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on the Implementation of a Short-Time Spectral
Analysis Method for System Identification

LAWRENCE R. RABINER, FELLOW, IEEE, AND JONT B. ALLEN, MEMBER, IEEE

Abstract—Recent work has demonstrated the utility of a shoit-time
spectral analysis approach to the problems of spectral estimation and
system identification. In this paper several important aspects of the
implementation are discussed. Included is a discussion of the computa
tional effects (e.g., storage, running time) of the various analysis
parameters. A computer program is included which illustrates one
implementation of the method.

I. INTRODUCTION

THE problems of spectral estimation and system identifica-
Hon have been of great importance for a variety of appli-

cations. Although classical techniques have had various
degrees of success, particular problems often require specials
ized techniques for the most efficient cost-effective solutions.
Recently, a new method for spectral estimation and system
identification was proposed based on the theory of shorttime
spectral analysis [1] , [2] . This method was shown to be
theoretically equivalent to the classical least squares method
when the number of data points (N) Was infinite [1] . For
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finite N the method has the property that the "misalignment"
error (between the actual and computed system impulse
responses) tends to zero as 1/N, i.e., the solution rapidly
approaches the least squares solution.

The purpose of this paper is to describe one implementation
of the method described in [2] . Following a brief review of
the basic method (Section II), we describe a DFT implementa-
tion in which the relevant quantities used in the analysis
equation are computed entirely in the frequency domain

? (Section III). In Section IV we discuss the issues of computa-
don speed, storage, arid accuracy and show that tradeoffs
between these factors can be made. Finally, in Section V we
present a flowchart of one implementation of the method
which is fairly general purpose.

II. REVIEW OF THE SHORT-TIME SPECTRAL ANALYSIS
APPROACH TO SYSTEM IDENTIFICATION

Assume the input to the system to be identified is x(n) and
the output of the system [corrupted by additive noise q(n)]
isy(n), i.e.,

y(n) = x(n) * h(n) + q(n) (I)

0096-35l8/80/0200-0069S00.75 © 1980 IEEE
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where h(n) is the (FIR) response of the linear system being
identifIed, and q(n) is an independent [of x(n), h(n)] white
noise with zero mean and variance 4 . Assume we can observe
x(n) and y(n) for 0 C n C N - I a The short-thne spectral anal-
ysis approach to estimating h(n) is to form overlap-add expan-
sions of x(n) arid y(n) [31 - [5] and then to approximate the
classical least squares matrix equation solution for h(n) by a
simple Toeplitz matrix equation of the form

(2)

where il is the M length vector

/1= (3)

that approximates h, the true impulse response, and 3 is

an JI X Al symmetric Toeplitz matrix with the (1, m)th
element

3(1,rn)4(1- m)

where

(5)

(6)

w(n) is an L-point window used in the overlap-add expansion
of x(n), R is the shift (in samples) between adjacent windows,
and W(e'° ) is the zero frequency value of the discrete Fourier
transform of the window. Similarly, P is the M length vector

with components
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(4' Fig. 1 . Typical set of points (heavy dots) comprising the set S in the
'% I (p, k) plane which axe used in computing $ and.

As described in [21 , the range of p, k E S is a strip inthe(p, k)
plane as ifiustrated in Fig. 1 . By making the substitution

(11)

Pmax(q)

i: øp,p+q(l,m) (12)
p Pmin(q)

Pmax(q)

E rp,p÷q(l) (13)
p Pmin(q)

—_1
(14)

where xj is the integer less than or equal to x, and

- max (0, q) (15a)

min(O,q) (15b)

where Exi is the integer greater than or equal to X.
We now give a procedure for solving for &(n) from windowed

sections of x(n) and y(n). The steps in the process are as
follows.

1) Choose window w(n), window length L , and window

(9) shift R. Compute D from (6).
2) Determine range on q [(14)] , and p [(1 5)] for calcula-

tion of3 and?.
3) For each pair of (p,q), determine øp,p÷qQ,m) and

TI,,
p+qQ), from (5) and (9). This computation is done for

0<1CM- 1 and OCmCM- 1, and may be realized ef-

(10) fIciently via fast correlation methods. (See Section III.)
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Tpk(l) D2

Ptnax()

y(n)x(n - l)w(pR - n)w(kR +1- n).

The set S in (4) and (8) are the integers p, k such that the
pth and kth windows of the data are entirely in the range
0 C n C N - 1 , arid such that the overlap between the windows
is in the range [2]

M— 1CnCN- I
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P4* N8

Fig. 3. Relative positions of the pth and (p ÷ q)th windows for the
matrix element øj,,p+q (or rp, p+q). The range NA C n C NB is the
overlap between the windows.

p,p÷qQ,m)øp,p+q(l m)
ntoo

- - m)

= x(n) * xp÷q(n),

(16)

(17)

i.e., as a correlation between x1,(n) and Xp+q(fl), whenever
the overlap between the PthAand (p + q)th data windows are
within the closed interval [M — 1, N - I ] . Fig. 3 illustrates
the placement of the pth and (p + q)th windows. If we define
NA as the lower limit on the overlap between windows, and
NB as the upper limit of the overlap, then (16) (with s 1 - in)
becomes the finite correlation

Fig. 2. Generalized flowchart of the short-time spectral analysis method.

4) Determine QQ - in) and P(l) by summing over the pairs
of Q,, cj) indices of step 3.
5) Solve matrix (2) for 11 using a Toeplitz matrix solution

method, e.g., the Trench method [6] , or a Levinson algorithm
[71.

