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Considerations in Dynamic Time Warping Algorithms
for Discrete Word Recognition
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Abstract—The technique of dynamic time warping for time registra-
tion of a reference and test utterance has found widespread use in the
areas of speaker verification and discrete word recognition. As originally
proposed, the algorithm placed strong constraints on the possible set of
dynamic paths—namely it was assumed that the initial and final frames
of both the test and reference utterances were in exact time synchrony.
Because of inherent practical difficulties with satisfying the assump-
tions under which the above constraints are valid, we have considered
some modifications to the dynamic time warping algorithm. In par-
ticular, an algorithm in which an uncertainty exists in the registration
both for initial and final frames was studied. Another modification
constrains the dynamic path to follow (within a given range) the path
which is locally optimum at each frame. This modification tends to
work well when the location of the final frame of the test utterance is
significantly in error due to breath noise, etc. To test the different
time warping algorithms a set of ten isolated words spoken by 100
speakers was used. Probability density functions of the distances from
each of the 100 versions of a word to a reference version of the word
were estimated for each of three dynamic warping algorithms. From
these data, it is shown that, based on a set of assumptions about the
distributions of the distances, the warping algorithm that minimizes
the overall probability of making a word error is the modified time
warping algorithm with unconstrained endpoints. A discussion of this
key result along with some ideas on where the other modifications
would be most useful is included.

I. INTRODUCTION

ONE of the most fundamental concepts in the area of
speech pattern recognition is that of "time-Warping" a

reference to a test utterance so as to time register the two pat-
terns. Although a wide variety of techniques are applicable to
this problem, one of the most versatile of the algorithms which

has been proposed is dynamic time warping [1] —[3]. Fig. 1
illustrates the general time warping problem. We denote a
reference contour as R(n), 0 n N, and a test contour as
T(m), 0 m M. We denote the "endpoints" ofR (n) as N1
and N2, and the endpoints of T(m) as Mi and M2. The pur-
pose of the time warping algorithm is to provide a mapping be-
tween the time indices n and in such that a time registration
between the reference and test utterances is obtained. We de-
note the mapping w, between n and m as

m w(n).

The function w must satisfy a set of boundary conditions at
the "endpoints" of the utterances. For example, a typical
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assumption is that both the initial points and final points of
the utterances are in time alignment, i.e.,

Mi =w(Ni) (2a)

M2 = w(N2). (2b)

The set of boundary conditions of (2) is called the constrained
endpoint (CE) set. Finally, to completely specify the warping
function w, some assumptions must be made about the shape
of w(n). For example, w(n) might be a linear function be-
tween the boundary points, in which case the time warping is
a simple linear compression/expansion of one time scale to
match the other one.

A more sophisticated and powerful approach to time warp-
ing is to constrain the warping function to satisfy a set of con-
tinuity conditions, e.g.,

w(n+l)-w(n)0,l,2 (3a)

1,2 (w(n)=w(n— I)). (3b)

Equations (3a) and (3b) require that w(n) be monotonically

increasing, with a maximum slope of 2, and a minimum slope
of 0 except when the slope at the preceding frame was 0, in
which case the minimum slope is 1. The boundary conditions
of (2), together with the continuity conditions of (3) constrain
the warping function w to lie within a parallelogram in the
(n, m) plane, as shown in Fig. 2. (For convenience we assume
thatNi M1 = 1, andN2 N,M2 "Mherein. Clearly there is
no loss in generality due to these assumptions.) The vertices
(labeled points A and B in Fig. 2) are obtained as the inter-
sections of the lines

and

m - 1 = (n — 1) point B (5a)

m-M2(n-N). (Sb)

(1)
The dynamic warp function w is therefore constrained to fol-
low a path inside the shaded region of Fig. 2.

