (e.g., minimum absolute weighted error). The
optimization algorithm itself has been designed to mini-
mize the number of applications of the simplex algorithm.

The next section presents the design procedure with a
discussion of the practical aspects of implementing the
method. Following this, several representative filter de-
signs are given. Finally, some discussion is given as to
practical limitations in using the method.

THEORY

Let H(z) be the transfer function of an hR digital
filter. Assume H (z) has the form

Nz m /
H(z) = —--- = az (1)

D(z)

where the numerator polynomial N (z) is of rnth degree,
and the denominator polynomial D (z) is of nth degree.
The a0 term in (1) can be set to 1.0 without any loss in
generality. The magnitude response of the filter is ob-
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In many frequency domain filter design problems it is de-
sired that the magnitude of the resulting filter approxi-
mate a given magnitude function, ill (exp [1w II), to within
a tolerance G(w,), where G(w,) is a monotically increas-
ing function of for fixed w.2 Thus, the resultant approxi-
mation problem is to choose the filter coefficients (the
a's and b1's) to minimize the quantity consistent with
that constraint inequality

N(exp [1w])__________ — M(exp [3w]) G(w,ô). (3)
D(exp [jw])

Inequality (3) is generally evaluated over a union of dis-
joint subintervals of the band 0 w

The above approximation problem is a nonlinear one
in that the filter coefficients enter into the constraint
equation nonlinearity. Although various techniques have
been proposed for solving this nonlinear problem (e.g.,
[4] and [5]), a linear approximation problem can be
defined by considering the magnitude squared function of
the filter. From (1) we get the relation

N(z) ZT(z1)H(z)H(z') D(z)D(z)
,fl fl fl

= ( bz)( b5z+2)/( az1) ( ar+)
1=0 j=0 1=0 j=O

= d_1 i = 1,2,. .,n.

The magnitude squared function of the ifiter is obtained
by evaluating (6) on the unit circle giving

m n

[co + 2c, cos (wi) ]/[d0 + 2d cos (wi)]. (10)
i1

(Again the d0 term in (10) can be set to 1.0 without loss
of generality.) Equation (10) shows that the magnitude
squared function of the filter is a ratio of trigonometric
polynomials. It is also seen that both N (w), the numerator
polynomial, and D(w), the denominator polynomial, are
linear in the unknown filter coefficients (cd and {d1}. It is

(2) now shown how linear programming techniques can be used
to determine the c1's and d1's such that H(exp [1w]) 2
approximates a given magnitude squared characteristic
F (w) where the peak weighted error of approximation is
minimized—i.e., the weighted error is an equiripple func-
tion.

If we let F(w) be the desired magnitude squared char-
acteristic, then the approximation problem consists of
finding the filter coefficients such that

—€(w)< — F(w) <€(w) (11)1 (w)

where €(w) is a tolerance function on the error which
allows for unequal weighting of errors as a function of
frequency. Since F(w) and (w) are generally specified
functions of frequency, (or depend on some parameter in
a manner explained below), (11) can be expressed as a
set of linear inequalities in the ci's and d1's by writing it
in the form

I(w) — b(w)F(w) <s(w)(w)

—(w) + (w)F(w) <e(w)(w) (12)

N(w) — D(w)[F(w) + (w)] <0 (13)

—N(w) + D(w)[F(w) — s(w)] <0. (14)

The additional linear inequalities

—I(w) <0 (15)

(6) —(w) <0

completely define the approximation problem.
Thus, the question of whether or not there exists a digi-

(7) tal filter with magnitude squared characteristic F (w) and
tolerance function e (w) is equivalent to the question of

(8) whether or not there exists a set of filter coefficients satis-
fying the system of constraints defined by (13)— (16). The
question can be answered by using linear programming
techniques [9], First, an auxiliary variable is subtracted
from the left side of each constraint, forming the new set
of constraints

(9) N(w) — D(w)[F(w) + €(w)] — <0 (17)

—N(w) + (w)[F(w) (w)] -- v <0 (18)

—N(w) — v < 0 (19)

— v < 0. (20)

tamed by evaluating (1) on the unit circle (i.e., for
z = exp [1w]),' and taking its magnitude, thus giving

N(exp [1w])
H(exp[3w]) I

=
D(exp[jw])
rn fl

= I b exp [—jwi]/ a exp [—jwi]
1=0 i0

(4) or

where

(5)
m n

= cz'/
1=—rn

c = c_ i = 1,2,..

