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Statistical Properties of an LPC Distance Measure
JOSÉ M. TRIBOLET, MEMBER, IEEE, LAWRENCE R. RABINER, FELLOW, IEEE, AND MAN MOHAN SONDHI

Abstract—Several distance measures have been proposed for comparing
sets of LPC coefficients. The most popular one has been the "log
likelihood ratio" proposed by Itakura [1]. In this paper we discuss this
measure (strictly speaking, a somewhat generalized version of it) from
both a theoretical and a practical point of view. We derive its statistical
properties both when the reference vector is known and when it is
estimated from the data. We also show how these properties are
affected by windowing, additive noise, and preemphasis. We present
results of extensive simulations in support of the theoretical predictions.
Finally, we argue that de Souza's [2] recent criticism of this measure is
unjustified.

I. INTRODUCTION

SINCE a number of modern speech processing systems use
linear prediction coefficients (LPC) as the basis of a speech

representation [3] — [6] , there has been a great deal of research
on measures for comparing or computing the distance between
sets of LPC coefficients. Based on the pioneering statistical
analyses of Mann and Wald [7], Itakura [1] proposed a
distance measure which he called the log likelihood ratio.
This name is appropriate if the speech signal is modeled as the
output of a linear system excited by Gaussian white noise. In
Section II we will point out that it is possible to drop the re-
quirement that the excitation be Gaussian. From this more
general point of view, we will define a statistic which has a x2
distribution. Itakura's measure is just a monotonic function of
this statistic. For want of a better term, however, we will
continue calling it a log likelihood ratio.

This measure has been used in a variety of applications,
including noise studies by Sambur and Jayant [8], LPC
vocoder studies by Makhoul et al. [91, as a quality measure
by Goodman et al. [10], and by Crochiere et al. [11].

The log likelihood ratio is attractive as a measure of distance
for several reasons, including:

1) Its statistical properties are theoretically understood.
2) It can be efficiently computed using a single (p + 1)

point dot product, where p is the order of the LPC analysis [1].
3) A physical interpretation can be attributed to the distance

in terms of exciting the LPC model for one frame from the
data of the other frame [12].

4) It can be interpreted in terms of spectral dissimilarity
between the LPC spectra of the 2 frames [12].
Although alternative LPC distance measures have been proposed
[12], the log likeithood ratio has remained the most popular
for the reasons given above.
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In this paper we reexamine the statistical model that leads
to the log likelihood ratio, and give experimental results
which verify the validity of this model, both for the case when
the reference LPC set is known exactly, and for the case when
both the reference and test LPC sets are estimated from the
data. We discuss the effects of the different LPC analysis
methods, preemphasis, and additive noise on the statistical
distributions. Using the results derived in this paper, we are
able to give an explanation of de Souza's finding that there
were significant discrepancies between predicted and experi-
mentally observed distributions of the log likelihood measure.
Finally, we discuss some practical implications of the results
of our experiments for speech processing applications.

II. STATISTICAL PROPERTIES OF LPC DISTANCES

The theoretical foundation for the statistical analysis of LPC
distances was originally given by Mann and Wald [7]. In this
section we review the relevant theory, present the key results
of Mann and Wald using modern notation, and discuss its
application to log likelihood ratios.

A. The Model

Consider an all-pole stable system of the form

pyfl (1)
k=1

where the input samples x, —00< n <00 are statistically-inde-
pendent identically-distributed random variables. We will
assume that their distribution has mean zero and variance o2,
and that it has finite higher moments. Stochastic difference
equations of this type arise in many situations, e.g., as a model
of a speech signal.