A complete specification of the warping function results
from a point-by-point measure of similarity between the refer-
ence contour R(n) and the test contour T(m). A similarity
measure or distance function D must be defined for every pair
of points (n, m) within the parallelogram of Fig. 2. The
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m - 1 = 2(n -
1) point A

m-M(n-N)/2 (4b)

(4a)
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Fig. 1. Illustration of the general case of time warping.

smaller the value of D, the greater the similarity between R(n)
and T(m). Given the distance function D, the optimum dy-
namic path w is chosen to minimize the accumulated distance
DT along the path, i.e.,

N
DT mm D(R(n),T(w(n))).

fw(n)} n=i

An especially powerful technique for determining the optimum
path w is the method of dynamic programming. Using this
technique the accumulated distance to any grid point (n, m)
can be recursively determined as

DA(n,m)=D(n,m)+ mm DA(n- l,q)qm
where DA(n, m) is the minimum accumulated distance to the
grid point (n, m) and is of the form

DA (n, m) = D(R (p), T(w(p))).

Given the continuity constraint of (3), (8) can be written in
the form

D(n,m)=D(n,m)+min[D(n-1,m)g(n-l,m),
DA(n- 1,m- 1),DA(n- l,m-2)]

where g(n, m) is a weight of the form

Ii
w(n) = w(n - 1).

The final solution DT of (6) is, by definition,

DT'DA(N,M). (10)

Equations (1 )-( 10) essentially define dynamic programming
for time warping as originally defined by Sakoe and Chiba

EGION OF POSSIBLE
PATHS

[1], [2] and modified by Itakura [3] , A careful examination
of the assumptions used to determine the optimum time warp-
ing function leads to several issues which warrant further con-
sideration. These issues include:

1) The assumption that the endpoints of the pair of utter-
ances should be in exact time registration. For most applica-
tions the determination of the initial and final frames of an
utterance is, at best, a highly imprecise calculation [4] . This is
especially a problem for words that begin or end with weak
fricatives whose energy and spectral properties are not sig-
nificantly different from typical background silence. For
utterances that begin and end with voiced sounds, the de-
termination of the beginning of the utterance is generally
easier to make than the determination of the end of the utter-

(6) ance, This is because the initiation of voicing generally has a
sharp onset whereas the cessation of voicing is generally
gradual. In addition, the end of an utterance is often accom-
panied by a short burst of "breathiness," which further com-
plicates the endpoint calculation.

2) The restriction that the maximum allowable change in
the warping function is 2 from one frame to the next. The im-
plicit result of this restriction is that the largest ratio of dura-
tions, (M/N or N/M) between utterances which can be time
registered is 2 to 1. However, if one considers the shape of the
constraint region (i.e., the allowable dynamic paths) for a ratio
which is exactly 2 to 1 [see Fig. 3(a)] ,then it is clear that no
flexibility actually exists in choosing the path since only a
single path is possible. Practically speaking, a ratio of about
1.5 to 1 is about the largest possible range in which a reasonable
choice of warping paths exists [see Fig. 3(b)] . Thus, alterna-
tive means of removing this restriction are desirable.

3) The requirement that all possible paths within the grid of
(9a) Fig. 2 be computed. For cases when N andM are large, a large

number of grid points occur within the allowable regions and
the computation grows proportional to N M. Since one
would expect the optimum warping path to be reasonably

(9b) close to a linear path, most of the computations at the ex-
tremities of the grid are needless. Thus, a possibly suboptimal
procedure may be capable of substantially reducing computa-
tion, with little increase in total accumulated distance.

1 Recently Sakoe and Chiba have proposed a symmetric form of a
dynamic programming algorithm for time warping [61.

M

m

Fig. 2. Allowable region of time warping paths for a constraint on the
maximum ratio of durations of test and reference utterances.

N1 N2 fl

(7)

(8)
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N

(b)
Fig. 3. Illustration of allowable regions of dynamic path for: (a) A 2-to-i

ratio of durations; (b) A 1-to-1 ratio of durations.

4) The issue as to whether the reference or test utterance
controls the choice of the dynamic path. For many applica-
tions it is irrelevant which of the pair is used as the inde-
pendent set of measurements (Le., is mapped along the x axis
of Fig. 10). However, for some cases it is preferred that the
test utterance be mapped to the x axis since a large number of
reference utterances will be matched to a single test utterance.
In such cases the normalization to give average distance is in-
dependent of the duration of the reference utterance.