(16)

H(exp [1w]) 2

N(w)= H(z)H(z ) z=expjoj
=

D (w)

1 The quantity is the normalized frequency variable (i.e., the
sampling period, T, is assumed to be 1.0).

2 It should be noted that the function G(w,) is generally deter-
mined as soon as M(exp {jw]) is specified by the designer, as will be
seen in the examples later in the paper.
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zv (21)

is chosen to be minimized under the constraints of (17)—
(20). Clearly a solution to constraints (13)—(16) exists
if and only if the minimum value of z under constraints
(17)—(20) is zero. If the minimum value of v is 0, then a
solution exists to the approximation problem and the filter
coefficients may be obtained directly as the output of the
linear programming routine. If v > 0, then no solution to
the approximation problem exists, and either F (w), or

or both must be modified in order to obtain a
solution.

To illustrate the above procedure, consider the design
of a low-pass filter. If we let be the peak approximation
error in the stopband, and Ko (K is a constant expressing
the ratio of passband to stopband ripple) be the peak
approximation error in the passband, then the magnitude
function for an equiripple error approximation is as shown
in Fig. 1 (a). The quantity is unknown and is to be
minimized in the ultimate design program. (Of course in
this case the resulting filter is an elliptic filter which can
be readily designed in closed form, but we are only using
this as an example of how to apply the design technique.)
The passband cutoff frequency is o, = 2irF and the stop-
band cutoff frequency is w, = 2irF. The magnitude
squared function of the filter is the square of the response
in Fig. 1 (a) and is shown in Fig. 1 (b). This magnitude
squared function can be viewed as a weighted equiripple
approximation of the function F (w) [shown in Fig. 1 (c) ,
with peak approximation error e (o,) [shown in Fig. 1 (d) ,
defined by

F(w)=l+K2l 0<w<o,

=o2/2 w<w<1r

It is easily verified that H(exp [joI) 2 of Fig. 1 (b) is
less than or equal to F(w) + s(oi) and greater than or
equal to F(w) — (c) in both the passband and the stop-
band.

To determine the smallest value of such that the filter
approximation problem has a solution (i.e., to find the c
of the elliptic filter) an iterative procedure must be used
since 5 enters into the design constraints in a nonlinear

manner. If we let dl" denote the minimum value of for
which the approximation problem has a solution, then 5*
satisfies the inequality

1
(24)K+1

since the sum of passband ripple (K*) and stopband
ripple (*) must be less than or equal to 1.0 because
otherwise the passband and stopband would no longer be
well defined. Based on (24), a binary search may be used

22 to locate , as in the following procedure. (This proce-
dure is different from the usual binary search in that the
search is performed on the log of ô instead of itself.)

Step 1: Let and &J denote initial upper and lower
(23) bounds for For example, choose ô+' = (K + 1),

10—8 (since S < 10_8 is unrealistic). Initialize at (56_i) 1/2,
the geometric mean of the initial upper and lower bounds.
(Note that the geometric mean of two quantities is equal
to the arithmetic mean of the logs of these quantities.)

Step 2: Solve the linear programming problem (17)—
(21) with this value of ô. If z 0 a solution to the ap-
proximation problem exists and &'' < . In this case set

= . Otherwise no solution exists for this value of tI
and ô < '; in which case set &..

Step 3: Set l = (oo )1/2 and repeat Step 2. rfhis pro-
cedure is iterated until a predetermined accuracy criterion
in locating &'' is satisfied.