B. Parameter Estimation

Assuming that a given speech signal can be represented as
the output of the system of (1), a standard problem is to
estimate the parameters a1, , and the variance a2 from
just a knowledge of N output samples. A reasonable method
of estimating these quantities is to use the minimum mean-
squared error (MMSE) criterion. Thus consider the N' =N - p
equations obtained from (1) with n =m, m 1, m - 2,
m — N' + 1, respectively. (Note that knowledge of N samples
allows one to write only N' equations.) These equations can
be written in matrix notation as follows:

y-Ya+x (2)

where

y is a column vector with components Ym, ,YmN'+l;
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Y is a N' X p matrix whose components are

j=Ym+i-i-j, i=1,",N', i=1,...,p;
a is a column vector with components a1,"- ,
x is a column vector with components xm," ,X_'+ .
Form an estimate ,ofy given by

y = - Va

where j and are defined analogously toy and a. Then the
MMSE estimate ' is obtained by minimizing

e=(y-(y-j)
= (y + Y')' (y + YI)

where " denotes matrix transposition. The usual minimi-
zation by setting the gradient equal to zero gives

Y'Vi = -Y'y
whose solution is the required estimate. Note that Y'V is just
N' times the estimated p X p covariance matrix I of the out-
put processy. Thus (5) may be written as

N' -Y'y.
Substituting fory from (2) gives

,AN4a=Na- Yx

N't= —Y'x

or

where we have defined = a.
As is well known, (6) has a more convenient form in terms

of the (p + 1) X (p + 1) covariance matrix and the (p + 1)
dimensional coefficient vector obtained from a by adding a
component a0 = 1. Denoting this augmented vector bya and
the (p + 1) X (p ÷ 1) covariance matrix by '1!', (6) may be
written as

Here u is the unit vector with components 1,0, . . . , 0; '4', ,
and a are estimates of'!', a, and a, respectively, with

C. The Estimation Error

(9)

With the above definitions the following theorem holds.
Theorem: In the limit as N' —o, the components of the

scaled LPC error vector /N are jointly Gaussian. Their
mean asymptotically approaches zero and their covariance
matrix approaches A, such that

A = lim 2 tj)-1 = a2(tr'
N '- (10)

From the definition of a joint Gaussian distribution, any q <p
components are also jointly Gaussian with a covariance matrix
obtained from A by selecting the respective rows and columns.
Also, since a differs from by the fted vector a, it follows
that the components of are also Gaussian with the same
covariance matrix.

A rigorous proof of this theorem was given by Mann and

(3)
Wald [7] in a rather long and difficult paper. Their result is
quoted often, yet we have not come across a simpler derivation.
In the Appendix we give a heuristic proof which sacrifices some
amount of rigor in order to gain some insight into the basic
ideas involved.

(4) D. Hypothesis Testing—Case 1: Reference LPC Vector Known

Suppose a vector ' has been estimated from N samples of a
given signal y as above. It is often of interest (e.g., in word
recognition tasks) to test the hypothesis that the signal was
generated by (I) with a specified vector a =a0. Call this
hypothesis H0. Then, defining = - a0, we note that
asymptotically under H0 the vector \/7VT,0 has jointly Gaus-
sian components with covariance a24. From this it follows
that under H0 the quantity N' 0/a2 has asymptotically
a x2 distribution with p degrees of freedom. [Note that if the
specified vector a0 has q <p components, then the distribu-
tion is still 2with p degrees of freedom. This is because the
specification is equivalent to specifying a p-component vector
with p — q trailing zeros.] Defining the statistic

(6)
a (11)

in terms of estimated quantities, we therefore see that asymp-
totically l(a0, a) has a x2 distribution with p degrees of free-
dom. Equation (11) can be written in terms of 'P as

(7) l(ao,)N' (-a0)"i(-ao)
(12)

Once we have a statistic with a x distribution, the hypothesis
H0 can be accepted or rejected by comparing it to prespecified
thresholds.

E. "Log Likelihood Ratio"

Equation (12) can be put into a particularly simple form by
using (8). Premultiplying this equation, in turn, by ' and

(8) a and remembering that u has components 1,0, - , Owe get

Thus,
A ,AA

(a—a0) 'Pa=0.
Then, it immediately follows from (12) that

[at I'aol(ao,)=N'
L

- 1]

(13 a)

(l3b)

(1 3c)

(14)

The first term on the right-hand side of (14) is proportional to
the likelihood ratio; therefore the log likelihood ratio is a
monotonic function of l(a0, s'). Clearly, any threshold for
l(a0, a) corresponds to a unique threshold for the log likeli-
hood ratio. Hence, for hypothesis testing the two are entirely
equivalent. Thus if L denotes the log-likelihood ratio, then

LN'log (15)
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If p,(x) denotes the density function of land PL(x) the density
function of L, then

pL(x)ex/Npl[N(exhlT_ 1)}. (16)

On the scale to which the figures in this paper are drawn,
the two functions are in fact indistinguishable. However,
the point of view presented here is somewhat more appeal-
ing than the usual justification for the log likelihood ratio.
(There is no need to assume Gaussian inputs or to approximate
loge . (1 + x) by x as is usually done).