Fig. 2 gives a flowchart corresponding to the above pro-
cedure. There are many ways in which the operations of the
flowchart can be carried out. For example, we can consider
several alternative methods of indexing p and q over all the
grid points in the solution. Furthermore a variety of tech-
niques can be used to calculate cbp,p+q(l,rn) and .rp,p+q(l)
for the complete range of I and m. In Section III we describe
an FFT method which trades storage for computational speed.
Finally, the Toeplitz matrix equation can be solved by any
number of Toeplitz matrix solution methods. In Section III
we discuss these alternative implementation techniques.

III. DFT IMPLEMENTATION OF THE SYSTEM
IDENTI FICATION PROBLEM

We begin by considering the computation of the term
cIi, p+qQ, in) of(S) with k p + q. We denote the pth window
ofx as x(n). It is readily shown that (5) can be written as

1

øp,p÷q(s)
iii.

where

NpR-L+1+max(m,qR+l) (19a)

NpR+min(m,qR+l). (19b)

Equation (18) can be implemented using fast (ITT) correla-
tion methods. However, we must carefully choose the FFT
section size to guarantee no aliasing for the maximum q value
for which (18) is valid, i.e., q It can readily be seen
from (18) that the FFT section size NF has 3 components,
namely the window length L, the maximum shift (in samples)
between windows R, and the aliasing protection for
M — 1 values of the correlation [i.e., for r— 0, 1, , M — 1

in (18)] . As such, we get

NF>L+q R+(M- 1)

IM-2+Ll
=L+[ JR-F(M-1). (20b)

For our present FFT implementations, (i.e., radix 2), NF is
chosen to be the power of 2 greater than or equal to NF of
(20a). We 'will see in Section W that (20a), along with some
subsequent equations for the number of FFT's which must
be performed, provides guidance on the choice of window
length L , relative to M, to minimize overall computation arid
storage.

In the implementation of the fast correlation computation
of (18), it is assumed that the FFT size NP is an integer multi-

qR+pR+t-1 I qR+pR+2
1 1

p I•

f
fl=NA

xp(n)xp+q(n +s) (18)

(20a)
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pie of the shift between windows R . This assumption leads to
a simple and efficient strategy for accounting for the real time
placement of the pth window within the finite FFT frame.
The idea is based on the well-known shifting property of
Fourier transforms, namely if

x(n)e'X(e'°') (21a)

x(n - (21b)

or forNFpoint DFT's

x(n)eX(k) (22a)

x(n - pR) 4* X(k) (22b)

If we define

K=NF/R (23)

then (22b) shows that to compensate for the shift of pR
samples we modulate X(k) by the factor ei(2t/0P. The
modulating function

G(k) = e21"" (24)

can be implemented as a K point complex table, and the
modulation for a pR sample delay is implemented by ac-
cessing every pth point of the table, modulo K. Thus, to
implement the FFT convolution we have to access the pth
datawindowandstoreitinx(n)forn0,1,'',L-l,take
its DFT, and modulate the DFT by the table G(k) accessed
every pth point modulo K, i.e.,

1(0) = X(0) G(O)

X(1) = X(1) G(p EDK)

1(2) = X(2) G(2p $K)
U

U

where p QK means p modulo K.
Similarly the windowed sequence x, q (n) is accessed, trans-

formed, and phase compensated. The desired correlation
could be obtained as

+qDF'T'p4÷q]
and its results are valid for 0 C s C Al - I . The computation
for 4i (or ), however, is clearly more efficiently done entirely
in the frequency domain as

s(s) DFT1

i.e., by accumulating the lagged products in the frequency
domain and transforming back to the time domain only as
a finzd step.

A. Summation Method in the (p , k) Plane
There are several alternative ways in which the quantities i

and ? of (12) and (13) can be calculated. The straightforward
implementation of (12) is illustrated in Fig. 4(a). The corn-
putation along the path labeled I is for q —q and all valid
U This is next followed by the pathlabeled 2 for q -q 1
and all valid p. This is carried out until the q max path is
traced and the computation is fInished. Although this sum-

p

(c)

Fig. 4. Three possible ways of implementing the computation of4k
(or rpk) for a.ll valid sets of(p, k) in the plane.

mation method is valid, it suffers from (small) numerical
problems of the following type. Each term Ø, +q entering
into the computation of (12) decreases in magnitude as
becomes large since the overlap between the pth and (p + q)th
windows decreases. As such, the contributions of the
path [labeled 7 in Fig. 4(a)] to the total are numerically
distorted because, by the time they are added, is already
large. As such, an alternate, numerically more accurate,
method of computing 0 is illustrated in Fig. 4(b). Here the
q = -q and q = max paths are computed first, followed by
theq-q+1 andqq- l,etc. Whiletheamountof

( 25) computation remains the same, the accuracy greatly increases.
The only problem with the computation of Fig. 4(b) is that

a total of (approximately)

NC= 2(2qax + 1)(Pmj,ç (q1) Pmin (q,j) (27)

FFT's must be performed, i.e., 2 for each (p, q) pair. This
strategy is clearly inefficient in that the total number of DFT's
need be no more than the total number of rows (Pm (q))
and columns (Pmax (qmin)). Thus, if we perform the summa-
tions of (12) in the maimer shown in Fig. 4(c), namely by
indexing p from Pmin (max) to Pmax (qj, and then deter-
mining the range of q (or k) for each p, we can compute the
DFT of the pth window just one time, store it, and use it for
the computations of each of the q (or k) windows which are
relevant. Similarly, if we have adequate storage (enough for

+ 1 DFT's), we can store a vertical strip of DFT's
and reduce computation of each column to a single column
DFT (for the pth window) arid a single row DFT [for the
(p + q)th window] . Thus, with sufficient storage, the
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total number of DFT's is reduced to

NCP = 2(pm (qu) Pmin (28)

which can be considerably less than NC of (27). We can also
employ our previous argument and along each column corn-
pute the DFT's so that the largest values of q are done first.
When an entire column of computations is 'accumulated, it
is then added to the previous computations, thus assuring
maximum overall accuracy. Fig. 4(c) shows the order in which
the computations would be done for one simple example.

