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ABSTRACT 

A wide variety of distance measures for comparing 
sets of LPC coefficients have been proposed. The most 
popular one has been the log likelihood ratio test as pro- 
posed by Itakura 111. Although this measure is both 
computationally efficient, and theoretically sound, de 
Souza, in a recent paper [21, found that the measured 
distribution of LPC distances was significantly different 
from the one predicted by theory. De Souza then pro- 
posed alternative statistical tests for measuring LPC dis- 
tances. In this paper we present both theoretical and 
experimental results which show that there is, in gen- 
eral, excellent agreement between theory and practice 
when using the log likelihood ratio to measure LPC dis- 
tance. Included in the paper are discussions of the 
effects of LPC analysis method (covariance or auto- 
correlation), the use of fixed pre-emphasis, and the 
effects of additive, uncorrelated noise on the distribu- 
tions. 

1. Introduction 
Since a number of modern speech processing systems use 

linear prediction coefficients (LPC) as the basis of a speech 
representation [3-6], there has been a great deal of research on 
measures for comparing or computing the distance between sets of 
LPC coefficients. Based on the pioneering statistical analyses of 
Mann and Wald [7], Itakura [1] proposed a distance measure which 
he called the log likelihood ratio. This name is appropriate if the 

speech signal is modeled as the output of a linear system excited by 
Gaussian white noise. In section 2 we will point out that it is possi- 
ble to drop the requirement that the excitation be Gaussian. From 
this, more general, point of view we will define a statistic which has 
a y2 distribution. Itakura's measure is just a monotonic function of 
this statistic. For want of a better term, however, we will continue 
calling it a log likelihood ratio. 

2. Statistical Properties of LPC Distances 

The theoretical foundation for the statistical analysis of LPC 
distances was originally given by Mann and Wald [7]. In this sec- 
lion we review the relevant theory, present the key results of Mann 
and Wald using modern notation, and discuss its application to log 
likelihood ratios. 

2.1. The Model 

Consider an alt-pole stable system of the form 
p 

k=i 

where the input samples x5, —00< n <oo are statistically indepen- 
dent, identically distributed, random variables. We will assume that 
their distribution has mean zero and variance cr2, and that it has 
finite higher moments. 

The order of the authors names was determined at random. 

2.2. Parameter Estimation 

Assuming that a given speech signal can be represented as the 
output of the system of Eq. (1), a standard problem is to estimate 
the parameters at a and the variance o2, from just a 
knowledge of N output samples. A reasonable method of estimating 
these quantities is to use the minimum mean squared error 
(MMSE) criterion. Thus consider the N'=N—p equations obtained 
from Eq. (1) with n = ,n,m—l,m—2,...m—N'+l respectively. (Note 
that knowledge of N samples allows one to write only N' equa- 
tions.) These equations can be written in matrix notation as fol- 
lows: 

where 

y = —Ya + x 

y is a column vector with components ym...'ym-,v'÷t; 
Y is a N'xp matrix whose components are 

(2) 

1=1 N' , j=1 p; (3) 

a is a column vector with components a1 a0; 

x is a column vector with components x,,, X,5_N+l. 

Form an estimate, ', of y given by 
= —Yã (4) 

where and a are defined analogously to y and a. Then the MMSE 
estimate a is obtained by minimizing 

e = (y—)'(y—) 

(y+Yâ)'(y+Yã) 
where ' denotes matrix transposition. The usual minimization by 
setting the gradient equal to zero gives 

Y'Yã = —Y'y (5) 

whose solution is the required estimate. Note that Y'Y is just N' 
times the estimated pXp covariance matrix r1 of the output process 
y. Thus Eq. (5) may be written as 

or 

N'ã —Y'y. 

Substituting for y from Eq. (2) gives 

N'ã = N'ba — Y'x 

N' = -Y'x 
where we have defined =ä—a. 

(6) 

(7) 

(1) As is well known, Eq. (6) has a more convenient form in 
terms of the (p+l)x(p+1) covariance matrix and the (p+l) 
dimensional coefficient vector obtained from a by adding a com- 
ponent a0=l. Denoting this augmented vector by a and the 
(p+I)x(p+l) covariance matrix by 'Ii, Eq. (6) may be written as 

sIt & = & (8) 
Here u is the unit vector with components 1,0 0; 'I', & and & 
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2.3. The Estimation Error 
With the above definitions the following theorem holds: 

Theorem: In the limit as N'—°°, the components of the scaled LPC 
error vector -fNt are jointly Gaussian. Their mean asymptotically 
approaches zero and their covariance matrix approaches A, such 
that 

lim 6-2b1 

Needless to say, any q <p components are also jointly Gaussian 
with a co'atiance matrix obtainec.1 ftom l by selecting the respec- 
tive rows and columns. 