F. Hypothesis Testing— Case 2: Reference LFC
Vector Estimated

In most applications the true vector a is not available for
comparison. What is known instead is a MMSE estimate of a,
called the reference template , obtained from some data YR
Let a test estimate aT be obtained from some datayT indepen-
dent of YR We are then interested in testing the hypothesis
H0 that YT and YR were generated by the same underlying
vector a.

Assuming YR and YT each consists of N samples, we note
that the components of the vector

V(aTR)=V(aTa)Th/(aR -a)
are again Gaussian under H0. However, their covariance matrix
is 2A because aIT and are independent and identically dis-
tributed. Therefore, under H0 the statistic

N'1IR'PaR
l(aT,aR)-—

- 1

L LaT'*aT
has a x2 distribution with p degrees of freedom.

G. Effect of Windowing and .Preemphasis in the
"Autocorrelation "Method

The derivations above have tacitly assumed the "covariance"
method of LPC analysis. If the "autocorrelation" method is
used, two additional factors must be taken into account—the
effect of windowing and of preemphasis by a fixed (generally
first- order) filter. We consider these effects in this section.

In the autocorrelation method the N given speech samples yj
are multiplied by a window w, to give the windowed signal

= 0 n 'N- I

=0 otherwise. (19)

The windowed signal is then used to estimate a and u2 as be-
fore, (except that now the dimension of the vectors in (2) is
N rather than N').

One effect of this windowing can best be described in the
frequency domain. Thus, transforming (19) gives

V(jw) = Y(jw) * W(fw)

= [X(jw) . H(fw)] * W(jw)

where "*" denotes convolution and H(/w) is the transfer func-
tion (i.e., the Fourier transform of the impulse response) of
the system of(1). If IH(jw)I(andhence IX(jw)H(jw)I)has
strong peaks, then V(jw) can be quite different from Y(jw)
unless the window is tapered and very long compared to the

effective length of the impulse response. We have not been
able to quantify this effect. However, simulations indicate
that the error introduced is such that even for Case 2 estimates,
the distribution of -T — is different from unless the
window is quite long. (The data of Fig. 6 in Section III
illustrates this point.)

One way to partially alleviate this problem is to preemphasize
the speech signal before windowing with the aim of reducing
the dynamic range of I X( jw)H(/w) ,or equivalently reducing
the effective duration of the impulse response of the system.
The "smearing" produced by the convolution of (20) would
then be less severe. For speech signals, a first-order preemphasis
filter, (e.g., the one given by (29)] can make a significant im-
provement in the accuracy of autocorrelation analysis. Note
that since there is no windowing in the covariance method,
there is no need for preemphasis. If used, it just increases the
order of the system (by 1 for a first-order preemphasis).

If one can assume that the window is long compared to the
impulse response, then the effect of windowing can be taken
into account by merely replacing N' in the above analysis by
an effective number of samples N. To estimate Neff, let us
multiply both sides of (2) by a diagonal matrix W, whose

(17)
diagonal elements are the window weights. Then for N>> p,
and a slowly varying window, (2) becomes

Wy = v= - WYa + Wx

—Va+Wx. (21)

'18 Here v is the weighted output vector and Vis obtained from u
k exactly as Y was obtained fromy. (Of course the long dimen-

sion in (21) is understood to be N.) Thus the situation is as
before with x replaced by Wx and V by V. Let w2 and w4
represent the averages of the second and fourth power of the
window function, i.e.,

1 N-i
w2 w2(i)

1 N-i

=. wi(i).

Then it is seen that

V/v w2Y'Y
I IV Wx w2 V x

V'Wxx'WV' w4Y'xx'Y.