It is the purpose of this paper to investigate these issues by
considering modified forms of the dynamic warping algorithm
discussed above. In the next section we discuss the modifica-
tions and define three distinct versions of the dynamic time
warping algorithm. In Section III we present results of a series
of experimental comparisons among the algorithms based on a
fairly large test set of spoken words. In Section IV we discuss
the implications of the results for different applications.

II. MODIFICATIONS TO THE DYNAMIC TIME
WARPING ALGORITHM

For notational purposes we define the dynamic time warping
algorithm discussed in the previous section as the CE2-1 (con-
strained endpoints, 2-to-i range of slope) version. We have
considered two modifications to the CE2-i algorithm.

1) A version in which the boundary conditions of(2) are re-
laxed. In particular the new boundary conditions are of the
form

1w(1)'6+ 1
M- 6 w(N)M

mm w(n) = 1 1 <n 26+1
maxw(n)M N-26n'N

where 8 represents the maximum anticipated range of mis-
match (in frames) between the reference and test boundary
points. For our simulations, a value of 6 of 5 (frames) was
used, representing a 75 ms region in which the initial and final
frames could be mapped. The implementation of the boundary
conditions of (11) can lead to some slight difficulties in that
the warping function can now reach the final boundary of the
reference prior to the last frame, i.e., it is possible that

w(n)=M for n<N (12)

in which case it is not physically meaningful to continue the
path. For such cases the accumulated distance DA is scaled by
the factor (N/Ne) where N is the frame at which (12) is satis-
fied, so as to equalize the number of distances which enter into
the total distance D. The resulting algorithm is referred to as
the UE2-1 (unconstrained endpoints, 2-to-i range of slope).

2) A version in which both the endpoint constraints are re-
laxed, and for which the allowable region of dynamic paths is
constrained to follow the locally optimum path, to within a
specified range. In particular, the initial endpoint satisfies
(1 la) and no constraint is used directly on the second end-
point. However, the range of values of m, for each value of n,
is determined as

mo - m mo + C

where

mo (m:DA min IDA(n 1,m)])
{m }

(13)

(14)

and is the specified range. The idea behind this version is to
reduce computation by sharply constraining the region of
allowable dynamic paths. In addition, if either the reference
or test utterances is significantly longer than the other due to
breath noise etc., this modification will generally be capable of
choosing a path that eliminates the spurious sounds. This
algorithm is referred to as the UELM (unconstrained end-
points, local minimum). A value of 4 (frames) correspond-
ing to a 60 ms range around the minimum was used in our in-
vestigations. (It would be worthwhile, in future work, to
study the effects of varying on the dynamic path.)

Fig. 4 gives a summary of the three dynamic warping algo-
rithms we have considered. Typical warping functions and in-
dications of the allowable regions are given in this figure. Be-
fore discussing the experimental investigations of these algo-
rithms, it is worthwhile noting a couple of things about the
algorithms. First, it is readily seen that the allowable space of
dynamic warping paths for the CE2-i algorithm is a subset of
the space for the UE2-1 algorithm. However, it is not true that
for any pair of test and reference utterances, the distance of
the CE2-1 [call this D (CE2-1)] and the distance of the
UE2-1 [call this DT (UE2-1)] satisfy the relation

(1 la) DT (CE2-1) Dr (UE2-l). (15)

(1 ib) This is because the constraint of (3b) eliminates potential
paths which may occur for one version but not the other.

k C) However, as will be shown, the constraint of (15) is approxi-
(lid) mately maintained in practice. Because of the inherently dif-

ONLY
PAT H
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N

Fig. 4. Illustration of the three dynamic warping techniques used in
this paper.

ferent regions of the UELM and UE2-1 or CE2-1 algorithms,
no comparable statements can be made comparing the total
distances for either pair of methods. With these points in
mind, we now present some experimental results comparing
the three algorithms.

