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ABSTRACT

A wide variety of distance measures for comparing
sets of LPC coefficients have been proposed. The most
popular one has been the log likelihood ratio test as pro-
posed by Itakura {l1]. Although this measure is both
computationally efficient, and theoretically sound, de
Souza, in a recent paper {2}, found that the measured
distribution of LPC distances was significantly different
from the one predicted by theory. De Souza then pro-
posed alternative statistical tests for measuring LPC dis-
tances. In this paper we present both theoretical and
experimental results which show that there is, in gen-
eral, excellent agreement between theory and practice
when using the log likelihood ratio to measure LPC dis-
tance. Included in the paper are discussions of the
effects of LPC analysis method (covariance or auto-
correlation), the use of fixed pre-emphasis, and the
effects of additive, uncorrelated noise on the distribu-
tions.

1. Introduction

Since a number of modern speech processing systems use
linear prediction coefficients (LPC) as the basis of a speech
representation {3-6], there has been a great deal of research on
measures for comparing or computing the distance between sets of
LPC coefficients. Based on the pioneering statistical analyses of
Mann and Wald [7], Itakura [1] proposed a distance measure which
he called the log likelihood ratio. This name is appropriate if the
speech signal is modeled as the output of a linear system excited by
Gaussian white noise. In section 2 we will point out that it is possi-
ble to drop the requirement that the excitation be Gaussian. From
this, more general, point of view we will define a statistic which has
a x?2 distribution. Itakura’s measure is just a monotonic function of
this statistic. For want of a better term, however, we will continue
calling it a log likelihood ratio.

2. Statistical Properties of LPC Distances

The theoretical foundation for the statistical analysis of LPC
distances was originally given by Mann and Wald [7]. In this sec-
tion we review the relevant theory, present the key results of Mann
and Wald using modern notation, and discuss its application to log
likelihood ratios.

2.1. The Model
Consider an all-pole stable system of the form

Vi
Y = _Eakyn—k+xn M
k=1
where the input samples x,, —co <n<co are statistically indepen-
dent, identically distributed, random variables. We will assume that
their distribution has mean zero and variance 2 and that it has
finite higher moments.

“The order of the authors names was determined at random.
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2.2. Parameter Estimation

Assuming that a given speech signal can be represented as the
output of the system of Eq. (1), a standard problem is to estimate
the parameters ai, ...,a, and the variance o2, from just a
knowledge of N output samples. A reasonable method of estimating
these quantities is to use the minimum mean squared error
(MMSE) criterion. Thus consider the N'=N—p equations obtained
from Eq. (1) with n = m,m—1,m—=2,...m— N'+1 respectively. (Note
that knowledge of N samples allows one to write only N' equa-
tions.) These equations can be written in matrix notation as fol-
lows:

y=-Ya+x )
where
y is a column vector with components ¥,y....Ym—-nN'+15
Y is a N'xp matrix whose components are
Y,:,' = Ym+1-i—j > i=1,.. N, j=l..p; 3)
a is a column vector with components ay, - . . , @
x is a column vector with components X,,;, . . . , Xy n+|-
Form an estimate, ¥, of y given by
y=-Ya )

where ¥ and 4 are defined analogously to y and a. Then the MMSE
estimate a is obtained by minimizing
e=@Gy-9'G-9
= (y+Ya)'(y+Ya)
where ' denotes matrix transposition. The usual minimization by
setting the gradient equal to zero gives
YYa=-YYy &)

whose solution is the required estimate. Note that Y'Y is just N’
times the estimated pxp covariance matrix ® of the output process
y. Thus Eq. (5) may be written as

N'ba = -Y'y. )
Substituting for y from Eq. (2) gives
N'da = N'dba — Y'x
or
N'dA = -Y'x 7

where we have defined A=a—a.

As is well known, Eq. (6) has a more convenient form in
terms of the (p+1)x(p+1) covariance matrix and the (p+1)
dimensional coefficient vector obtained from a by adding a com-
ponent ag=1. Denoting this augmented vector by « and the
(p+1) x(p+1) covariance matrix by ¥, Eq. (6) may be written as

V& = . (8)

Here u is the unit vector with components 1,0,...,0; \f/, a and &
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are estimates of ¥, a, and o respectively, with

Gl=aVa.
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2.3. The Estimation Error

With the above definitions the following theorem holds:
Theorem: In the limit as N'—co_ the components of the scaled LPC
error vector ~/N'A are jointly Gaussian. Their mean asymptotically
approaches zero and their ‘covariance matrix approaches A, such
that

A= lim %071 = g2~ (10)

N'—cc
Needless to say, any g<p components are also jointly Gaussian
with a covariance matrix obtained from A by selecting the respec-
tive rows and columns.