Substituting these values in the appropriate equations in the
Appendix, it can be seen that, to the extent that these approxi-
mations are valid, there is no bias for the autocorrelation
method. However, the effective number of samples is

w
Neff

—N
(20) w4

6N. (22)

Here 3 = 1 for a rectangular window and 3 0.55 for a Ham
ming window. (We believe 0.55 to be much more accurate
than the value 0.3975 suggested by Sambur and Jayant [8].)
For consistency we may define
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Neff=N p
for the covariance method.

H. The Effects of Additive White Noise

I "ZZa =-Zz.

1) No preemphasis (a =a1);no noise—y(n) output
2) Preemphasis (a =a2); no noise—y(n) output
3) No preemphasis (a =a1); noise added—y1 (n) output
4) Preemphasis (a =a2);noise added—y1 (n) output.

(23) e (n)

z =y +n

x (rl)
y1(n)

GAUSSIAN,
ZERO MEAN, y (n)
WHITE NOISE

Fig. 1. Block diagram of system used to investigate log likelihood ratio
distances for LPC coefficients.

III. EXPERIMENTAL RESULTS

(24)

The effects of additive noise on LPC analysis have been
studied by Sambur and Jayant [9], Lim and Oppenheim [131,
and Boll [14]. Additive noise degrades the LPC analysis by
introducing distortions of the signal spectrum in the valleys.
In statistical terms, the estimation procedure of Section lI-B . .

To test the validity of the analysis equations of Section II,gives a biased estimate of a. Thus suppose instead of y, one . . . -
a Gaussian zero-mean white-noise signal was used to excite ais given the vector .
linear system of the type shown in Fig. 1. In order to verify
that the distribution of the input is unimportant one test
condition (see Fig. 4) was generated with independent uniform

where n is a statistically independent white noise. Then if Z noise samplesas the excitation. The coefficients of the linear
is obtained from z as V was from y, the equation for the system (the vector a) were determined from an LPC analysis
estimate a becomes of a steady-state portion of the vowel a as in father from a

(25) section of natural voiced speech. The autocorrelation method
of LPC analysis was used. Two sets of LPC coefficients were

An analysis similar to the noiseless case shows that asymp- obtained; one set a =ai, was from a 10 pole analysis (p = 10)
totically as N' becomes large, the mean of\/ ' is given by of the vowel; the other set a = a2 was from a 10 pole analysis

of the preemphasized vowel, where the preemphasis network
(26) was of the form

(29)

Fig. 2 shows plots of the acoustic waveform of the original
(27) vowel [Fig. 2(a)], the signal spectrum and the LPC spectrum

of the set a = a1, [Fig. 2(b)], the preemphasized acoustic
waveform [Fig. 2(c)], and the preemphasized signal spectrum
and the resulting LPC spectrum of the set a = a2 [Fig. 2(d)].
It is readily seen that preemphasis reduces the dynamic range
of the signal spectrum (and the LPC spectrum) by about 10 dB.

28 Table I gives the actual coefficients for the 2 sets ai and a2.
" ' For some of the tests a zero-mean white Gaussian noise e

was added to the output Yn at signal-to-noise ratio S/N where
S/N was either 20 dB or 10 dB.

A total of 1000 independent frames, each of duration 300
samples, were created using the system of Fig. 1 for each of
the 4 input conditions, namely:

1— 0.95z.

E[/7'] 1ç41'a

where

'Fz =E[Z?Z]
and is defined in (10).

The components of\/77a again become Gaussian asN- 00;
their means are given by (26) and their covariance matrix
asymptotically approaches A given by

A = (2 +

where a is the variance of the added noise. Since y is not
observable, the mean of (26) cannot be computed, and there-
fore the distribution of /7T(a - a) cannot be computed.
The distribution obtained by assuming the mean to be zero
gives a very poor fit to measurements, as we shall see in
Section Ill-C.

Consider now the case when a test estimate T and a refer-
ence template aR have been obtained in the presence of noise
with the same statistical properties. In this case the distribu-
tion of aT — aR is much less affected by the noise. Note that
V1 (a'IT

-
a'IR) has zero mean and a covariance given by 2A.