B. Final Solution of the Toeplitz Matrix Equation

The final step in the system identification procedure is the
solution of the Toeplitz matrix equation

M-i

S (l- m)1I(m)(l),
m=o

The matrix 3 is Toeplitz and symmetric. Two Toeplitz matrix
solution methods were investigated, namely, the Trench
method [6] and the Levinson method [7] . Both techniques
require on the ojder of M2 multiplications and additions, and
on the order ofM storage locations. Informal experimentation
with both methods indicated little or no difference in the
solution for a number of examples. Hence either technique
appear to be applicable to this problem. Since, in general,
N >> M, the computations required in solving the Toeplitz
matrix equation is generally negligible compared to those of
computing 4 or P.

Iv. COMPUTATIONAL CONSIDERATIONS

We have already discussed two major computational aspects
of the method, namely the use of high-speed correlation to
compute ø,, p+q a-tid r, p+q terms, and a carefully chosen
path in the (p, k) or (p, q) plane to minimize the number of
FFT's required for the computation of $ or . There re-
mains one additional computational consideration, namely,
the choice of window length L. Theoretically, any value of
L can be chosen. However, the amount of computation C
in computing 4i or ? is approximately

C = Number of FFT's X Computation per FFT

= 2 (Pmn (qu) - Pmin (qj) * NFlog2 (NF)

where we have used (28) and (20a) to give the number of
FFT's and the FFT size. From (15) and (14) we get

__ L-'-M- 2
R

M-i-L- 1
R

. NF log2 (NF). (32)

We recall from our earlier discussion that, in general, NF is
chosen as the power of 2 greater than or equal to the quantity
NF of (20a). Fig. 5(a) shows a typical plot of computed
values of NF and the nearest power of 2 as a function of the
variable L for the case M 16, N iooo.1 We see the result

1 For simplicity we assume R = Lf4. For arbitrary R , less than this
value, the results do not change significantly.

(c)

Fig. 5. Curves of FFT size (NF), computation (C), and,storage (S) as
a function of window size L for a given value for M and N, with
R=L/4.

A
that for L =M the actual FFT size is closest to the computed
value of NE This result is valid when M is a power of 2 (or
slightly less than a power of 2). For arbitrary M, a slightly
more complex picture emerges and we have to consider the
total computation C(L) of (32). This quantity is plotted in
Fig. 5(b) for the parameters M 1 6, N I 000. It can be seen

(30) that C(L) decreases tharply until L M, at which point the
curves rises only graduall . As such it can be argued that anyt ) reasonable value ofL > M would serve to approximately mini-
mize the total computation of 6 and?.

If we now consider the storage required for the computa-
tion of or , we see that we need to store a strip of width
(2qrn + I) DFT's. Thus the storage required is (approximately)

S(L) = (2qrn + 1) X FFT (size) (33)

I+- 2j+1).FFT(size). (34)

Fig. 5(c) shows a plot of S as a function ofL for the example
of Fig. 5 . It can be seen that the minimum value of S occurs
at L =M> The storage increases by 50 percent for L Mf2,
or L: 2M, thus a fairly welldefined minimum of S occurs at
L=M.

Based on the above discussion, it is seen that the optimum
computational strategy is to choose a value of L on the order
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A
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analysis parameters of the method are read in including M, L,
R, and N. Other parameters requested include an initial
sample (IOF) in the flIes at which the sequences begin, i.e.,
the sample number corresponding to n 0 in the equations,
the window type, IWTYPE (1 for Hamming window, 0 for
rectangular window), and the maximum value of q (IQcO) to
be used in the analysis.

The subroutine computes Q and using the FFT fast con-
volution method of Section III on the path of Fig. 4(c). Then
the Toeplitz matrix equation is solved using the Levinson
method [7] , and the resulting estimate of the system impulse
response is returned to the main program. At this point the
user can insert code to plot the impulse response estimate or
the resulting frequency response estimate.

For maximum flexibility, all parameters and data arrays are
passed in the calling statement to STSPEST . Although cum-
bersome, this ensures that the routine uses the minimum
storage for implementation.

Two of the subroutines called within STSPEST are not pro-
vided in the Appendix. One is the machine dependent disk
read routine RSECT , which reads in samples (in fixed point
format) of x(n) or y(n) (depending on channel number) into
a buffer beginning at a designated sample number on the fIle.
The calling statement for the routine is

CALL RSECT (NCH, IBUF, NRD, XST, JER)

where

NCH = Channel number for reading, i.e., 0 for reading input
samples, I for reading output samples.

IBUF Buffer for storing integer input or output samples.
NRD = Number ofsamples ofx(n) ory(n) to be read.
XST = Starting sample number in disk file.
IER = Error code.