It should be noted that, when 5* is small (<102) (as
in practical filter design problems), choosing ô to be the
geometric mean of the upper and lower bounds for 5* will
result in a smaller number of iterations required to achieve
relative accuracy in locating * than required by the usual

The objective function IH(eJw)12

I + K8

I—K8

S
0

(a) (b)

F(w)

I + K232

C (w)

w

I)
U)5 iT

(d)

— — I — _________
0 Iw

0 WpW 7r

(C)

Fig. 1. Specifications for designing an equiripple error low-pass
filter. (a) Bounds on the approximation. (b) Bounds on the square
of the approximation. (c) Function obtained by averaging the
upper and lower bounds on the square of the approximation. (d)
Error bounds obtained by subtracting Fig. 1(c) from Fig. 1(b).

The linear programming problem defined above (by constraints
(17)—(20) and objective function z = v) may be solved by a straight-
forward application of the simplex (or revised simplex) algorithm.
However, since the number of constraints is generally much larger
than the number of filter coefficients, it is of course much more
efficient to apply the simplex algorithm to the dual linear program-
ming problem. Furthermore, since the range of values of filter co-
efficients, for the examples of interest here, is between —1 and +1,
a change of variables to c,' c + 1, d' = d + 1 is performed
before application of the simplex algorithm, which does not allow
variables to assume negative values.
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TABLE I
RESULTS ON PER DESIGN OF SEVERAL LOW-PASS FILTERS

Filter No. n m F,, F, K —20 log,, ' —20 log,0 &+
No. of

Iterations
Total Run
Time (s)

1 4 4 0.30 0.35 5.8 37.9 37.8 11 40.6
2 4 4 0.15 0.18 2.0 29.8 29.9 11 43.5
3 4 4 0.10 0.15 12.0 43.1 42.9 11 44.2
4 4 4 0.10 0.14 6.5 38.7 38.6 11 46.9
5 4 4 0.10 0.13 3.4 34.0 33.9 11 48.2
6 4 4 0.10 0.12 1.7 28.5 28.4 11 50.6
7 6 6 0.20 0.23 8.5 48.3 48.4 11 134.3
8 6 6 0.20 0.25 71.9 61.6 61.8 11 141.7
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binary search in which 5 is chosen to be the arithmetic
mean of the upper and lower bounds. In particular, the
number n of iterations required for a maximum relative
error p (where p is defined as

—

p=

with +1 and L1 being the final upper and lower bounds
determined in step 3 above) can be shown to be of the
form

(
log10 (+) — log,0 (&)\1n =

[iog2 log10 (f) — log15 (&_f))j
+ 1

[
1

(low
(si) — log,0 (si))] + 1= og2
log10 (1 + p)

where [y] denotes the largest integer y.
Theoretically the value of 3* may be bounded as tightly

as desired by using a large number of iterations thereby
reducing the tolerance (difference between + and &) at
much as desired. In practice, a relative error of p = 0.01 =
1 percent on the deltas is sufficient for most problems.

The values of c and d associated with the final value
of 3÷ are used in the polynomials in z (6), which are then
factored. A z-transform, which is stable, and minimum
phase is obtained by retaining only zeros and poles which

lie inside or on the unit circle. (If zeros lie on the unit
circle, only half of the pairs are retained.)

The extension of the above procedure to other types of
filters other than low-pass filters is straightforward and
will not be discussed here. In the next section we present

(25) examples of several filters which were designed using the
above iterative procedure.