A rigorous proof of this theorem was given by Mann and 
Wald [71. 

2.4. Hypothesis Testing. Case 1: Reference LPC Vector Known 

Suppose a vector a has been estimated from N samples of a 
given signal y as above, It is often of interest (e.g., in word recog- 
nition tasks) to test the hypothesis that the signal was generated by 
Eq. (1) with a specified vector a=a0. Calling this hypothesis H0, we 
note that under H0 the vector 'JN has jointly Gaussian com- 

ponents with covariance r2'0. From this it follows that under H0 
the quantity N'dtit/c-2 has a y2 distribution with p degrees of 
freedom. Defining the statistic 

l(a,â) = 

in terms of estimated quantities, we therefore see that asymptoti- 
cally l(a,ã) has a x2 distribution with p degrees of freedom. Equa- 
tion (11) can be written in terms of P as 

l(a,ä) = N' (&—a)"—a) (12) â"l'â 
Once we have a statistic with a x2 distribution the hypothesis H0 
can be accepted or rejected by comparing it to prespecified thres- 
holds. 

2.5. "Log Likelihood Ratio' 

Equation (12) can be put into a particularly simple form by 
using Eq. (8). Premultiplying this equation in turn by &' and a' 
and remembering that u has components 1,0 0 we get 

= 

a"i'â = 

Thus 

(a—a"I'a = 0 

Then it immediately follows from Eq. (12) thot 

l(a,ã) = N'[--—11 . (14) 

The first term on the right hand side of Eq. (14) is proportional to 
the likelihood ratio; therefore the log likelihood ratio is a monotonic 

function of l(a,ä). Clearly any threshold for l(a,ã) corresponds o a 
unique threshold for the log likelihood ratio. Hence for hypothesis 
testing the two are entirely equivalent. Thus if L denotes the log- 
likelihood ratio, then 

L = N'logjl+-4]. (15) 
N =N. 

If p,(x) denotes the density function of / and pL(x) the density 
function of L, then 

pt(x) = e''p1[N'(e'—1)1. 

are estimates of '4', a, and a- respectively, with On the scale to which the figures in this paper are drawn, the 
(9) two functions are in fact indistinguishable. However, the point of 

view presented here is somewhat more appealing than the usual 
justification for the log likelihood ratio. ( There is no need to 
assume Gaussian inputs or to approximate log(1+x) by x as is 

usually done). 

2.6. Hypothesis Testing. Case 2: Reference LPC Vector 
Estimated 

In most applications the true vector a is not available for corn- 
(10) parison. What is known instead is a MMSE estimate of a, called 

the reference template R, obtained from some data YR. Let a test 
estimate a r be obtained from some data YT independent of YR. We 
are then interested in testing the hypothesis H0 that 'j T and Y Il 
were generated by the same underlying vector a. 

In this case we note that the components of the vector 

'v'7°(ãr—ãR) = ãr—a)/V(ãRa) (17) 

are again Gaussian under H0. However, their covariance matrix is 
2i because T and aR are independent and identically distributed. 
Therefore under H0 the statistic 

l(âT,ãR) 
aRWaR 

—1] (18) 2 aT'4'ar 
has a y2 distribution with p degrees of freedom. 

2.7. The Effect of Windowing 

(11) 
The derivations above have implicitly assumed the "covari- 

ance' method of LPC analysis. It is possible to include the effect of 
windowing used in the "autocorrelation" method by merely replac- 
ing N' in the above formulae by an effective number of samples 
N,17. For the covariance method this effective number is 

Ne11 N—p N' (19) 

as seen from Eq. (12). In the autocorrelation method the N given 
samples are augmented by p zero samples and the dimension of the 
vectors in Eq. (2) is N rather than N. Further the samples y are 
weighted by a window function. The effect of this windowing can 
be understood by multiplying both sides of Eq. (2) by a diagonal 
matrix W whose diagonal elements are the window weights.Then 
for N>>p Eq. (2) becomes 

Wy = v = —WY+Wx 

—Va+Wx. (20) 

(13a) Here v is the weighted output vector and V is obtained from V 

(13b) exactly as Y was obtained from y. ( Of course the long dimension 
in Eq. (20) is understood to be N). Thus the situation is as before 
with x replaced by Wx and Y by V. Let w2 and w4 represent the 