The second set of missing routines are the FFT subroutines
FAST and FSST , which are described in [8J . The calling
sequences are

CALL FAST (x, N)

CALL FSST (x, N)

of JQ to simultaneously minimize total computation and total
value of NY

V. FLOWCHART, COMPUTER PROGRAM, AND
TEST EXAMPLES

A flowchart of the implementation used to realize the
system identification methods described in Sections II and III
is given in Fig. 6. A Fortran implementation of the flowchart
is given as the test program TESTSTSPEST , the subroutine
STSPEST , and its associated subroutines. The program as-
sumes the sequences x(n) and y(n) are stored in disk files.
Thus, it first reads in the disk file names for the input (x (n))
and output (y(n)) sequences. Channels are assigned to the
disk fIles for reading values of x(n) and y(n). Next, the basic

where FAST is used for a direct FFT of the real sequence
x(n) stored in array X of size N (where N must be a power
of 2). The transform X(k) is stored in the array X (i.e. , the
input data is overwritten) in the format

Re [X(O)] ->X(1)

hn [X(O)J ->X(2)

Re [X(l)] -±X(3)

Im [X(l)] -X(4)

Re [X(N/2)] -X(N + 1)

Im [X(N/2)I X(N + 2).

A total of N + 2 locations are required for an N point ITT.
The subroutine FSST does the inverse FFT and expects input

Fig. 6. Flowchart of the implementation described in this paper.
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Fig. 7. Actual and estinnted impulse responses [parts (b) and (d)],
and log magnitude frequency responses [parts (a) and (c) I for a
64 point example.

data in the format obtained from FAST , and writes the real
N point output over the first N input values.

Figs. 7 and 8 show examples of the use of the program.
There are four parts to each of these figures. Parts (b) and (ci)
show h(n), the true impulse response, and 1(n), the estimate,
whereas parts (a) and (c) show the true and estimated log
magnitude responses. Fig. 7 is for a 64 point impulse response
where

h(n) 1 n0, 1,3,7, 15,31,62

Fig. 8. Actual and estimated hnpluse responses [parts (b) and (d)]
and log magnitude frequency responses [ parts (a) and (c)J for a
25 point low-pass filter example.

V. SUMMARY

In this paper we have described one implementation of the
method described in [2] . We have attempted to make the
implementation as efficient (in terms of speed and memory)
and as accurate as possible, within the framework that was
given. The implementation resides as a Fortran callable
subroutine, and a simple main program was given which
provides a first4evel application of the routine.

=0 otherwise

C

APPENDiX

C
C MAIN PROGRAM: TEST OF STSPEST SUBROUTINE
C AUTHORS: L. R. RABINER AND JONT B. ALLEN
C BELL LABORATORIES
C MURRAY HILL, NEW JERSEY, 07974
C
C INPUT: MHAT=IMPULSE RESPONSE LENGTH IN SAMPLES
C LWINDOW LENGTH IN SAMPLES
C N=NTJMBER OF SAMPLES FOR LEAST SQUARES
C SOLUTION, NPRIME=N-MHAT+1
C IOF=STARflNG SAMPLE IN DATA FILES FOR
C BOTH X AND '1 DATA
C IWTYPEWXNDOW TYPE, 1 FOR HAMMING WINDOW
C 0 FOR RECTANGULAR WINDOW
C IQCO=MAXIMUM RANGE ON 0
C IFXL=INPUT FILENAME (X-DATA), OPENED ON
C CHANNEL 0
C JFIL=OtYTPUT FILENAME (Y-DATA), OPENED ON
C CHANNEL I
C
C
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JV\aAfl\Mt/W'1
- •-TTt_
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'T!J tT
I I I I I I I I

) FREQUENCY IN HZ

(a)

•0

5000

(a)

-13

I

0

17

-13

0 TiME IN SAMPLES

(b)

63

(b)

FREQUENCY IN HZ 5000

(c)

SV

'a

-J

S
•0

I

0
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with analysis parameters N 1024, R 16, L M64,
IOF = 500, and IWTYPE I (Hamming window). The parama
eter IQCO specifies the largest value of iii the implement
tation. For full accuracy, IQCO is set to - I , or any large
integer (e.g., 1000). The error in iI(n) can be seen for values
ofn such that h(n) 0 where lI(n) is a small random value.

Fig. 8 is for an equiripple 25-point FIR linear-phase low-pass
filter with a peak sidelobe ripple of -55 dB. The nalysis
parameters here were N 1024, R 8, L 32, M 25,
IOF = 100, IWTYPE 1 , and all q values retained. A peak
log magnitude error of about 5 dB (relative to the maximum
of the sidelobes) is seen in this figure.
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COMMON WIN(128)1XWNM),YTAB(NML),2W(NM)
COMPLEX XWC(NHF) ,YTABC(NHFL) ,ZWC(?ThIF)
EQUIVALENCE (XW(1)1XWC(1)),(YTAB(fl,YTABC(1))1(ZW(1hZWC(1))
COMPLEX TMP(N}IF)
COMPLEX XM(64)
DIMENSION IFIL(1O),JFILC1O)
DIMENSION PHIHAT(128),RHAT(128)1H(128)
INTEGER TTITTO
INTEGER P,R
PARAMETER NM5141 NHFNM/2, NML=NM*9, NHFLNHF*9

TTI=1 1
TTO1 0

C
C DEFINE MAXIMUM ARRAY SIZES FOR COMPUTATION
C
C
O READ IN X-DATA FILENAME AND Y—DATA FILENAME
C SUBROUTINE GNAME READS IN AN ASCII FILENAME FROM TELETYPE
C