III. EXPERIMENTAL COMPARISONS

In order to test the performance of each of the three dy-
namic warping algorithms of Section II, a data base of 10 iso.
lated words spoken by 100 different speakers (50 male, 50
female) was used. Each word was sampled at a 6.67 kHz rate,
digitized, and LPC analyzed using an 8 pole model. The initial
and final endpoints for each word were determined semi-
automatically and were essentially error free. The distance
measure which was used was the log likelthood ratio proposed
by Itakura [31, of the form

FaR VTaD(a,a)=log
LaT VTaT

where a is the (p + 1) component vector containing the LPC

coefficients, V is the (p + 1) X (p + 1) autocorrelation co-
efficient matrix (obtained from the speech waveform), and the
subscripts R and T represent reference and test frames,
respectively.

For each of the 10 words, the tokens2 of Speaker 1 were
arbitrarily chosen as the "reference" template to be matched
by each of the remaining 99 tokens, using each of the three
dynamic warping algorithms. In addition, matches were at-
tempted between the "reference" templates and 100 randomly

2A token, as referred to throughout this paper, is a single word
uttered by a single speaker.

E2-i.'
I n

UE2-1

M

m

M

m

S

M

m

M- S

(c)
N

chosen words from a larger test set, none of which were the
same as the template word. In this manner estimates of the
probability density function (in the form of measured histo-
grams) of dynamically warped distances both for the "correct"
words, and for alternative, incorrect, possibilities could be
estimated.

These measurements were made both with the selected token
representing the "reference" utterance (i.e., mapped to the
abscissa of the warping plane), and with the token representing
the "test" utterance (i.e., mapped to the ordinate of the
warping plane). There are two aspects to the question of
whether the token utterance is mapped to the x axis or the
y axis of the warping plane. One aspect is the question of
whether or not the token utterance controls the dynamic
warp, i.e., does the token utterance represent the indepen-
dent variable of the warping function. Except for some
trivial cases, it is readily shown that the total distances are
slightly different depending on whether the "reference" or
"test" controls the warp. The differences are due both to the
lack of symmetry in the constraint equations [3(a) and 3(b)]
on the warping function and to the possibility of the warping
function coinciding with a boundary constraint for part or all
of the path.

A second aspect of this issue (i.e., whether the token utter-
ance is mapped to the abscissa or ordinate of the warping
plane) is the lack of symmetry of the distance computation of
(16). If the roles of reference (R) and test (T) are inter-
changed, the distance function becomes

D(a,a)log aTVRIIT D(aR,aT). (17)
LaRVRaRJ

Thus, if one considers the warping problem as one of mapping

the utterance along they axis to the utterance along the x axis,
and similarly defines the distance at a grid point as the dis-

tance from the y frame to the x frame, both the lack of sym-

metry of the distance computation and the differences be-
tween having reference and test as independent variables affect
the results. The approach that we have considered in this
paper is that when the token utterance is along the x axis, we
use the distance of(16), and when the token utterance is along
they axis we use the distance of (17).

Table I gives a list of the 10 words used in this study. These
words are a subset of a larger data base consisting of the letters

(16) A to Z, the digits 0 to 9, and the words STOP, ERROR, and
REPEAT. This vocabulary is being used for studies of speaker
independent recognition of words.

A typical plot of the total distance for each of the 99
versions of the correct word and an estimate of the resulting
probability density function of the distances are given in Fig. 5
for the word A. For this example, the reference token was
along the abscissa (x axis) for the dynamic warp. From top to
bottom the data are for the UELM, UE2-1, and CE2.l algo-
rithms, respectively. Similarly Fig. 6 shows results for the
word A when the test token was along the abscissa, i.e., the
reverse of Fig. 5.

As seen in Fig. 5, the average total distance for the UE2.l is
smaller than the average total distance for the CE2-l or the
UELM algorithms. Also, the average total distance for the
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Word No. Actual Word

1 7
2 4
3 2
4
5
6
7
8
9

10

x
w
C
A

Repeat
Error
Stop

UELM is always smaller than the average total distance for the
CE2-l. These results tend to confirm our initial observation
that constrained endpoints can lead to larger total distances
than the unconstrained case for the reasons discussed previ-
ously. Measurements of the standard deviations of the dis-
tributions of Fig. S indicate somewhat smaller and less con-
sistent variations among the three algorithms. To a first ap-
proximation the standard deviations of the three distributions
are approximately equal.