A rigorous proof of this theorem was given by Mann and
Wald {7].

2.4. Hypothesis Testing. Case 1: Reference LPC Vector Known

Suppose a vector a has been estimated from N samples of a
given signal y as above. it is often of interest (e.g., in word recog-
nition tasks) to test the hypothesis that the signal was generated by
Eq. (1) with a specified vector a=ay._Calling this hypothesis H, we
note that under Hy the vector vVN'A has jointly Gaussian com-
ponents with covariance «*b~!. From this it follows that under Hy
the quantity N'A'‘GA/s? has a x? distribution with p degrees of
freedom. Defining the statistic
Ha,d) = 2oada, (an
a
in terms of estimated quantities, we therefore see that asymptoti-
cally /(a,4) has a x? distribution with p degrees of freedom. Equa-

tion (11) can be written in terms of W as

N (a—a}"{’ Ea-a)
aVa

Once we have a statistic with a x? distribution the hypothesis Hg

can be accepted or rejected by comparing it to prespecified thres-
holds. :

{(a,a) = 12)

2.5. "Log Likelihood Ratio"

Equation (12) can be put into a particularly simple form by
using Eq. (8). Premultiplying this equation in turn by & and o
and remembering that u has components 1,0,...,0 we get

aVa =6l (13a)
aVa =5t (13b)
Thus
(a—a)¥a =0 (13¢)
Then it immediately follows from Eq. (12) that
I(a,d) = NEYe (14)
aVa

The first term on the right hand side of Eq. {14) is proportional to
the likelihood ratio; therefore the log likelihood ratio is a monotonic
function of 1{a,a). Clearly any threshoid for /{a,&) corresponds 10 a
unique threshold for the log likelihood ratio. Hence for hypothesis
testing the two are entirely equivalent. Thus if L denotes the log-
likelihood ratio, then

!
= N'log, —1. 15
L = N'log 1+ N’] (15)

If p(x) denotes the density function of / and p;(x) the density
function of L, then

PL(X) = e'\levP/[Nl(e'\./N‘—l)]- (16)
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On the scale to which the figures in this paper are drawn, the
two functions are in fact indistinguishable. However, the point of
view presented here is somewhat more appealing than the usual
justification for the log likelihood ratio. ( There is no need to
assume (Gaussian inputs or to approximate log.(1+x) by x as is
usually done).

Case 2:

2.6. Hypothesis Testing. Reference LPC Vector

Estimated

In most applications the true vector a is not available for com-
parison. What is known instead is a MMSE estimate of a, called
the reference template a z, obtained from some data yz. Let a test
estimate 4 r be obtained from some data y r independent of y;. We
are then interested in testing the hypothesis Hp that vy and yj
were generated by the same underlying vector a.

In this case we note that the components of the vector
\/N'(ﬁr—ﬁR) =\/V(£T—a)—\/7\7(ﬁk~a) (17)

are again Gaussian under Hg. However, their covariance matrix is
2A because a7 and a4 are independent and identically distributed.
Therefore under Hg the statistic

i'[ ﬁR"i/ﬁR
2 a Var

1] (18)

I(ﬁ T é R) =
has a x? distribution with p degrees of freedom.

2.7. The Effect of Windowing

The derivations above have implicitly assumed the “covari-
ance" method of LPC analysis. It is possible to include the effect of
windowing used in the "autocorrelation” method by merely replac-
ing N' in the above formulae by an effective number of samples
N, For the covariance method this effective number is

Neyr=N—p =N (19)

as seen from Eq. (12). In the autocorrelation method the N given
samples are augmented by p zero samples and the dimension of the
vectors in Eq. (2) is N rather than N'. Further the samples y are
weighted by a window function. The effect of this windowing can
be understood by multiplying both sides of Eq. (2) by a diagonal
matrix W whose diagonal elements are the window weights.Then
for N>>p Eq. (2) becomes

Wy =v =—-WYat+Wx

= —Va+Wx. (20)