(13c) averages of the second and fourth power of the window function, 
then it is seen that 

V'V" w2Y'Y 

V'Wx" w2Y'x 

V'Wxx'WV"= w4Y'xxY 

To the extent that these approximations are valid, it can be shown 
that there is no bias for the autocorrelation method. However, the 
effective number of samples is 

w22 
N,11 —N 

w4 

(21) 

Here (3=1 for a rectangular window and (3=55 for a Hamming win- 
dow. ( We believe 0.55 to be much more accurate than the value 

(16) 0.3975 suggested by Sambur and Jayant [81.) 
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2.8. The Effects of Pre-emphasis additive noise, the statistic of Eq. (14) is quite insensitive to it. 
Earlier investigations have shown that pre-emphasizing the 

signal with a simple first order network improves the accuracy of 
the LPC analysis for the autocorrelation method, but has little 
effect for the covariance method. The reason for this result is as 
follows: For the autocorrelation method, the signal is multiplied by 
a finite duration window as in section 2.7, i.e., 

v=yw , 0nN—1. 
In the frequency domain we get 

V( ei") = Y(e'°) * W(eJ0). 

Thus V(e") is convolved with W(e') in the autocorrelation 
method. If the spectrum of V(e') has a large dynamic range, e.g., 
40 dB between peaks at the pole frequencies, then the effect of the 
windowing is to partially smear out the peaks at some poles by the 
sidelobes from others. The effect of pre-emphasis is to whiten the 
signal spectrum. This generally reduces the dynamic range of the 
spectrum,thereby improving the accuracy of the LPC analysis. 

For the covariance method there is no explicit windowing of 
the signal, and this effect is not present. 

2.9. The Effects of Additive White Noise 
The effects of additive noise on LPC analysis have been stu- 

died by Sambur and Jayant [8], Lim and Oppenheim E9] and Boll 
[101. Additive noise degrades the LPC analysis by introducing dis- 
tortions of the signal spectrum in the valleys. In statistical terms, 
the estimation procedure of section 2.2 gives a biased estimate of a. 
Thus suppose instead of y, one is given the vector 

z = y+n (24) 

where n is a statistically independent white noise. Then if Z is 
obtained from z as Y was from y, the Eq. for the estimate a 
becomes 

Z'Zâ = —Z'z. 

An analysis similar to the noiseless case shows that asymptotically 
as N' becomes large, the mean of 'J7â is given by 

= )a (26) 

-E[Z'Z] 
and D is defined in Eq. (10). 

The components of JVâ again become Gaussian as N—'oo; 
their means are given by Eq. (26) and their covariance matrix 
asymptotically approaches it - given by 

it = (a-2+r,2)l (28) 

where r112 is the variance of the added noise. Since y is not 
observable, the mean of Eq. (26) cannot be computed, and there- 
fore the distribution of -/iN7(â—a) cannot be computed. The distri- 
bution obtained by assuming the mean to be zero gives a very poor 
fit to measurements, as we shall see in section 3.3. 

Consider now the case when a test estimate a and a refer- 
ence template a5 have been obtained in the presence of noise with 

the same statist/ca/properties. In this case the distribution of T—R 
is much less affected by the noise. Note that —a5 has zero mean, 
and a covariance given by 2it,. Now in Eq. (28) the matrix 1. can 
be estimated from z. Thus if could be estimated, we would 
have an estimate of A-. If we define 'V. analogously to 'I', then as 
for the noiseless case we can use á'V as an estimate of (r2+(r,,2. 
This estimate can be shown to be biased. Nevertheless it allows us 
to define a statistic l(âT,âp) exactly as in Eq. (14) for the noiseless 
case, with 'I' replaced by 'V. As we will see in section 3.3, the bias 
in the estimate of r2+r2 is not very large. 

In summary, although the estimate a is strongly affected by 

741 

3. Experimental Results 
To test the validity of the analysis equations of Section II, a 

Gaussian, zero mean, white noise signal was used to excite a Iineat 
system of the type shown in Figure 1. The coefficients of the linear 
system (the vector a) were determined from an LPC analysis of the 
vowel a as in father from a section of natural voiced speech. Two 
sets of LPC coefficients were obtained; one set a a1, was from a 
10-pole analysis (p=IO) of the vowel; the other set a = a2 was 
from a 10-pole analysis of a pre-emphasized vowel. For some of 
the tests a zero-mean, white Gaussian noise e was added to the 
output y, at signal-to-noise ratio S/N where S/N was either 20 dB 
or 10 dB. 