By comparing the results of Figs. 6 (test along the x axis)
and S (reference along the x axis), it can be seen that no com-
pletely consistent difference, for all three algorithms, is ob-
tained. However, a slight reduction in both average distance
and in standard deviation is obtained when the test utterance
is along the x axis.

Fig. 7 presents scatter plots of the total distance obtained
for each of the three dynamic warping algorithms. Data for all
990 cases (10 words X 99 speakers) are presented. It can now
readily be seen that even though, on average, the total distance
of the UELM is less than the total distance of the CE2-l algo-
rithm, there exists a significant number of individual cases in
which this inequality does not hold. In such cases the opti-
mum dynamic path does not follow the local dynamic path
within the specified range. It can also be seen that, as men-
tioned earlier, for evety single case the UE2-l algorithm gives a
total distance which is at least as small as that of the CE2-l.

The preliminary indication from the data discussed above is
that the modifications to the CE2-l dynamic warping algorithm

WORD: A, TEST ALONG ABSCISSA

IjII
iào o

Sc.

0

2
MEAN=ct82

IOU 0 2
TOKEN NUMBER DISTANCE

Fig. 6. Total distances and distance histograms for the three dynamic
warping algorithms for the word A. Test utterance along the abscissa
of the warping plane.

serve to reduce the total distance and hence, improve the per-
formance of the method. Although this is indeed the case for
most practical applications (especially in the area of speech or
speaker recognition), a second aspect of the problem must be
considered—namely the performance of these algorithms when
the reference and test utterances are different. If concomittant
reductions in distance are obtained in this case, then a more
sophisticated analysis is required to access the overall per-
formance of the modified algorithms.

The data of Figs. 8—10 are essentially of the same type as
those of Figs. 5—7 except that the comparisons are made be-
tween different test and reference words. Although the in-
dividual distances are significantly larger than those of Figs.
5—7, the relative ordering of the algorithms remains essentially
the same in all cases. Also, the differences between results
with either reference or the test utterance along the x axis are
essentially random, i.e., no consistent difference is seen in
the data.

Based on the results shown in Figs. 5—10, it is clear that a

TABLE I
WORDs USED IN THE EXPERIMENTAL INVESTIGATIONS

C,

MEAN 0.71
SIGMA 0.16

UELM

I I I I

WORD: A, REFERENCE ALONG ABSCISSA

0

I I I I I I I I
100

MEAN =0.69
SIGMA =0.17

UE2 —1

I I I

Ui0z
a,
0

TOKEN NUMBER DISTANCE

Fig. 5. Total distances and distance histograms for the three dynamic
warping algorithms for the word A. Reference utterance along the
abscissa of the warping plane.

c'J
Ui

Ui0z
(0
0

REFERENCE ALONG ABSCISSA

0 DISTANCE (UE2— 1>

0.I
Ui0

0

DISTANCE (UELM)

Fig. 7. Scatter plots comparing total distances of each of the three
warping algorithms against each other. Reference utterance along the
abscissa of the warping plane.
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TOKEN NUMBER DISTANCE

Fig. 9. Total distances and distance histograms for the three dynamic
warping algorithms when the reference and test words were different
for the word A. Test utterance along the abscissa of the warping
plane.

more explicit model is required to assess the usefulness of the
modifications to the basic time warping algorithm. It is as-
sumed that the probability (p(x)) of obtaining a dynamic
warped total distance of x, given that the reference and test
utterances are the same word, is

p(x)=N[Mi, uJ
where N{M1,a1] is the normal distribution with meanM1 and
standard deviation ci. Similarly, it is assumed that the proba-
bility (Pe(X)) of obtaining a dynamic warped total distance of
x, given that the reference and test utterances are different
words, is

Pe(X)=N[M2, ci2].