Here v is the weighted output vector and V is obtained from v
exactly as Y was obtained from y. ( Of course the long dimension
in Eq. (20) is understood to be N). Thus the situation is as before
with x replaced by Wx and Y by V. Let w, and w4 represent the
averages of the second and fourth power of the window function,
then it is seen that

VV=w,Y'Y
V'Wx=w,Y'x
VWxxWV'=w,Y'xx'Y

To the extent that these approximations are valid, it can be shown
that there is no bias for the autocorrelation method. However, the
effective number of samples is

2

N, == _W_Z_N
eft Wa
K
= BN 21)

Here =1 for a rectangular window and 8=.55 for a Hamming win-
dow. ( We believe 0.55 to be much more accurate than the value
0.3975 suggested by Sambur and Jayant [8].)



2.8. The Effects of Pre-emphasis

Earlier investigations have shown that pre-emphasizing the
signal with a simple first order network improves the accuracy of
the LPC analysis for the autocorrelation method, but has little
effect for the covariance method. The reason for this result is as
follows: For the autocorrelation method, the signal is multiplied by
a finite duration window as in section 2.7, i.e.,

V,=Yy,w, , 0SnN-1 22
In the frequency domain we get )
V(elv) = Y(e/) *W(e/). (23)

Thus V(e is convolved with W(e/) in the autocorrelation

method. If the spectrum of ¥{(e’*) has a large dynamic range, e.g., .

40 dB between peaks at the pole frequencies, then the effect of the
windowing is to partially smear out the peaks at some poles by the
sidelobes from others. The effect of pre-emphasis is to whiten the
signal spectrum. This generally reduces the dynamic range of the
spectrum, thereby improving the accuracy of the LPC analysis.

For the covariance method there is no explicit windowing of
the signal, and this effect is not present.

2.9. The Effects of Additive White Noise

The effects of additive noise on LPC analysis have been stu-
died by Sambur and Jayant {8], Lim and Oppenheim {9] and Boll
{10]. Additive noise degrades the LPC analysis by introducing dis-
tortions of the signal spectrum in the valleys. In statistical terms,
the estimation procedure of section 2.2 gives a biased estimate of a.
Thus suppose instead of y, one is given the vector

(24)

where n is a statistically independent white noise. Then if Z is
obtained from z as Y was -from y, the Eq. for the estimate a
becomes

zZ = y+n

274 =-1"z. (25)
An analysis similar to the noiseless case shows that asymptotically

as N' becomes large, the mean of v N'4 is given by

EVNAEl = VN'®, \¢a (26)

where

- Lgw
®. =+ El7'7] 27

and @ is defined in Eq. (10).

The components of ~/N'd again become Gaussian as N—oo;
their means are given by Eq. (26) and their covariance matrix
asymptotically approaches A, given by

A= (oMo, D0,! (28)

where «,? is the variance of the added noise. Since y is not
observable, the mean of Eq. (26) cannot be computed, and there-
fore the distribution of ~/N'(d—a) cannot be computed. The distri-
bution obtained by assuming the mean to be zero gives a very poor
fit to measurements, as we shall see in section 3.3.

Consider now the case when a test estimate a7 and a refer-
ence template a4, have been obtained in the presence of noise with
the same statistical properties. In this case the distribution of a;—4z
is much less affected by the noise. Note that 4 ;—a g has zero mean,
and a covariance given by 2A.. Now in Eq. (28) the matrix @. can
be estimated from z. Thus if o2+ ,2 could be estimated, we would
have an estimate of A.. If we define ¥ analogously to ¥, then as
for the noiseless case we can use 4V .4 as an estimate of o’+a %
This estimate can be shown to be biased. Nevertheless it allows us
to define a statistic /(47,4 z) exactly as in Eq. (14) for the noiseless
case, with W replaced by ¥.. As we will see in section 3.3, the bias
in the estimate of o+ ,2 is not very large.

In summary, although the estimate a is strongly affected by
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additive noise, the statistic of Eq. (14) is quite insensitive to it.