WRITE (TTO,1)
FORMAT(***X-DATA FILENAME*+*')
CALL GNAME(IFIL)
OPEN 0,IFIL
WRITE (TTO, 2)

2 FCRMAT( **-wY-DATA FILENAME***M)
CALL GNAME(JFIL)
OPEN 1JFIL

C
C READ IN ANALYSIS PARAMETERS, MHAT,R.,L,NIIOF,IWTYPE,IQCO
C
10 CONTINUE

WR1TE C . :3)
3 FORMAT(" MHAT(I4))

READ(TTI,4) MHAT
4 FORMAT(14)

WRITE ( TTO , 5)
5 FORMAT(" R(I4)")

READ(TTI,4) R
WRITE ( I 6)

6 FCRMAT(M L(14)='
READ (TTI,4) L
WRITE(TTO, 7)

7 FORMAT(' N(16)=")
READ(TTI,8) N

8 FORMAT(16)
WRITE(TTO, 9)

9 FORMAT(I! IOF(16)=')
READ(TTII8) IOF
WRITE(TTO, 11)

11 FORMAT(" WINDOW TYPE(1 FOR 11W, 0 FOR RW)=")
READ(TTI,12) IWTYPE

12 FORMAT(I1)
WRITE(TTO,1 3)

13 FORMAT(' IQCO(14)=")
READ(TTI,4) IQCO

C
C CALL SPECTRAL ANALYSIS ROUTINE
C

C

CALL STSPEST(PHIHAT,R}IAT,H,1 ,ISRR.,MHAT,R,L,N,IOF,
1 IWTYPE,IQCONM, 9, NHF.,NML ,NHFL ,WIN,XW,YTAB, ZW,TMP XM,
2 XWC,YTABCZWC)

C ECI) ARRAY CONTAINS THE ESTIMATE OF THE SYSTEMIMPtJLSE RESPONSE
C USER CAN INSERT CODE FOR PLOTTING IMPULSE RESPONSE OR ITS
C FREQUENCY RESPONSE HERE
C

C

GO TO 10
END

C
C SUBROUTINE STSPEST
C SHORT TIME SPECTRAL ANALYSIS ROUTINE
C GENERALIZED SYSTEM IDENTIFICATION ANALYSIS
C
C

SUBROUTINE STSPEST(PHIHAT,RHAT,H,IPRT,IERR,MHAT,R,L,N,IOF,
I IWTYPE, IQCO,NM,MAXFFT,NHF,NML,NHFL,WIN,XW,YTAB,ZW,TMP,XM,
2 XWC,YTABCIZWC)

DIMENSION PHIHAT(1),RHAT(1),HC1)
DIMENSION WIN(1),XW(1),YTAB(1),ZW(1LTMP(1),XM(1LXWC(1)
DIMENSION YTABCC 1 ) ,ZWC( 1)

COMPLEX TMP ,MM , XWC , YTABC , ZWC

INTEGER P,R

PHIHATARRAY TO HOLD PHIHATCI),11,MHAT
RHAT=ARRAY TO HOLD RHAT(I),I1,MHAT
H=ARRAY TO HOLD H(I).Iz1,MHAT
IPRT=PRINTING PARAMETER--IPRT1 TO PRINT, OTHERWISE NO PRINTING
IERRERROR FLAG

IERR0 MEANS ALL IS OK WITHIN STSPEST
IERRl MEANS REQUIRED FFT SIZE IS TOO LARGE
IERR2 MEANS MODULATION FACTOR (DID) IS TOO LARGE
IERR3 MEANS INSUFFICIENT STORAGE FOR YTAB

**#**.*ANALYSIS PARAMETERS******
MHAT=IMPtJLSE RESPONSE LENGTH
RNO OF SAMPLES BETWEEN WINDOWS
L=WINDOW LENGTH IN SAMPLES
N=NUMBER OF SAMPLES FOR LEAST SQUARES SOLUTION

I.E. N PRIMEN—MHAT+1
IOF=STARTING SAMPLES IN BOTH X--DATA AND Y-DATA FILES
IWTYPEWINDOW TYPE--i FOR RAMMING WINDOW, 0 FOR RECT WIND
IQCO=MAXIMUM RANGE ON 0 CALCULATION--SET lOGO TO -1 FOR NO LIMIT
NM=MAXIMUM SIZE OF LOCAL ARRAYS FOR SHORT TIME SPECTRA
NHFzNM/ 2
NML=MAXIMUM STORAGE AVAILABLE FOR RECURSIVE ESTIMATION PART
NHFL=NML/2
MAXFFT=MAXIMUM POWER OF 2 FOR FFT
WIN=ARRAY TO HOLD WINDOW
XW=X STORAGE ARRAY—--EQUIVALENCED TO XWC
YTAB=Y STORAGE TABLE- -EQUIVALENCED TO YTABC
ZW=RESULTS STORAGE ARRAY—-EQUIVALENCED TO ZWC
TMPTEMPORARY STORAGE FOR ACCUMULATION OF RESULTS
XM=PHASE FACTOR TABLE- -COMPLEX