FILTER EXAM1LES
In order to test out the procedure a number of filters

were designed. Table I gives the results for a set of 8 low-
pass filters. The data in this table correspond to the 8

(26) low-pass filters designed by Swanton [10] using linear
programming methods in a sequence of individual numer-
ator and denominator optimization iterations. These data

(27) are for low-order filters (4th or 6th order). The values for
F and F. are the corresponding filter cutoff frequencies
where F = w,,/2ir and F, = w,/2r. The quantity 20 log10 *
is the theoretical stopband attenuation for the elliptic
filter and 20 log10 & is the actual attenuation for the filter
designed using the linear programming technique described
above. Table I also gives the number of iterations on the
delta's (for a 1 percent tolerance on ) and the overall
run time on a Honeywell 6000 Computer. it is seen from
Table I that the resulting filters meet approximately the
same specifications as the equivalent elliptic filter. To
further illustrate these results, Fig. 2 shows the log magni-

N

nm=6
8 0.0008252
K7 1.879

0.20 0.5 0.5
NORMALIZED FREQUENCY

Fig. 2. Log magnitude response of a sixth order low-pass filter designed using linear programming methods.
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NORMALIZED FREQUENCY

Fig. 3. Magnitude response of an eighth order bandpass filter
designed using linear programming techniques.

tude response of the eighth filter in the table which
achieved a ô = + of 0.0008144 or a stopband attenuation
of 61.8 dB.

As seen in Table I the run time for the simple 4th order
examples was about 45 s whereas for the two 6th order
examples it was about 138 s. These times could be signifi-
cantly reduced by an improved initial guess of , or by
relaxing the convergence criterion (the 1 percent tolerance
on the deltas). These were not done for the examples in
Table I in order to verify that the procedure would con-
verge without any starting information.

In addition to low-pass filters, several 3, 4 and 5 band
filters, and wide-band differentiators have been designed
with this procedure. Figs. 3—7 show the frequency re-
sponses of some typical filters which were designed. Fig. 3
gives an example of a standard bandpass filter of eighth
order (i.e., n = m = 8). This filter took 11 iterations to
achieve the desired 1 percent accuracy, and required 187 s
of processor time. The value of K was 1.0 giving a value
of of 0.0051. The two filter stopbands were from 0.0 to
0.15 and from 0.35 to 0.5. Fig. 3 shows the magnitude
response of the filter including the tolerances in each of
the bands and the filter band edges.

Fig. 4 shows the frequency response of a 4 band filter
with a stopband followed by 2 disjoint passbands, fol-
lowed by another stopband. The filter is of eighth order
and the tolerances in all the bands were the same. It re-
quired 11 iterations for convergence of the delta to within
1 percent and took 238 s of computation. Fig. 4(a) shows
the log magnitude response of the filter; Fig. 4 (b) shows
the positions of the poles and zeros in the z-plane; and
Fig. 4(c) shows the group delay response of this filter.
The pole and zero positions of the filter are obtained by
factoring the denominator and numerator polynomials of
the magnitude squared function of the filter and assign-
ing poles inside the unit circle to the resulting denominator,
and zeros inside or on the unit circle to the resulting nu-
merator. (Generally the zeros of the magnitude squared
function will be on the unit circle in pairs. Thus one of
each pair of zeros on the unit circle is assigned to the
resulting filter.)

(a)

Fig. 4. Log magnitude response, r-plane pole—zero diagram,
and group delay response of an eight order-four band filter.

Fig, 5 shows an example of a 5 band filter with 2 pass-
bands and 3 stopbands. An eight order filter gave a delta
of 0.035 with equal weighing in each of the five bands.
The design procedure took 11 iterations and required
224 s to design.

Fig. 6 shows another 5 band filter with the arbitrary
specifications:
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and with equal tolerances on the error in each band. The
resulting filter was of 10th order and had a S of 0.0303.
Even though the filter met specifications in all the bands,
the magnitude squared function blew up between the
fourth and fifth bands because of a pole which was on the
unit circle. The simple expedient of moving the pole
slightly inside the unit circle gave a stable filter whose
log magnitude response and pole—zero positions are plotted
in Fig. 5. It should be noted that the presence of a pole
on the unit circle in one of the unconstrained regions of
the frequency scale is not a violation of the design proce-
dure and is perfectly acceptable to the optimization
procedure. Of course the resulting filter cannot tolerate
such a situation.