A threshold )' is chosen such that if x> 'y, the decision is
made that the reference and test words are different, whereas
if x y, the decision is made that the reference and test words
are the same. The threshold y is chosen as the equal error

04
LCJ

C.,

Ui
C.)2
Co

DISTANCE IUELM)

Fig. 10. Scatter plots comparing total distances of each of the three
warping algorithms against each other when the test and reference
words were different. Reference utterance along the abscissa of the
warping plane.

threshold, i.e., the point at which the probability of a miss and
the probability of a false alarm are equal. This threshold is
readily determined analytically (based on Mi, ui,M2, and a2)
in the following manner. The probability of a miss PM can
be written as

PM =f dx. (20),
By making the substitution

(x -M1)y= (21)
a1

(20) can be written as

£ (7_Mi)
(22)

(—M1)fa, a!

where erfc is the standard complementary error function.
Similarly, the false alarm probability (PF) can be written as

pF=jeM2)/22 dx (23)

which can be put in the form

(18) pFerfc (M2 7). (24)

Since

PF=PM (25)

(by definition of the equal error threshold), then (22), (24),
and (25) lead to the result

(19)

Mi + M2

7=
U2

(26)

WORDA, REFERENCE ALONG ABSCISSA

MEAN 1.00
SIGMA = 0.34

ELM 04
Ui

Ui0z
U)
cC

N
Ui0
Ui0z
Co

cC

REFERENCE ALONG ABSCISSA

i!
DISTANCE(UE2—1) 2

0
I 100 0

uJ0z
CO

CC

Fig. 8. Total distances and distance histograms for the three dynamic
warping algorithms when the reference and test words were different
for the word A. Reference utterance along the abscissa of the
warping plane.

WORD: A, TEST ALONG ABSCISSA

TOKEN NUMBER DISTANCE

MEAN= 1,05
SIGMA 0.30

Li0z
Co

ci 0 I I I I I

MEAN= 1.01-
SIGMA=O,27

UE2— I

100 )
MEAN 1.10
SIGMA =0.27

omili:: O:________ I

1 100 0 2

1+—
a2
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4

4

4

x
x
x

Y
Y

Y

C
C
C

A
A
A

REPEAT
REPEAT
REPEAT

ERROR
ERROR
ERROR

STOP
STOP
STOP

UELM
UE2.1
CE2-1

UELM
UE2-1
CE2-1

UELM
UE2.1
CE2-1

UELM
UE2-1
CE2-1

UELM
UE2-1
CE2-l

UELM
UE2-1
Cr2-I

UELM
UE2-1
CE2-1

UELM
UE2-1
CE2-1

UELM
UE2-1
CE2-1

UELM
UE2-1
CE2-1

Equation (26) can be used to give 7 analytically (once M1, M2,
o, and 02 are known) and either (22) or (24) is used to give
PM or PF

In order to use the model described above, the distributions
of total distance must be normally distributed. A test of
normality (the Kolmogorov-Smirnov test [5]) was used on all
the sets of distances used in this experiment, and the results
indicated that in almost all cases the assumption of normality
was a valid hypothesis. Thus, the use of the statistical model
given above was valid.

Table II presents the raw data (i.e., values ofM1, ai,M2, ci2)
for each of the three time warping algorithms, and for cases
when both the reference and test utterances were along the x
axis. Results are presented for the ten words used in the test.
Also included in the table are computed values of threshold, 7
and equal error probability PM = PF3 Table III gives the
ordered results for the three algorithms for each word in terms
of the overall probability of a miss. The most preferred algo-
rithm (rank of 1 or position 1) is the one with the smallest
probability of a miss. A summary of the results is given at the
bottom of Table III.

3Values of PM were verified experimentally to be within ±2 percent
for almost all the cases presented in Table II, thus providing additional
evidence that the assumed Gaussian model is valid for this problem.

Based on the results of Tables II and III, the following con-
clusions can be drawn:

1) The UE2-l algorithm performed as well or better than
the UELM or the CE2-1 algorithms for almost all the words in
the test set. This result was independent of whether the test
or the reference was along the abscissa.