Now in (28) the matrix F can be estimated from z. Thus if
2 + a could be estimated, we would have an estimate of A.
If we define '4's analogously to IF, then as for the noiseless
case we can use x"P as an estimate of a2 + cj. This esti-
mate can be shown to be biased. Nevertheless, it allows us
to define a statistic l(aT,aR) exactly as in (18) for the noise-
less case, with 'P replaced by 1I'. As we will see in Section
Ill-C, the bias in the estimate of a2 + a is not very large.

In summary, we have shown that the estimate a is strongly
affected by additive noise. For Case 1 estimates, the distribu-
tion is very different from x. However, for Case 2 estimates
the bias in the mean cancels, and the estimate of(18) appears
to be quite insensitive to the error in the estimate of variance.

For each of the 4 input conditions, 2 types of LPC analysis
were performed. These were:

1) Covariance analysis with a frame length of 300 samples,
and a number of poles p = 10.

2) Autocorrelation analysis with a frame length of 300
samples, and a number of poles p 10. Both a rectangular
window and a Hamming window were used.

In addition, for each of the combinations of inputs and anal-
yses, two measurements of the log likelihood ratio were made.
These were:

1) Case 1 [(14)] —where the LPC vector a was known and
only the test LPC vector was computed from the data.

2) Case 2 [(18)] —where both the reference LPC vector aR
and the test LPC vector aT were computed from the data.
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41 4
0 1.0 1.0
1 -2.16800 -1.27323
2 1.85800 0.811009
3 -0.854807 -0.401772
4 0.510366 0.477587
5 -0.389642 -0.190580
6 0.700694 0.703581
7 -1.21652 -0.791582
8 0.896169 0,451886
9 -0.0942807 -0.102455
10 -0.118126 0.216100

In these cases the reference and test vectors were estimated
from independent frames of data.

In the remainder of this section we present results on the
different conditions described above and relate these results
to the theoretical discussion of Section II.

A. Case 1—No Additive Noise

The first set of results given in Fig. 3 is for Case 1 when the
LPC vector a is known. Fig. 3 shows plots of the theoretical
and measured histograms of the log likelihood ratio for the
following cases:

1) Covariance analysis—no preemphasis [Fig. 3(a)].
2) Autocorrelation analysis—rectangular window, no pre-

emphasis [Fig. 3(b)] -
3) Autocorrelation analysis—Hamming window, no pre-

emphasis [Fig. 3(c)] - [i3 of(21) set to 0.55].
4) Covariance analysis—preemphasized [Fig. 3(d)].
5) Autocorrelation analysis—rectangular window, preem-

phasized [Fig. 3(e)1.
6) Autocorrelation analysis—Hamming window, preem-

phasized [Fig. 3(f)]. [j3 of(21) set to 0.55].
A total of 998 measurements of the log likelihood ratio

distance were used in all measured histograms. The data were
obtained by using the first 998 nonoverlapping frames of
output of the system of Fig. 1.

The extremely poor fit between the measured distribution
and theoretical x distribution shown in Fig. 3(b) is anticipated
by the discussion of Section II-G because of the poor sidelobes
of a rectangular window. Fig. 3(e) clearly shows the improve-
ment obtained by first preemphasizing the signal and then
performing the LPC analysis.

In Fig. 4 we show plots of the distribution obtained when
uniform noise was used as the excitation in Fig. 1 for cases
corresponding to parts (a), (b), and (c) of Fig. 3. Clearly, the
fits to the distributions are equally good for the uniform noise
excitation as for the Gaussian noise excitation.

From Figs. 3 and 4 the following conclusions can be drawn.
1) There is excellent agreement between the measured

distribution and the theoretical x2 distribution with p = 10

degrees of freedom for 4 of the 6 conditions.
2) The effect of preemphasis is to considerably improve

the fit for the case of using a rectangular window with the
autocorrelation method.

3) An effective length of 3 0.55 provides good fits for the
Hamming window examples.

4) The distribution of the LPC estimates is quite insensitive

B
(a)

AAAAA. AA A

ICC

00
50

o 400
TIME IN SAMPLES

_______________________
0 5000

FREQUENCY IN Hz

11499
IJ

(c) -J __________________________________
"VVVV\IyV\fl/UVV—8244 L I I I I I I I I I Ii I I iYi I I I I I I I I I

0 400
TIME IN SAMPLES

(d)

0 5000
FREQUENCY IN' Hz

Fig. 2. Plots of the acoustic waveforms and the original and LPC log
spectra for the 400 sample section of the vowel /a! both without
preemphasis [(a) and (b)l, and with preemphasis [(c) and (d)l. The
LPC analysis was performed using the autocorrelation method with a
Hamming window.