Finally, Fig. 7 shows the error response of a differen-
tiator of fourth degree designed using the technique. In
this case the error criterion was a minimum relative error
criterion. The resulting value of S was 0.00000763 when
the desired band for differentiation was from 0 to 0.45.
(In this case S represents the peak relative error for the
differentiator.) This example required 11 iterations and
took 51 s of computation time.

DISCUSSION

The preceding examples have shown that the linear
programming method does, in many cases, give reason-
able solutions for 1111 filters which approximate arbitrary
magnitude specifications with arbitrary weighing of the
error function. In this section we discuss what we believe
are the practical limitations of this technique.

One of the maj or difficulties with the proposed method
is that one is forced to work with magnitude squared
characteristics to solve for the filter coefficients. Kaiser

050 [11] has shown that an extreme coefficient sensitivity
problem exists for sharp cutoff filters when implemented
in the direct form. This coefficient sensitivity is aggra-
vated by using magnitude squared functions rather than
the magnitude function itself. Thus the results derived
by Kaiser, along with our own practical experience indi-
cate the following.

1) Sharp cutoff filters are difficult to design w'ith this
procedure. Thus, if the width of a transition band is small,
the coefficient sensitivity will make the procedure un-
stable.

2) High-order filters are difficult to design. Filters with
order greater than about 12 cannot readily be designed
with double precision arithmetic on a 36 bit word length
computer since the high order polynomial coefficients are
extremely sensitive to small changes in the filter specifi-
cations.

3) Filters with deltas on the order of 10 or less can-
not generally be designed even with double precision
arithmetic since, a tolerance of the magnitude function
on the order of l0— in a band implies a tolerance of
the magnitude squared function on the order of 10°
in that band. The attainment of such a high degree of
numerical precision is of course limited by the precision
capabilities of the computer. Experience has shown that
the linear programming routine required to solve for the
ifiter coefficients must be implemented in double precision

-a
a
Uia
D
I—

a
C:,
ci

00
-1

0.15 0.20 0.30 0.35
NORMALIZED FREQUENCY

Fig. 5. Log magnitude response of an eight order filter with 5
alternating stopbands and pasebands.
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Fig. 6. Log magnitode response and z-plane pole—zero positions
of a tenth order five band filter with arbitrary magnitude speci-
fiCations.

H(exp [j2irfj) = 0.5 0.00 � I � 0.06
= 0.75 0.10 �f� 0.16
= 0.0 0.20 <f < 0.26

= 1,0 0.30 <f < 0.36

= 0.0 0.40 � f < 0.50
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0.00000763

— 0.00000763

ERROR FUNCTION

n=rn4
- SO.O0O00763

Fig. 7. Error function of a fourth order differentiator with minimum relative error over the band 0 � f 0.45.

arithmetic in order to obtain sufficient accuracy for deltas
in the range 1O > � 1O, whereas for deltas <10,
sufficient accuracy is almost impossible to consistently
obtain even with double precision arithmetic on a 36-bit
computer.

4) Experience has also shown that for filter design
problems with � 8 degrees of freedom in numerator and
denominator polynomials, the number of pivots within a
given application of the simplex algorithm may be ex-
ceedingly large, say >400.

Fortunately, despite the above practical limitations,
there is a large class of problems where the linear program-
ming technique can be used to advantage. One of the key
properties here is the guaranteed theoretical convergence
and the clear statement of optimality of the resulting
approximation. Also, compilers which permit arbitrary
precision arithmetic may circumvent the above limita-
tions, although at the cost of greatly increased computa-
tion time.

SUMMARY

A new technique for designing hR filters which can
approximate arbitrary magnitude specifications was pre-
sented. The technique sets up a linear programming prob-
lem which is solved iteratively for the best approximation
to the given specifications. Several examples of filters de-
signed using this technique were given and the ultimate
limitations of the procedure were discussed.
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