2) The CE2-l algorithm performed as well or better than
the UELM algorithm for almost all the words in the test set.

3) All three algorithms tended to perform better when the
test utterance was along the abscissa than when the reference
utterance was along the abscissa.

IV. DIsCussIoN

Based on the experimental data of the preceding section it
would seem reasonable to conclude that the modifications to
the basic dynamic time warping algorithm lead to improve-
ments in the performance of this method. The most important
modification, of course, is the removal of the endpoint con-
straint. However, the second modification (the UELM algo-
rithm) did not lead to improved performance over the original
algorithm—in fact, it led to somewhat degraded performance.
Before concluding that the second modification was unsuccess-
ful, several factors which affect the performance of the method
should be pointed out. First, the data set on which the tests

TABLE II
DATA FROM THE EXPERIMENTAL INVESTIGATIONS

Time Warp
Word Method

Reference Along Abscissa Test Along Abscissa

M1 01 M2 02 ' M M1 M2 02 '
.52 .13 1.11 .29 .70 .081 .48 .10 .99 .24 .63 .067
.50 .11 1.04 .27 .66 .078 .47 .08 .93 .22 .59 .063
.58 .11 1.14 .30 .73 .086 .55 .09 1.03 .24 .68 .073

.61 .31 1.39 .43 .94 .147 .53 .23 1.29 .37 .82 .102

.56 .28 1.37 .42 .88 .124 .49 .19 1,25 .34 .76 .076

.58 .28 1.42 .42 .92 .115 .52 .19 1.31 .34 .80 .070

.63 .18 1,07 .34 .78 .199 .51 .13 1.06 .33 .67 .115

.58 .12 1.10 .31 .73 .113 .51 .11 1.04 .30 .65 .098

.63 .13 1.19 .31 .80 .102 .58 .12 1.17 .31 .74 .085

.56 .14 1.33 .43 .75 .089 .61 .17 1.17 .32 .80 .127

.51 .09 1.18 .38 .64 .077 .55 .10 1.11 .30 .69 .081

.65 .13 1.37 .40 .83 - .087 .72 .15 1.22 .28 .89 .123

.69 .14 1.24 .29 .87 .100 .73 .14 1.31 .29 .92 .088

.69 .13 1,27 .22 .91 .049 .73 .12 1.33 .21 .95 .035

.73 .13 1.37 .25 .95 .046 .77 .13 1.43 .25 1,00 .041

.76 .17 1.10 .30 .88 .235 .65 .19 .97 .23 .79 .223

.66 .13 1.04 .29 .78 .183 .59 .12 .93 .22 .71 .159

.84 .16 1,13 .31 .94 .270 .74 .13 1.02 .24 .84 .224

.78 .20 1.00 .34 .86 .342 .71 .16 1.05 .30 .83 .230

.67 .16 .92 .29 .76 .290 .69 .17 1.01 .27 .85 .176

.85 .18 1.02 .29 .92 .359 .82 .16 1.10 .27 .92 .257

.64 .19 1.36 .46 .85 .134 .69 .19 1.42 .40 .93 .108

.71 .18 1.31 .37 .91 .138 .78 .19 1.36 .32 1.00 .128

.76 .20 1.39 .38 .98 .139 .87 .20 1.44 .35 1.06 .138

.65 .15 1.19 .38 .80 .154 .66 .18 1.39 .43 .88 .115

.66 .18 1,20 .37 .84 .163 .64 .18 1.35 .37 .87 .098

.69 .19 1,26 .37 .88 .154 .67 .20 1.46 .41 .93 .098

.45 .11 1,17 .34 .63 .055 .48 .12 1.11 .33 .65 .081

.42 .09 1.12 .33 .57 .048 .45 .09 1.06 .32 .58 .069

.46 .09 1.17 .34 .60 .058 .49 .09 1.11 .31 .63 .061
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UE2-1 UELM CR2-I UE2-1 UELM CR2-I T T T
CE2-l tJE2-1 UELM CR2-I UE2-I UELM T T T
CE2-I UE2-I UELM CR2-i UE2-1 UELM T T I
UE2-1 CR2-I UELM UE2-I CR2-i UELM 15. R R
CE2-i UE2-l UELM UE2-i CE2-i UELM I T T
UE2-I UELM CE2-i UE2-1 UELM CE2-i T T T
UE2-1 UELM CE2-I UE2-1 UELM CE2-3 T T T
IJRLM UE2-i CE2-I UELM UE2-i CE2-i T T T
UELM CR2-I UE2-3 UE2-i CR2-I UELM I T T
UE2-1 UELM CE2-I CR2-i UE2-1 UELM R R R

were run was analyzed semiautomatically, i.e, an automatic
endpoint technique provided initial estimates of initial and
final frames. However, the experimenter could readily change
the endpoints manually if either one was significantly in error.
Thus, one of the key features of the UELM algorithm, namely
the ability to eliminate spurious sections of sound at the end
of an utterance, was never really taken advantage of in this
test set. A second point to note is that the UELM algorithm is
inherently a natural candidate for a procedure to be used in
