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Abstract—In this paper a nonlinear smoothing algorithm recently
proposed by Tukey is described and evaluated for speech processing
applications. Simple linear smoothing routines generally fail to provide
adequate smoothing for data which exhibit both local roughness and
sharp discontinuities. The proposed nonlinear smoothing algorithm
can effectively smooth such data by using a combination of median
smoothing routines and linear filtering. The concept of double smooth-
ing is introduced as a refinement on the smoothing algorithm. Ex-
amples of the application of the nonlinear smoothing methods to
typical speech parameters are included in this paper.

I. INTRODUCTJON

IN MOST signal processing applications the concept of a lin-
ear smoother or equivalently a linear filter is a basic one.
Linear smoothers are generally used in such systems because

of their inherently desirable properties which include: 1) linear
smoothers obey a superposition principle and 2) linear
smoothers are time or shift invariant. Because of these proper-
ties, the theory of. linear time-invariant systems has become
well developed in the digital signal processing literature [1]—
[3] . For some applications, however, linear smoothers are not
completely adequate due to the nature of the data being
smoothed. Fig. 1 shows two examples of data sequences
which are to be smoothed. In the first example, a fairly
slowly varying waveform has been corrupted by a high-
frequency noise component. For this case a linear smoother
(or low-pass filter) is entirely adequate for filtering out the
noise. In the second example, however, although there is a
noise-like component superimposed on the signal, the signal
displays noticeable sharp discontinuities. Such discontinuities
contain much high-frequency energy, and are essentially
indistinguishable from the noisy component, as far as their
spectral content. A linear smoother would therefore smear
out the sharp changes in the data as well as filter out the
noise. Such smearing of the data is unacceptable in many
applications.

For cases such as the one shown at the bottom of Fig. 1,
one must contemplate using some type of nonlinear smoothing
algorithm which is capable of preserving sharp discontinuities
in the data and still able to filter out noise superimposed on
the data. Although such an ideal nonlinear smoothing algo-
rithm does not as yet exist, a method recently proposed by
J. W. Tukey [4], [5] can be shown to have approximately the
desired properties. This algorithm is based on using a combi-
nation of running medians and linear smoothing. It is the
purpose of this paper to discuss a generalized version of the
Tukey smoothing method and to show how it is applicable to

smoothing some typical speech parameters for applications
to speech recognition, speech synthesis, and pitch detection.

The organization of this paper is as follows. In Section II
we present the generalized nonlinear smoothing algorithm,
discuss its properties, and show it can be practically realized.
In Section III we show some typical examples of how the
method has been used to smooth speech parameters. Included
in this section are several comparisons between linear and non-
linear smoothers operating on the same data. Finally, in Sec-
tion IV we discuss the computational considerations in using
this algorithm.

II. NONLINEAR SMOOTHING ALGORITHM

The basic concept of a linear smoother is the separation of
signals based on their nonoverlapping frequency content. For
nonlinear smoothers it is more convenient to consider separat-
ing signals based on whether they can be considered smooth or
rough (noise-like). Thus a signal x(n) can be considered as

x(n)"S[x(n)] 1-R[x(n)] (1)

where S [yI is the smooth part of the signal y and R [y] is the
rough part of the signal y. The candidate proposed by Tukey
for extracting S[x(n)J from x(n) was to use running medians
of the data. Running medians have several good properties
which make them good candidates for a smoother. Theie
include the following properties.

Property 1: Median [ax(n)] = a median [x(n)J.
Property 2: Medians will not smear out sharp discontinuities

in the data, as long as the duration of the discontinuity ex-
ceeds some critical duration.

Property 3: Medians will approximately follow polynomi-
als.

Property 1 is important in that scaling the input data leads
to a scaling of the smoothed output data. It is emphasized
that since medians are nonlinear, the superposition property

median [ctx1 (n) + 13x2 (n)I = a median [xi (n)]

+ j3 median [x2 (n)] (2)

Fig. 1. Two examples of noisy signals to be smoothed.