A total of 1000 independent frames, each of duration 300 
samples, were created using the system of Figure 1 for each of the 
4 input conditions, namely: 

1. No pre-emphasis (a = a1); no noise - y(n) output 
2. Pre-emphasis (a = a2); no noise - y(n) output 
3. No pre-emphasis (a = ai); noise added - y1(n) output 
4. Pre-emphasis (a = a2); noise added - y1(n) output 
For each of the 4 input conditions, 2 types of LPC analysis were 
performed. These were 
1. Covariance analysis with a frame length of 300 samples, and a 

number of poles p = 10. 

2. Autocorrelation analysis with a frame length of 300 samples, 
and a number of poles p 10. Both a rectangular window 
and a Hamming window were used. 

In addition, for each of the combinations of inputs and analyses, 
two measurements of the log likelihood ratio were made. These 
were: 

3.1 Case 1, No Additive Noise 

1. Covariance analysis, no pre-emphasis (Fig. 2a). 
2. Autocorrelation analysis, rectangular window, no-pre- 

emphasis (Fig. 2b). 
3. Autocorrelation analysis, Hamming window, no pre-emphasis 

(Fig. 2c). ([ set to 0.55). 
4. Covariance analysis, pre-emphasized (Fig. 2d). 
5. Autocorrelation analysis, rectangular window, pre-emphasized 

(Fig. 2e). 
6. Autocorrelation analysis, Hamming window. pre-emphasized 

(Fig. 2f). (/3 set to 0.55). 
A total of 998 measurements of the log likelihood ratio distance 
were used in all measured histograms. The data were obtained by 
using the first 998 nonoverlappirig frames of output of the system 
of Figure 1. 

From Figure 2 (and comparable plots for a uniform noise 
excitation) the following conclusions can be drawn. 

1. There is excellent agreement between the measured distribu- 
tion and the theoretical x2 distribution with p 10 degrees of 
freedom for 4 of the 6 conditions. 

2. The effect of pre-emphasis is to considerably improve the fit 
for the case of using a rectangular window with the autocorre- 
lation method. 

(22) 

(23) 

where 

1. Case 1 (Eq. (14)), where the LPC vector a was known and 
(25) only the test LPC vector was computed from the data. 

2. Case 2 (Eq. (16)), where both the reference LPC vector a5 
and the test LPC vector aT were computed from the data. 

The first set of results, given in Figure 2, is for Case 1 when 

(27) the LPC vector a is known. Figure 2 shows plots of the theoretical 
and measured histograms of the log likelihood ratio for the cases 



3. An effective length of [3 0.55 provides good fits for the 
Hamming window examples. 

4. The distribution of the LPC estimates is quite insensitive to 
the distribution of the input exciting the linear system of Eq. 
(1). 

3.2 Case 2, No Additive Noise 

Figure 3 shows plots of the measured and theoretical distribu- 
tions of the log likelihood ratio for the Case 2 analysis methods in 
which both the reference and test LPC vectors were estimated from 
the data, and when no additive noise was used. The six plots are 
for the same 6 cases as shown in Figure 2. It can be seen that the 
agreement between the measured and theoretical distributions of 
the log likelihood ratio is extremely good for all cases except the 
unpre-emphasized autocorrelation analysis using the rectangular 
window where the agreement is somewhat worse than for the other 
cases. These examples essentially completely validate the statistical 
model of Section II. 

3.3 Additive Noise Examples 
To investigate the effects of additive, zero mean, white Gaus- 

sian noise on the agreement between the theoretical and actual dis- 
tributions of the log likelihood ratio, noise was added to the output 
signal y(n) in Fig. I at signal-to-noise ratios of 10 dB and 20 dB. 
Figure 4 shows plots of measured and theoretical distributions of 
the log likelihood ratio for Case 1 for the 10 dB signal-to-noise ratio 
examples. (Essentially equivalent results were obtained for the 20 
dB cases). 

From Figure 4 it is seen that there is essentially no agreement 
between the theoretical and measured distributions for the Case 1 

data since the estimate of the LPC set a from the noisy data was 

greatly in error, as discussed in Section 11. However, when one 
used the Case 2 method of estimating both reference and test LPC 
sets from the noisy data, the theoretical and measured distributions 
of the log likelihood ratio were found to be essentially the same. 
Thus the error in the estimation of ir2 + ir mentioned tn Section 
2.9 is not significant. 