word spotting applications in which no endpoints at all are
specified [7], [8]. For such cases the technique of following
the local minimum of the dynamic path is quite reasonable.
Thus, although the results presented here were discouraging
for the UELM algorithm, further investigations are necessary
to examine other potential applications of this technique.

A second result that was fairly conclusive was that lower
error rates were achieved when the test utterance was along
the abscissa as opposed to the reference utterance. lJnfor-
tunately, we have no simple explanation of this result. It is
clear that when the test and reference utterances are the same,
there is essentially no difference between combinations of
reference and test warping curves. However, when the refer-
ence and test utterances are different, the differences tend to
be emphasized when the test is mapped to the abscissa. Thus,
the better overall performance occurs with the test utterance
mapped on the abscissa. Interestingly, this is a natural way of
handling unknown words in a true word recognition environ-
ment since then all the variable duration templates are mapped
to the fixed duration test word; hence, no normalization of
distance is required.

One additional issue in the performance comparisons be-
tween the three dynamic warping algorithms is their computa-
tion time. For the algorithms we have discussed and for
typical word durations (i.e., N = M = 40) the fastest algorithm
is the UELM since only a fixed number of distance calcula-
tions (2€ + 1) are required per frame of the test (or reference)
utterance. The next fastest is the CE2-1 in which the number
of distance calculations is on the order of NM/3, i.e., the

average number of calculations per frame grows proportional
to M. Thus, as M (or N) gets bigger, the relative difference in
computation time between the UELM and CE2- 1 algorithms
increases rapidly. Finally, the UE2-l algorithm requires the
most computation for distance calculations. Similar to the
CE2-l method, the relative computation per frame grows
linearly with M (or N) but with a larger proportionality con-
stant than for the CE2-1 method.

One final point should be made about the set of algorithms
we have investigated. In spite of the desirability of removing
the frame size ratio limitation (i.e., M/N or N/M must be less
than 2 to 1), the only algorithm which effectively had this
capability was the UELM algorithm. The reasons for this are
that if we increase the allowable frame ratio, the computation
increases significantly, and the control over the type of dy-
namic path which is used becomes somewhat unwieldly.
Furthermore, trying to interpolate or decimate the parameter
sets typically used (i.e., LPC parameters) by ratios greater
than 2 to 1 tends to lead to severe aliasing distortion. Hence,
we have not relaxed this restriction in our work.

V. SUMMARY

In this paper we have shown how some simple modifications
can be made to a dynamic time warping algorithm (for speech
processing applications) to increase the flexibility and improve
the performance of these methods. The modifications con-
sisted of relaxing the time registration constraints at the end-
points of the test and reference utterances, and allowing the
dynamic path to follow a locally optimum path at each frame.
Using a fairly large data set of isolated words, we have com-
pared and contrasted the performance of three distinct algo-
rithms based on a model of how such techniques would be
practically applied. The results indicated improvements in
many cases. Implications of the results, for different applica-
tions, were discussed.
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