(b)

Manuscript received January 9, 1975; revised May 30, 1975.
The authors are with Bell Laboratories, Murray Hill, N.J. 07974. does not hold. Property 2 is one of the key properties for



RABINER eta!.: NONLINEAR SMOOTHING ALGORITHM 553

median smoothers. Fig. 2 illustrates this property for a simple x (n) j —

example. The input x(n) exhibits sharp discontinuities at MEDIAN

n = 6 and n = 11. The output y(n) is defined as the 3-point
median of x(n — 1), x(n), and x(n + 1), i.e., the middle value
when these three inputs are ordered in value. Neglecting, for
the time being, how the outputsy(O) and y(l5) are computed

X

(the problem of initial and fmal conditions comes in here), the 6 7 8 9 101112 131415

output y(n) is seen to follow the input x(n) exactly. If the 3-
point median box in Fig. 2 were replaced by a 5-, 7-, or even a
9-point median, the output yn) would remain exactly as
shown in Fig. 2. However if a median greater than 9 were y(n)

used, the discontinuity would be smoothed out and y(n)
would be flat. Thus the size of running medians which can be . .

Fig. 2. Median smoothing of a sequence with a discontinuity.used is strictly dependent on the minimum duration of dis-
continuity which the user wishes to preserve. The feature is
especially of value for speech processing applications where,

QUADRATIC CUBIC • QUARTIC

because of measurement and/or processing errors, the data
often will exhibit single- or double-point sharp discontinuities.
It is readily seen that running medians of 3's and/or 5's will
eliminate such error discontinuities, but will preserve longer
duration discontinuities.

The third property of median smoothers, i.e., their ability
MEDIAN

to approximately follow low-order polynomial trends in the OF 3 •.
data, is readily seen by considering the effects of various
median smoothing routines on low-order polynomials. Fig.
3 shows a quadratic, a cubic, and a quartic polynomial and
the results of smoothing these inputs by running medians
of 3, 5, and 7. It is seen in this figure that 3-point medians DIN •

essentially follow all these polynomials, whereas 7-point
medians have smoothed out the quartic polynomial consider-
ably. Thus the general trend is the longer the running median,
the more it smoothes out lower order polynomials. •

Although median smoothing preserves sharp discontinuities M0IN
in the data, it fails to provide sufficient smoothing of the
undesirable noise-like components' for which the smoothing
was originally designed. A fairly good solution is a smoothing Fig. 3. Effects of various median smoothers on low-order polynomials.

algorithm based on a combination of running medians and
linear smoothing. Since the running medians provide a fair

MEDIAN L_J LINEAR ___
amount of smoothing already, the linear smoothing can consist 1 SM02I6 SMOOTHING 0

of a fairly low-order system and still give adequate results.
Tukey proposed the use of a 3-point Hanriing window as one
candidate for the linear smoother.

Fig. 4(a) shows a block diagram of the simple smoothing
w(n>

algorithm. The output y(n) is an approximation to the signal yin)
S [x(n)]. To the extent that the approximation is not ideal, +

_ z(n)
MEDIAN LINEAR

one can consider the use of a "double smoothing" routine SMOOTHING SMOOTHING

as shown in Fig. 4(b). Since ' (b)

y(n) S[x(n)] (3)
Fig. 4. Block diagrams of smoother and double-smoothing algorithms.

then output of the second smoother, would be identically zero, and

z(n) = x(n) - y(n) R [x(n)}. (4)
the second-order correction would be unnecessar.

In order to implement the system shown in Fig. 4(b), one
Thus additional smoothing of z(n) yields a correction term must take care to account for the delays in each path of the
which is added back to y(n) to give w(n), the second approxi- smoother. The median smoother has a delay associated with
mation to S[x(n)]. Thus w(n)satisfies the relation the size median used, and the linear smoother has a delay

w(n) S[x(n)I + S[R [x(n)J]. (5)
associated with the impulse response used. For example, a
median of 5 routine has a delay of 2 samples, and a 3-point

If z(n) = R [x(n)], i.e., the smoother were ideal, then v(n), the Hanning window has a delay of 1 sample. Thus, the total
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delay of the first smoother is 3 samples. Fig. S shows a block
diagram of the overall smoother incorporating the appropriate
delays in each path.

The only remaining task required to implement the system
of Fig. 5 is to provide an algorithm for handling the endpoints
of the data. Several techniques for generating the set of addi-
tional initial and final values (i.e., those outside the interval
in which the data are defined) were investigated experimen-
tally, including constant, linear, and quadratic extrapolation.
For most of the applications to be discussed here, constant
extrapolation from the initial or final data point proved to be
entirely adequate.