CREATE APPROPRIATE (HAMMING OR RECTANGULAR) WINDOW OF LENGTH L
AND CALCULATE DW(0)/R NORMALIZATION CONSTANT

C
C
C DEFINE OUTPUT DEVICE FOR PRINTING (LPT)
C

LPT=1 2
I ERR :3
IF(IQCO.LT.O) IQCO=1000
IF(IWTYPE.EQ.1) CALL CHAM(WIN,L)
IF(IWTYPE.EQ.O) CALL CRECT(WIN,L)
W0=0 .
DO 20 1=1 ,L

20 W0=WO+WIN(I)
DtWO/FLOAT(R)

C
C CALCULATE FFT SIZE AND PHASE FACTOR TABLE
C

KF=FLOAT(MHAT-2+L)/FLOAT(R)
NFFT=L+ICEIL(XF)*R+(MHAT-1)
DO 30 I=2,MAXFFT
MTST=2i-*I
IF(MTST.GE.NFFT) GO TO 40

30 CONTINUE
I B RR I

RETURN
40 CONTINUE
C
C NFFT IS SIZE OF PETS USED IN COMPUTATION
C NF2 AND NFHF ARE EXTENDED AND HALF FFT SIZES FOR REAL
C AND COMLEX ARRAYS
C IND IS MODULO PHASE FACTOR FOR TIME SHIFTING SEQUENCES
C

NFFTMTST
NF2zNFFT+2
NFHF=NF2/2
IMDNFFT/R
IF(IMD.LE.64) GO TO 45
I ERR =2

RETURN
45 TWOPI=8.*ATAN(1 .0)
C
C CREATE PHASE FACTOR TABLE TO MODULATE EACH SHORT TIME TRANSFORM DO
C ACCOUNT FOR PROPER TIME SEQUENCING
C

C

DO 50 I1 ,IbID
T=TWOPI*FLOAT( I-I ) /FLOAT( IMD)

50 XM(I)=CMPLX(COS(T) ,-SIN(T))

C DETERMINE OMIN, QMAX AND QRANGE=QMIN-QMAX+1
C

C

XF=FLOAT( 2-MHAT-L) /FLOAT( R)
IQMIN=ICEIL (XF)
IF(IQMIN.LT. (-IQCO)) IQMIN=-IQCO
XF=FLOAT(MHAT-2+L)/FLOAT(R)
IQMAX=IFLOR(XF)
IF(IQMAX.GT.IQCO) IQMAX=IQCO
IQR=IQMAX-IQMIN+ I

C NML IS MAXIMUM AVAILABLE STORAGE FOR RECURSIVE COMPUTATtON OF PHIHAT
C ANDR
C

C

IF(IQRNF2.LE.NML) GO TO 55
IERR=3
RETURN

C DETERMINE PA AND PB RANGE
C
55 XF=FLOAT(L+MHAT-2)/FLOAT(R)

IPA=ICEIL(XP)
XF=FLOAT(N-MHAT)/FLOAT(R)
IPB=IFLOR(XF)

C
C LOOP FOR COMPUTING PHIHAT AND RHAT
C JJt1 FOR PHIHAT
C JJ2 FOR RHAT
C

DO 220 JJ=l ,2
CALL ZERO(YTAB,NF2*IQR)
CALL ZERO(ZW,NF2)

C
C INITIALIZE flAB FOR Y WINDOWS PROM 1 TO -IQMIN
C

C

JJK=JJ-1
JQHIN=-IQMIN
DO 110 I=1,JQMIN
I1=NF2*(I—1 )+1
12=NFHF# ( I—I ) i-i

110 CALL GEPSIG(YTABCII),XM,YTABC(I2),WIN,I,NFFT,
1 L,R,N,IOF,IMD,JJIC,1)

IND=-IQMIW÷ 1

C LOOP ON F INDEX AND FIND ALL Q (OR K) VALUES
C

C

IPA1 =IPA+IQMIN
IPA2=IPB+IQMAX
DO 170 IP=IPA1,IPA2

C READ IN X ARRAY DATA FOR IP-TH WINDOW
C

C
CALL GETSIG(XW,XM,XWC,WIN,IP,NFFT,L,R,N,IOF,IMD,0 ,O)

C READ IN Y ARRAY FOR (IP—IQMIN)-TH WINDOW
C

C

INDYIP-IQMIN
IF(INDY.GT.(IPB4'IQMAX)) GO TO 140
II =NF2-' (IND-1 )+1
12=NFHF*(IND-1 )+l
CALL GETSIG(YTAB(Il),XM,YTABC(I2),WIN,INDY,NFFT,L,R,N,

1 IOF,IMD,JJIC,1)
140 CALL ZERO(TMP,NF2)

C ACCUMULATE RESULTS FOR EACH VALUE OF P(IP) BY SUMMING ACROSS

C VALUES OF QIQ)
C

IQQ -IQMIN+ 1

DO 160 30=1,100
IQ=JQ- 100
IQL=IQ
DO 160 JCT=1,2
ICT=JCT- 1
IF(ICT.EO.1) IQL=-IQL

C
C DEFINE TELETYPE INPUT AND TELETYPE OUTPUT DEVICES
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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IF(ICT.EQ.1.AND.IQL.EQ.0) GO TO 160
IP1=IPA—MAXC(IQL,0)
IP2I?B-MIN0 ( IQL, 0)
IF(IP.LT.IP1.OR.IP.GT.1P2) GOTO 160
INDP=MOD(IQL+IP-1 IOR)+1
INDP1=NFHF*(INDP-1)
DO 150 I1,NFHF
INDP1 =INDPI.1