TABLE I

LPC COEFFICIENTS FOR THE ORIGINAL (a1) AND PREEMPHASIZED (a,) DATA

0

a,Li0zLi

00.0
U-0
Li

z

(a)

(b)

(c)

(d)

(e)

0 10 20 30

(f)

DISTANCE

Fig. 3. Plots of the' theoretical and measured histograms of the log

likelihood ratio distance for the Case 1 computation without additive

noise. Parts (a), (b), and (c) are for data without preemphasis, and
parts (d), (e), and (1) are for the preemphasized data. Parts (a) and

(d) are for the covariance analysis method; parts (b) and (e) are for

the autocorrelation method with a rectangular window; parts (c) and

(f) are for the autocorrelation method with a Hamming window.

[Note the scale change in part (b).l
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!
U

too
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100

N 100

C 20

N 200

0 5 10 15 20

N 300

0 5 10 15
DISTANCE

40

40

(a)

cnw0z

0
(b)

(C)

Fig. 4. Plots of the theoretical and measured histograms of the log
likelihood ratio distance for Case 1 distance computation using a
uniform noise excitation instead of a Gaussian noise. Parts (a)—(c)
correspond to those of parts (a)—(c) of Fig. 3.

(a)

(b)

:

Ce)

(f)

Fig. 5. Plots of the theoretical and measured histograms of the log
likelihood ratio distance for the Case 2 distance computation without
additive noise. Parts (a)—(f) correspond to those of Fig. 3.

to the distribution of the input exciting the linear system of
(1).

B. Case 2—No Additive Noise

Fig. S shows plots of the measured and theoretical distribu-
tions of the log likelihood ratio for the Case 2 analysis methods

(a)

(b)

Cc)

(d)

(e)

(1)

20 25

Fig. 6. Plots of the theoretical and measured histograms of the log
likelihood ratio distance for the autocorrelation method using the
Case 2 distance computation with an N point rectangular window.
Results are given for several values of N.

in which both the reference and test LPC vectors were esti-
mated from the data, and when no additive noise was used.
The six plots are for the same 6 cases as shown in Fig. 3. It
can be seen that the agreement between the measured and
theoretical distributions of the log likelihood ratio is extremely
good for all cases except the unpreemphasized autocorrelation
analysis using the rectangular window where the agreement is
somewhat worse than for the other cases. These examples
(i.e., the data of Figs. 3, 4, and 5) essentially completely vali-
date the statistical model of Section II.

To illustrate the effect of windowing on the distributions,
Fig. 6 shows a series of plots of theoretical and measured
histograms of the log likelihood ratio for the autocorrelation
method with an N point rectangular analysis window. In these
plots N varies from 12 to 300. The effective impulse response
duration of the system was about 50 samples. We see from
these plots that untilN is about 200 or 300 samples (i.e., from
4 to 6 times the effective impulse response duration), the fits
between the measured and theoretical distributions are rather
poor.

C. Additive Noise Examples

To investigate the effects of additive zero-mean white
Gaussian noise on the agreement between the theoretical and
actual distributions of the log likelihood ratio, noise was added
to the output signal y(n) in Fig. 1 at signal-to-noise ratios of
10 dB and 20 dB. In Figs. 7 and 8 are shown plots of measured

DISTANCE
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Fig. 7. Plots of the theoretical and measured histograms of the log
likelihood ratio distance for the Case 1 distance computation with
10 dB signal-to-noise ratio additive noise. Plots (a)—(f) correspond
to those of Fig. 3.

Fig. 8. Plots of the theoretical and measured histograms of the log
likelihood ratio distance for the Case 2 distance computation with
10 dB signal-to-noise ratio additive noise. Plots (a)-(f) correspond
to those of Fig. 3.
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and theoretical distributions of the log likelihood ratio for
both Case 1 (Fig. 7) and Case 2 (Fig. 8) for the 10 dB signal-to-
noise ratio examples. (Essentially, equivalent results were
obtained for the 20 dB cases).