3. Experimental Results

To test the validity of the analysis equations of Section II, a
Gaussian, zero mean, white noise signal was used to excite a linear
system of the type shown in Figure 1. The coefficients of the linear
system (the vector a) were determined from an LPC analysis of the
vowel a as in father from a section of natural voiced speech. Two
sets of LPC coefficients were obtained; one set a = a|, was from a
10-pole analysis (p=10) of the vowel; the other set a = a, was
from a 10-pole analysis of a pre-emphasized vowel. For some of
the tests a zero-mean, white Gaussian noise e, was added to the
output y,, at signal-to-noise ratio S/N where S/N was either 20 dB
or 10 dB.

A total of 1000 independent frames, each of duration 300
samples, were created using the system of Figure 1 for each of the:
4 input conditions, namely:

1. No pre-emﬁhasis (a = a,); no noise - y(n) output

2. Pre-emphasis (a = a5); no noise - y(n) output

3. No pre-emphasis (a = a,); noise added - y,(n) output

4. Pre-emphasis (a = ay); noise added - y,(n) output

For each of the 4 input conditions, 2 types of LPC analysis were

performed. These were

1.  Covariance analysis with a frame length of 300 samples, and a
number of poles p = 10.

2. Autocorrelation analysis with a frame length of 300 samples,
and a number of poles p = 10. Both a rectangular window
and a Hamming window were used. :

In addition, for each of the combinations of inputs and analyses,

two measurements of the log likelihood ratio were made. These

were: :

1. Case 1 (Eq. (14)), where the LPC vector a was known and
only the test LPC vector was computed from the data.

2. Case 2 (Eq. (16)), where both the reference LPC vector ay
and the test LPC vector a y were computed from the data.

3.1 Case 1, No Additive Noise

The first set of results, given in Figure 2, is for Case 1 when
the LPC vector a is known. Figure 2 shows plots of the theoretical
and measured histograms of the log likelihood ratio for the cases
1.  Covariance analysis, no pre-emphasis (Fig. 2a).

2. Autocorrelation analysis,
emphasis (Fig. 2b).

rectangular  window, no-pre-
3. Autocorrelation analysis, Hamming window, no pre-emphasis

(Fig. 2¢). (B8 set to 0.55).
Covariance analysis, pre-emphasized (Fig. 2d).

5. Autocorrelation analysis, rectangular window, pre-emphasized
(Fig. 2e).

6.  Autocorrelation analysis, Hamming window, pre-emphasized
(Fig. 2f). (B set to 0.55).

A total of 998 measurements of the log likelihood ratio distance
were used in all measured histograms. The data were obtained by
using the first 998 nonoverlapping frames of output of the system
of Figure 1.

From Figure 2 (and comparable plots for a uniform noise
excitation) the following conclusions can be drawn.

1.  There is excellent agreement between the measured distribu-
tion and the theoretical X2 distribution with p = 10 degrees of
freedom for 4 of the 6 conditions.

2. The effect of pre-emphasis is to considerably improve the fit
for the case of using a rectangular window with the autocorre-
lation method.



3. An effective length of 8 =10.55 provides good fits for the
Hamming window examples.

4.  The distribution of the LPC estimates is quite insensitive to
the distribution of the input exciting the linear system of Eq.
.

3.2 Case 2, No Additive Noise

Figure 3 shows plots of the measured and theoretical distribu-
tions of the log likelihood ratio for the Case 2 analysis methods in
which both the reference and test LPC vectors were estimated from
the data, and when no additive noise was used. The six plots are
for the same 6 cases as shown in Figure 2. It can be seen that the
agreement between the measured and theoretical distributions of
the log likelihood ratio is extremely good for all cases except the
unpre-emphasized autocorrelation analysis using the rectangular
window where the agreement is somewhat worse than for the other
cases. These examples essentially completely validate the statistical
model of Section IL

3.3 Additive Noise Examples

To investigate the effects of additive, zero mean, white Gaus-
sian noise on the agreement between the theoretical and actual dis-
tributions of the log likelihood ratio, noise was added to the output
signal y(n) in Fig. | at signal-to-noise ratios of 10 dB and 20 dB.
Figure-4 shows plots of measured and theoretical distributions of
the log likelihood ratio for Case 1 for the 10 dB signal-10-noise ratio
examples. (Essentially equivalent results were obtained for the 20
dB cases).

From Figure 4 it is seen that there is essentially no agreement
between the theoretical and measured distributions for the Case 1
data since the estimate of the LPC set a from the noisy data was
greatly in error, as discussed in Section 1I. However, when one
used the Case 2 method of estimating both reference and test LPC
sets from the noisy data, the theoretical and measured distributions
of the log likelihood ratio were found to be essentially the same.
Thus the error in the estimation of o2 + 2 mentioned in Section
2.9 is not significant.