3.4 Explanation of de Souza'.s Results 
In addition to the sets of data discussed in Section III. the 251 

order system used by de Souza was simulated with the system of 
Figure 1. The LPC coefficients were identically those used by ne 
Souza. Figure 5a showS the frequency response, and Figure Sb 
shows the impulse response of the linear system that was used. We 
see that although a 25' order system was used, the first pole is of 
narrow bandwidth and low center frequency, whereas the remaining 
poles are much higher in frequency - Due to the narrowness of the 
bandwidth of the lowest pole the am plitude of the log stteetrum is 
down on the order of 40 nIB or more or the higher Poles - I h ii 
this linear system, although technically a 25 order system, could 
be well modelled as a 2" order system. The result of the narrow 
bandwidth of the first pole is that the impulse response lasts for 
more than 1)1(1)1 samples. lhus to ensure suflicient data to resolve 
the handso idths of the poles of die system requires section lengths 
'i greater thai 1001), 

When dc Souza made his measurements of the log likelihood 
ratio for data obtained front the output of the 351 order system, he 
used 2(11) sample sections to estimate both Sn' and aj (using the 
Case 2 method of measuring the log likelihood ratio), and he Lised 
a rectangular window for the iutocorrelation method. In addition 
he didn't apply the ,V/2 factor for the gracticitl method in weighting 
the log likelihood ratio for the ' distributiont instead lie used the 
factor of .\ as 'or Case I estimates. All of these ditliculties com- 
bined to lead de Souza to conclude that the actual statistical proper- 
ties of the log likelihotod ratio did not match those predicted by 
theory - a conclusion which we have refuted in this paper. 

To demonstrate the above points, Figure 6 shows a plot of the 
measured and theoretical distributions of the log likelihood ratio 
obtained using the Case 1 estimate (a known) for the covariance 
method with pie-emphasis of the data. The measured data have a 
slightly smaller mean and variance than the theoretical xt distribu- 
tion for 25 degrees of freedom. 

4. Application of Statistical Results to Speech Examples 
We have shown that in the case of random inputs exciting 

linear systems, the measured properties of the log likelihood ratio 
agree closely with those predicted theoretically--namely, that the 
ratio for p-dimensional LPC vectors is y2 distributed with p degrees 
of freedom, provided p is at least equal to the order of the linear 
system. The key remaining question is the applicability of this 
result to actual speech signals. 

For fricative sounds the model studied here applies directly, 
and the distributions are as predicted. For voiced speech sounds, 
however, the measured distributions are not y2 distributed l'or any 
of the alternative cases we have discussed in this paper. This is 

because the assumptions used to derive the distribution break down 
for voiced speech sounds. For such sounds there is a random com- 
ponent of the excitation (e.g., modelling error, the high frequency 
portion of many voiced sounds, etc.) which may plausibly have the 
properties assumed tibove. However, a large part cii the energy in 
the excitation is quasi-periodic, and cannot bc assumed to consist of' 
statistically independent random samples. The effect of' this com- 
ponent is to add a bias to the estimates and, of' course make the 
estimate of irt larger than the variance of' the random component. 
Thus knowledge of the distribution of' the log likelihood ratio for 
random inputs does not solve the problem of providing thresholds 
in the case of voiced sounds, Nevertheless, word recognition algo- 
rithms bttsed (in the likelihood ratio are highly successful in prttc- 
lice. I' or this we have the following plausible. but far from ade- 
quate, explanation. 
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Note that in a word recognitioti task, what is of interest is the 
soon of tfic distances between litany pairs (typically 2)) to 30) of 
LPC vectors. And the vectors'are not all estimates iii' the same 
speech sound but typicttlly of' 5 (or 6 dificrent speech sounds. We 
suggest that the bias terni becomes negligible when averaged over 
mit y di ic rent voticcd so Li nds. In thttt case the total distance would 
still he approximately a sum of yt dtstribnttions, except f'or a scaling 
of 'rt. The exact scaling error is of course unknown, hut it is pltiusi- 
ble that a compromise threshold cart be experimentally determined. 

5. Summary 
in this paper we have shown that the log likelihood between 

p-dimensional LPC estimates is both theoretically and in practice x2 

distributed with p degrees of freedom, provided p is at least equal to 

the order of the linear system which generated the dttta being 
analyzed. We have examined the effects of pre-emphasis, different 

LPC methods, different windows, and additive random noise on the 
measured distributions. Finally, we have given a plausible explana- 
tion why such a statistical model can be "roughly" applied to actual 

speech signals. 
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