From Fig. 7 it is seen that there is essentially no agreement
between the theoretical and measured distributions for the
Case 1 data since the estimate of the LPC set a from the noisy
data was greatly in error, as discussed in Section II. However,
as seen in Fig. 8, when one used the Case 2 method of esti-
mating both reference and test LPC sets from the noisy data,
the theoretical and measured distributions of the log likelihood
ratio were essentially the same. Thus the error in the estima-
tion of cr2 + a mentioned in Section Il-H is not significant.

D. Explanation of de Souza s Results

In addition to the sets of data discussed in Section III, the
25th order system used by de Souza was simulated with the
system of Fig. 1. The LPC coefficients were identically those
used by de Souza. Fig. 9(a) shows the frequency response,
and Fig. 9(b) shows the impulse response of the linear system
that was used. Several striking aspects of this system can be
noted in Fig. 9. First we see that although a 25th order system
was used, the first pole is of narrow bandwidth and low-center
frequency, whereas the remaining poles are much higher in
frequency. Due to the narrowness of the bandwidth of the

lowest pole, the amplitude of the log spectrum is down on the
order of 40 dB or more for the higher poles. Thus this linear
system, although technically a 25th order system, could be
well modeled as a second-order system. From Fig. 9(b) we see
the result of the narrow bandwidth of the first pole is that the
impulse response lasts for more than 1000 samples. Thus, for
the autocorrelation method, it is necessary to use section
lengths N greater than 1000.

De Souza compares the Xs distribution to one obtained ex-
perimentally from the output of the above 25th order system
and demonstrates a very poor match. However, it is to be noted
that 1) he used the autocorrelation method with rectangular
200 sample windows (from the results shown in Fig. 6 this is
clearly inadequate); 2) he used Case 2 estimates (T — aR),
but did not divide l(aT, aT) by 2 as proven necessary in Sec-
tion Il-F. We believe that with the factor 0.5 included, and
with tapered (e.g., Hamming) windows longer than 1000 sam-
ples, he would have obtained a much better match. De Souza
does not show a comparison with an experimental distribu-
tion of estimates by the covariance method but states merely
that the fit was "even worse." Presumably, the factor 0.5
would have significantly improved that fit also.

In support of these assertions Fig. 10 shows a plot of the
measured and theoretical distributions of the log likelihood
ratio obtained using the Case I estimate (a known) for the
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IV. APPLICATION OF STATISTICAL RESULTS
TO SPEECH EXAMPLES

sounds, however, the measured distributions are not x2
distributed for any of the alternative cases we have discussed
in this paper. This is because the assumptions used to derive
the distribution break down for voiced speech sounds. For
such sounds there is a random component of the excitation

(a) (e.g., modeling error, the high-frequency portion of many
voiced sounds, etc.) which may plausibly have the properties
assumed above. However, a large part of the energy in the
excitation is quasi-periodic, and cannot be assumed to con-
sist of statistically independent random samples. The effect
of this component is to add a bias to the estimates and, of
course, make the estimate of a2 larger than the variance of
the random component. Thus knowledge of the distribution
of the log likelihood ratio for random inputs does not solve
the problem of providing thresholds in the case of voiced
sounds. Nevertheless, word recognition algorithms based on
the likelihood ratio are highly successful in practice [81 , [9]
[15] . For this we have the following plausible, but far from

() adequate, explanation.
Note that in a word recognition task what is of interest is

the sum of the distances between many pairs (typically, 20
to 30) of LPC vectors. And the vectors are not all estimates
of the same speech sound but, typically, of 5 or 6 different
speech sounds. We suggest that the bias term becomes negli-
gible when averaged over many different voiced sounds. In
that case the total distance would still be approximately a sum
of x2 distributions, except for a scaling of 2• The exact
scaling error is of course unknown, but it is plausible that a
compromise threshold can be experimentally determined.

V. SUMMARY

In this paper we have shown that the log likelihood ratio for
p-dimensional LPC estimates is both theoretically and in
practice x2 distributed with p degrees of freedom, provided
p is at least equal to the order of the linear system which
generated the data being analyzed. We have examined the
effects of preemphasis, different LPC methods, different
windows, and additive random noise on the measured distri-
butions. Finally, we have given a plausible explanation why
such a statistical model can be "roughly" applied to actual
speech signals.