150 TMP(I)=TMP(I)+YTABC(INDP1)
160 CONTINUE

C
C ACCUMULATE SUM OVER VALUES OF P(IP) ACROSS RANGE OF P
C

DO 165 It1NFHF
165 ZWC(I)=ZWC(I)+XWC(I)*TMP(I)

IND=IND+1
IF(IND.GT.IQR) IND1

170 CONTINUE
C
C COMPLEX CONJUGATE RESULTS
C

C

DO 175 I=1,NFRF
175 ZWCCX)=CONJGCZWC(I))

C PERFORM INVERSE FFT TO OBTAIN SEQUENCES PHIHAT AND RHAT
C

C

CALL FSST(ZW,NFFT)
DO 180 I1,NFFT

180 ZW(I)=ZW(I)/(D*D)
DO 210 I=1,MHAT
IF(JJ.EQ.1) PHIHAT(I)=ZW(I)
IF(JJ.EQ.2) RHAT(I)=ZW(I)

210 CONTINUE
220 CONTINUE

C SET UP LEVINSON SOLUTION OF TOEPLITZ MATRIX
C

XCtPHIHAT(1)
DO 230 I=1,MHAT
PHIHAT(I)=PHIHAT(I)/XC

230 RHAT(IkRHAT(I)/XC
C
C PRINT OUT TO DEVICE LPT VALUES OF PHIHAT AND RHAT IF IPRT=1
C

IF(IPRT.EQ.1) WRITE(LPT,3) (PHIIiAT(I),I=1,MHAT)
a FORMATC" PHIHAT=',4E13•5)

IF(IPRT.EQ,1) WRITE(LPT,2)
2 FORMAT(//)

IF(IPRT.EQ.1) WRITE(LPT,4) (RHAT(I).11,MHAT)
4 E'ORNAT(" RHAT=',4E13.5)

IF(IPRT.EQ.1) WRITE(LPT,2)
C
C SOLVE TOEPLITZ EQUATION FOR H

C
CALL EUREXA(MHAT,PHIHAT,RHAT,H,XW)

C
C PRINT OUT K OF DEVICE LPT IF IPRT=1
C

IF(IPRT.EQ.1) WRITE(LPT,6) (H(I),I=1,MHAT)
6 FORMAT(" H=°,4E13.5)

RETURN

C
END

C
C SUBROUTINE: GETSIGD
C GET SIGNAL VALUES FOR SPECTRAL ESTIMATION
C READ VALUES FROM DISK FILE
C
C

C

SUBROUTINE GETSIG(XW,XM,XWC,WIN,IND ,NFFT,L ,R,N , IOF,IMD,IXYIICJ)
DIMENSION xw(1),WIN(1)
COMPLEX XWC(1),XM(1)
DIMENSION IBUF(1 28)
INTEGER R

XW=ARRAY IN WHICH TO PUT SPECTRUM OF SIGNAL
XM=PHASE FACTOR ARRAY TO ACCOUNT FOR POSITION OF WINDOW
XWC=COMPLEX ARRAY EQUIVALENCED TO XW IN MAIN PROGRAM
WIN=WINDOW ARRAY--I.E. HAMMING WINDOW
INDrINDEX OF WINDOW TO BE ACCESSED
NFFT=SIZE OF FFT TO BE PERFORMED
L=WINDOW DURATION IN SAMPLES
R=SHIFT BETWEEN WINDOWS IN SAMPLES
N=TOTAL NUMBER OF SAMPLES FOR ANALYSIS
IOF=INITIAL SAMPLE IN FILE FOR READING
IMD=RATIO BETWEEN NFFT AND R--USED FOR PHASE FACTOR TABLE
IXYtVARIABLE INDICATING WHICH INPUT TO BE USED

IXY=0 USES X ARRAY
IXY=1 USES Y ARRAY

ICJ=VARIABLE TO CHOOSE WHETHER TO TAKE COMPLEX
ESTIMATE--ICJ1 TAKES CONJUGATE--OTHERWISE

CALL IZERO(IBTJF,L)
CALL ZERO(XW,NFFT#2)

SCALE FACTOR IS MACHtNE DEPENDENT
SCALE FACTOR USED HERE (FOR A 16-BIT MACHINE)
IS 32000.

XSCAL=32000.
Ii =IND*R—L+1
IST=1
NRD =L
IF(I1.GE.0) GO TO 5
IST=L-IND*R
Ii =0
NRD=L-IST-*-1

5 XST=(IOF+I1)
Ii =IND-*R
IF(I1.LT.N) GO TO 8
NRD=N-1 +L-IND*R

C
C RSECT IS A SUBROUTINE TO READ DATA FROM THE DISK FILE
C FIRST ARGUMENT IS CHANNEL NUMBER (0 FOR INPUT, 1 FOR OUTPUT)
C IBUF IS THE ARRAY WHICH HOLDS THE DATA READ FROM DISK
C NRD IS THE NUMBER OF SAMPLES READ FROM THE DISK FILE
C XST IS THE STARTING SAMPLE IN THE DISK FILE FOR READING
C IEOF IS AND ERROR FLAG FOR READING