Fig. 6 shows a comparison between several alternative
smoothing algorithms for an artificially created test input
sequence. Fig. 6(a) shows the input sequence, and Fig. 6(b)-
(d) show the outputs of a linear smoother (a 19-point finite
impulse response (FIR) low-pass filter), a combination of
median and linear smoother (a running 5 median and a 3-point
Hanning window), and a median of 5 smoother, respectively.
The smearing effects of the linear smoother at each input
discontinuity are clearly in evidence in this figure, whereas
the median smoother alone essentially preserves the data
exactly. The combination of median and linear smoothing
is seen to provide a good compromise between the median
and linear smoothers in this example. Fig. 7 shows the effects
of adding broad-band noise to the input of Fig. 6. In this
case, the median smoother is inadequate for ifitering out the
broad-band noise on the input, thereby producing a rough
output sequence, as shown in Fig. 7(d). The linear smoother
does an excellent job of filtering out the noise, as expected,
and the output shown in Fig. 7(b) is almost identical to the
output in Fig. 6(b) when there was no additive noise. Finally,
the combination smoother is seen to again be a good compro-
mise between the linear and the median smoothers. As seen
in Fig. 7(c), the noise is smoothed a great deal, and the dis-
continuities in the input are fairly well preserved.

In summary, a smoothing algorithm consisting of a com-
bination of running medians and linear smoothing appears to
be a reasonable candidate for smoothing noisy sequences with
discontinuities. In the next section we present several ex-
amples of how this combination smoothing algorithm has been
applied to speech processing problems.

III. APPLICATIONS TO SPEECH PROCESSING

One of the most promising applications of the smoothing
algorithm discussed in the previous section is in the areas of
speech processing. In particular, we have applied this tech-
nique in investigations in the areas of speech recognition,
speech synthesis, and pitch detection. In this section we show
several examples of representative input sequences from each
of these areas and the resulting outputs from the smoothing
algorithm.

Figs. 8-10 show plots of input sequence from speech recog-
nition work [6], the linearly smoothed outputs, the outputs
from the combination of medians and linear smoothing, and
the outputs from a median routine alone. For these examples
the linear smoother was the same one used in the examples of
Figs. 6 and 7. The all-median smoother was implemented a
shown in Fig. 4 without the linear smoothing in each of the

MEDIAN LINEAR DELAYx(n)

HIN:
SMOOTHING

SMOOTH INC SMOOTHING

Fig. 5. Realizableblock diagram of overall smoothing algorithm.

n

Fig. 7. Effects of additive noise on several smoothers.

forward paths. The median smoothing routine consisted of a
running median of 3 followed by a running median of 5 in
both smoothing paths. The combination smoother was
identical to the median smoother with the inclusion of a
3-point Hanning window as the linear smoother in both
smoothing paths.

In Fig. 8 the input is the measured energy of the speech
utterance /919/. The energy was computed 100 times/s using
a 10 ms averaging window. The roughness in the data is due to
the fixed averaging time of the measurement, which is suf-
ficiently short that it interacts with the pitch period (which

INPUT

LINEAR
SMOOTHER

COMB NATION

MEDIAN

________ 7l\SMOOTHER
____________ (d)

I I I I I I

0 10 20 30 40 50 60 TO 80 90 100
0

Fig. 6. Examples of several smoothed outputs for a simple test input.
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Fig. 8. Effects of linear, combination, and median smoothers on speech
input energy for the sequence /919/.

varies from about 5 to 20 ms for male speakers). Thus, de-
pending on the placement of the window and the fraction of
pitch periods within the window, the measurement of energy
will fluctuate as shown. As seen in Fig. 8(d), the output of
the median smoother has a block-like effect due to the lack of
any linear smoothing, i.e. the high-frequency components in
the data are readily seen in the regions where one desires them
to be smoother. Comparing Fig. 8(b) and (c), it is seen that
the combination smoother provides sufficient smoothing of
the noisy component of the input; yet, it still provides better
approximations to the sudden changes in amplitude of the
data than does the linear smoother.

Figs. 9 and 10 show similar results on the smoothing of two
of the other parameters used hi the digit recognition work—

Fig. 10. Effects of linear, combination, and median smoothers on
speech log energy for the sequence /777/.

namely zero-crossing rate and log energy of the speech wave-
form. Fig. 9 shows the measured zero-crossing rate for the
utterance /777/ and the three possible smoothings of these
data. Fig. 10 shows the measured log energy for this same
utterance and the three smoothed data sequences. In these,
and similar examples, the combination smoothing routine
afforded the best tradeoffs between the desired linear smooth-
ing to eliminate roughness inherent in the measurements and
the desired nonlinear smoothing to preserve sharp changes in
the data themselves.