APPENDIX

A HEURISTIC JUSTIFICATION OF MANN AND WALD'S

THEOREM (SECTION Il-C)

In this Appendix we will derive the result of Mann and Wald
on the distribution of the scaled error vector z/J. However,
in order not to obscure the main arguments, we will assume
the existence of various limiting distributions. (A rigorous
proof of the existence of these limits is not trivial, and we
refer the interested reader to [7] for the details.)

Our starting point is (7) of the text where we first intro-
duced the error vector i. Let us rewrite that equation as

Y'x. (A-i)

By assumption, (1) of the text represents a stable system;
hence, its impulse response eventually goes to zero. Suppose
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Fig. 9. The log spectrum in dB and the resulting impulse response of
the 25th order system investigated by de Souza.
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Fig. 10. Plots of the theoretical and measured histograms of the log
likelihood ratio distance for the 25th order system of Fig. 8 using
the Case 1 distance computation and the covariance analysis method.

covariance method with preemphasis of the data. The mea-
sured data do have a slightly smaller mean and variance than
the theoretical x2 distribution for 25 degrees of freedom.
However, the match is not nearly as bad as that suggested by
de Souza.

We have shown that in the case of random inputs exciting
linear systems, the measured properties of the log likelihood
ratio agree closely with those predicted theoretically—namely,
that the ratio for p-dimensional LPC vectors is x2 distributed
with p degrees of freedom, provided p is at least equal to the
order of the linear system. The remaining key question is the
applicability of this result to actual speech signals.

For fricative sounds, the model studied here applied directly,
and the distributions are as predicted. For voiced speech
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that the number of samples N =qM+ p, where M is larger than
the effective length of the impulse response, and q is some
large integer. Recalling that Y' has p rows and N' =N— p
columns and the vector x is N'-dimensional, we can partition
V and x into q pieces of length M along the N' dimension.
Thus,

Y'x [Y'1 V'2

q
Yjx,.

xl
x2

Xq

(A-2)

Now each of the q terms in this summation is a (zero-mean)
random vector of dimension p. These q vectors are identically
distributed. Further, as M — (and the length of the impulse
response becomes a vanishingly small fraction of M), it is clear
that these vectors also become statistically independent. By
the central limit theorem, therefore, the components become
jointly Gaussian in the limit.,,

Now as N becomes large S - S. Sincey is the output of a
stable system, S' exists. Then premultiplying both sides of
(A-l) by 1 shows that in the limit as N -*oc the components
of sjN1 are linear combinations of Gaussian variables, and
therefore are themselves jointly Gaussian.

It remains to find the covariance matrix of S ,/AT. Denote
this matrix by A as in the text. Then we have from (A-i)

E[i(SyW5(SVW)'S'] r'37E[V'xx'YJ

E[Q]

where E denotes expectation and Q is the matrix on the pre-
vious line. We will presently show that

jE[Q] 24'
From (A-3) and (A-4), since e->e and *V 5, it follows that

A = a2

which proves the theorem stated in the text.
To show that (A-4) holds, we write the rsth component of

the matrix Q. From the definition of Y given in (3) of the text

N'
Qrs = Ym+1_r_fYm+1_s_kXns+1_jXm+s_k.

j, k= 1

Note that Xm is statistically independent of y for all indices
in, n such that in >n. From this it follows that a term with
/ > Ic in (A-6) has zero expectation. This is because in that
case Xm+1_k is independent of the three quantities it multiplies
and therefore its expectation (which is zero) factors out. By
symmetry, a term with Ic >1 also has zero expectation. There-
fore, only terms with Ic =/ remain. In each of these terms the

y's are again independent of the x's. Therefore, the expecta-
tion of each term factors into the expectation of the y's and
the expectation of the x's. Thus,

N'
E[Q75] = E EEYm+1_r_kYm+1_skIE[xm+1_k]2

I N'
— 2,21— U H Ym+1-r-kYm+1-s-k

Lk=i

= o2E[(Y'Y)rsj
= N'a2 5rs
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