3.4 Explanation of de Souza’s Results

In addition to the scts of daw discussed in Section 111, the 257
order system used by de Souza was simulated with the system of
Figure 1. The LPC coeflicients were identically those used by de
Souza. ligure Sa shows the frequency responsc, and Figure Sb
shows the imputse response of the lincar system that was used. We
sce that although a 257 order system was used, the first pole is of
narrow bandwidth and low center frequency, whereas the remaining
poles are much higher in frequency. Duce 1o the narrowness of the
bandwidth of the lowest pole the amplitude of the log spectrum is
down on the order of 40 dB or more for the higher poles. Thus
this lincar system. although technically a 257 order system. could
be well modelled as a 2 order system. The result of the narrow
bandwidth of the first pole is that the impulse response lasts tor
more than 1000 samples. Thus to ensure sulticient data o resolve
the bandwidths of the poles of the system requires scction lengths
A greater than 1000,

When de Souza made his measurements of the log likelihood
ratio for data obtained from the output of the 257 order system, he
used 200 sample sections to estimute both ax and a, {using the
Case 2 miethod of measuring the log liketihood ratio), and he usced
a rectangular window for the autocorrelation method.  In addition
he didn't apply the A/2 factor for the practical method in weighting
the log likelihood ratio for the x° distribution: instcad he used the
factor of N as for Case 1 estimates. All of these difficulties com-
bincd to lead de Souza 1o conclude that the actual statistical proper-
tics of the log likelihood ratio did not match those predicted by
theory - a conclusion which we have refuted in this paper.
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To demonstrate the above points, Figure 6 shows a plot of the
measured and theoretical distributions of the log likelihood ratio
obtained using the Case | estimate {a known) for the covariance
method with pre-emphasis of the data. The measured data have a
slightly smaller mean and variance than the theoretical x° distribu-
tion for 25 degrees of freedom.

4. Application of Statistical Results to Speech Examples

We have shown that in the case of random inputs exciting
linear systems, the measured properties of the log likelihood ratio
agree closely with those predicted theoretically--namely, that the
ratio for p-dimensional LPC vectors is x° distributed with p degrees
of freedom, provided p is at least equal te the order of the linear
system. The key remaining question is the. applicability of this
result to actudl speech signals.

For fricative sounds the model studied here applies directly,
and the distributions are as predicted. For voiced speech sounds.
however, the measured distributions are nor x? distributed for any
of the alternative cases we have discussed in this paper. This is
because the assumptions used to derive the distribution break down
for voiced speech sounds. For such sounds there is a random com-
ponent of the excitation (e.g., modelling error, the high frequency
portion of many voiced sounds, etc.) which may plausibly have the
properties assumed above. However, a large part of the energy in
the excitation is quasi-periodic, and cannot be assumed to consist of
statistically independent random samples. The effect of this com-
ponent is to add a bias to the estimates and, of course make the
estimate of o? larger than the variance of the random component.
Thus knowledge of the distribution of the log likelihood ratio for
random inputs does not solve the problem of providing thresholds
in the case of voiced sounds. Nevertheless, word recognition algo-
rithms based on the likelihood ratio are highly successiul in prac-
tice. For this we have the following plausible. but far from ade-
guate, explanation.

Note that in a word recognition task, what is of interest is the
stin of the distances between many pairs (typically 20 to 30} of
LPC vectors. And the vectors are not all estimates of the same
specch sound but typically of 5 or 6 different specch sounds. We
suggest that the bias term becomes negligible when averaged over
many different voiced sounds. In that casc the total distance would
still be approximately a sum of Xz distributions, cxcept for a scaling
of &7, The cxact scaling error is ol course unknown, but it is plausi-
ble that a compromise threshold can be experimentally determined.

5. Summary

In this paper we have shown that the log likelihood between
p-dimensional LPC estimates is both theoreticully and in practice x’
distributed with p degrees of freedom, provided p is at least equal to
the order of the linear system which generated the data being
analyzed. We have examined the effects of pre-emphasis, different
LPC methods, different windows, and additive random noise on the
measured distributions. Finally, we have given a plausible explana-
tion why such a statistical model can be "roughly” applied to actual
speech signals.
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