Fig. 11 shows the effect of several versions of the smoothing
algorithm on intensity data used in speech synthesis experi-
ments [7] . Indicated in each part of Fig. 11 is the size medi-
ans used (two numbers indicate use of two median sizes, i.e.,
3, 5 means a running median of 3 followed by a running me-
din of 5), an indication of whether linear smoothing was
employed (and what it was if used), and finally an indication
of whether the double smoothing was used. Contrasting Fig.
11(b) and (d), or Fig. 11(c) and (e), the additional smoothing
obtained using higher order medians is clearly seen. Further,
the differences between using median smoothing alone and the
combination with linear smoothing are seen be contrasting
Fig. 11(b) with (c), or Fig. 11(d) with (e).

Fig. 12 shows the results of smoothing the pitch period
contour for synthesis. Informal listening tests on the synthetic
speech indicate that the smoothed pitch contours are not det-
rimental in any way to the quality of the synthetic speech [81.

Finally, Figs. 13 and 14 illustrate the application of the
smoothing algorithm to pitch contours in which the pitch
detection algorithm made gross errors in estimating the pitch
period [9]. Generally, such errors must be corrected before
smoothing can be applied. One of the side benefits of median
smoothing is that it can inherently correct isolated errors in
the data (i.e., sharp discontinuities of short duration, e.g., one
or two samples), at the same time combining this operation
with the desired smoothing. Fig. 13 shows an example with a

n

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140
n

Fig. 9. Effects of linear, combination, and median smoothers on speech
zero-crossing rate for the sequence /777/.
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Fig. 11. Effects of several versions of the smoothing algorithm on a speech intensity contour.

INPUT PITCH PERIOD

1III I I I ___________________________

gross errors in a 5-point interval, whereas a median 5 smoother
can only correct 2 gross errors in a 5-point interval. This is
one reason we have used a combination median smoother in
our examples in this paper. Fig. 13(d) shows the final
smoothed, error-corrected pitch period output using the full
smoother of Fig. 4. The overall pitch contour is a smoother
version of the input sequence with no gross discontinuities.

As a final example, Fig. 14 shows another example of the
application of the smoother to pitch period measurements
with- isolated gross errors in the data. Fig. 14(d) shows how
the smoother is capable of following true discontinuities in
pitch period and correcting isolated errors of measurement.

IV. SUMMARY

The smoothing algorithm has been shown to be a reasonable

(b)
candidate for smoothing data with some or all of the following
characteristics.

1) The data have sharp discontinuities of reasonable
duration.

2) The data have roughness due to noise in the measurement
(the noise may be inherent in the measurement process itself
being imperfect).

3) The data have sharp, isolated discontinuities of very short
duration which are to be eliminated. Such discontinuities may
be due to errors in transmitting the data, or to imperfect
analysis procedures as in the speech examples of Figs. 13
and 14.

The discussion until now has concerned the applicability of
the smoothing algorithm to speech processing problems.
Another issue with any smoothing algorithm is the required
computation to implement it. The smoothing algorithm of
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Fig. 12. Effects of the combination smoother on the pitch period
contour for a synthesis experiment.

fairly large number of isolated gross measurement errors. Fig.
13(b) and (c) illustrate how median smoothing alone does an
excellent job of eliminating these gross errors in measurement.
In Fig. 13 (b) a median of 5 routine was used. In Fig. 13(c),
a median of 3 routine was used followed by a median of 5
routine. The differences, although small, can be seen by
comparing these figures. The combination of median 3 and
median 5 smoothing is capable of correcting up to 3 isolated
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Fig. 13. Comparison of two median smoothers and the combrnation
smoother for a pitch period contour with gross errors.

Fig. 4 has the virtue that it can be implemented in a simple
and straightforward manner. The median smoothing routines
involve simple sorting of numbers. For small size medians this
means sorting groups of from 3 to 9 points. Efficient sorting
procedures for this type of application have been described by
Knuth [10]. Tile algorithm also requires the use of a linear
smoother. The smoother used in all the examples here was a
3-point Hanning window with coefficients of , -, . Thus,
the Hanning window can be implemented without the use of
multipliers simply by shifting the data 1 or 2 places to the
right and accumulating the results. Hence, computationally,
the smoothing algorithm is quite efficient and competitive
with other proposed smoothers.

0 20 40 60 80 100 120 140 160 180 200 220
n

Fig. 14. Effects of the combination smoother on a second pitch period
contour with gross errors in the data.
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