8 IF(IXY.EQ.0) CALL RSECT(O4IBUF(IST),NRD,XST,IEOF)
IF(IXY.EQ.1) CALL RSECT(1,IBUF(IST)INRD,XSTIIEOF)
DO 9 I=1,L

9 XW(I)=FLOAT(IBUF(I))/XSCAL
CALL WIND(XW1L,WIN1XW)

C
C PERFORM FFT CALCULATION
C

C

CALL FASTCXWINFPT)
JND =IND

11 IF(JND.GE.1) GO TO 12
JND=JND+ IbID
GO TO 11

12 JDX=MODCJND-1 ,IMD)
JX=1
JFFT=NFFT/2+ 1

C PUT IN PHASE FACTOR FROM TABLE
C

DO 10 I=1,JFFT
XwC(I)=XwC(I) *XM(JX)
IF(ICJ.EQ.1) XWC(I)=CONJG(XWC(I))
JX=JX+JDX
IF(JX.GT.IMD) JX=JX-IMD

10 CONTINUE
RETURN
END

C
C
C SUBROUTINE: ICEIL
C EVALUATE CEILING FUNCTION

C

FUNCTION ICEIL(X)
15=0

C INUM IS THE BIGGEST POSITIVE INTEGER IN MACHINE MINUS 1
C FOR 16-BIT MACHINES, INUM IS 32767-1
C

C

INUM=32766
IF(X.GT.O. )IS=INUM
ICEIL=IFIX(X-FLOAT(IS))+IS
RETURN
END

C
C SUBROUTINE: IFLOR
C EVALUATE FLOOR FUNCTION
C
C

C

FUNCTION IFLOR(X)
IS=tO

C INUM IS THE BIGGEST POSITIVE INTEGER IN MACHINE MINUS 1
C FOR 16-BIT MACHINES, INUM IS 32767-1

INtJM=32766
IF(X.LT.0. )IS=INUM
IFLOR=IFIX(X+FLOAT(ISH-IS
RETURN
END

C SUBROUTINE: EUREKA
C LEVINSON RECURSION SOLUTION OF TOEPLITZ EQUATION
C
C
C SOURCE OF CODE IS:
C E. A. ROBINSON, MULTICHANNEL TIME SERIES ANALYSIS WITH
C COMPUTER PROGRAMS, SECOND EDITION, P 44
C HOLDEN-DAY, SAN FRANCISCO, CA, 1976
C
C
C INPUTS:
C

LR=LENGTH OF FILTER=M
R=AUTOCORRELATION COEFS=(R0 ,R1 ,R2, . . . ,RM)
G=RIGHT-HAND SIDE COEFS=(G0 ,G1 ,G2, . . . SGM)

OUTPUTS:

F=FILTER COEFS=(F0,F1,...,FM)
PREDICTION ERROR COEFS=(1,A1,A2. . ..AM)

C
C
C
C

SUBROUTINE EUREKA(LR,R,GF,A)
DIMENSION R(1 ) ,G(1 ) ,FM ) ,A(1
V=R(1
D=R(2)
A(1)=1
F(1)=G(1 )/V
Q=F(1 )4R(2)
IF(LR.EQ.1 )RETURN

DO 4 L=2,LR
A(L)=-D!V
IF(L.EQ.2)GO TO 2
LI =(L-2)/2
L2=L1 +1
IF(L2.LT.2)GO TO 5
DO 1 J=2,L2
HOLD=A(J)
K=L-J+1
A(J)zA(J)+A(L)*A(K)
A(K) A(K)÷A(L)*HOLD
CONTI NUE
CONTINUE
IF(2*L1.EQ.L-2)GO TO 2
A(L2+1 )=A(L2+1 )+A(L)*A(L2+l
CONTI NUE
V=V+A(L)*D
F(L)=(G(L) -0)/V
L3=L-1
DO 3 J=1 ,L3
KL-J+1

C
C

C

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C

C
C
C
C
C
C
C
C
C
C

CONJUGATE OF SPECTRAL
NOT

C

1

5

2

C F(J)=F(J)+F(L)*A(K)
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C
C
C SUBROUTINE: CtECT
C CREATE N POINT RECTANGULAR WINDOW
C

SUBROUTINE CRECT(WIN,N)
DIMENSION WINC1)

C
C WINtARRAY TO HOLD WINDOW COEFFICIENTS
C N=NUNBER OF WINDOW COEFFICIENTS
C

DO 10 I=1,N
10 WINCI)=1.O

RETURN
END

C
C
C SUBROUTINE: CHAM
C CREATE N POINT RAMMING WINDOW
C

SUBROUTINE CHAM(WININ)
DIMENSION WIN(1)

C
C WIN=ARRAY TO HOLD WINDOW COEFFICIENTS
C N=NUMBER OF WINDOW COEFFICIENTS
C

PI=4.*ATAN(1 .0)
DO 10 I=1,N

10 WIN(I)=O.S4-0.46COS((2.#PI4FLOAT(I-1))/FLOAT(N-1))
RETURN
END

C
C
C SUBROUTINE:WIND
C WINDOW DATA SEQUENCE
C

SUBROUTINE WIND(X,N ,WIN,Y)
DIMENSION X(1 ) ,Y(1 ) ,WIN(1)

X=ARRAY WHICH HOLDS INPUT SEQUENCE
N=NUMBER OF POINTS IN ARRAY N
WIN=ARRAY WHICH HOLDS WINDOW COEFFICIENTS
Y=ARRAY WHICH HOLDS OUTPUT SEQUENCE

C
DO 10 X=1,N

10 Y(I)=X(I)*WIN(I)
RETURN
END

C
C
C SUBROUTINE: ZERO
C ZERO OUT A FLOATING POINT ARRAY
C
C

SUBROUTINE ZERO ( XAR ,N)
DIMENSION XAR(1)

XAR=ARRAY TO BE ZEROED OUT
N=NUMBER OF POINTS IN ARRAY XAR

DO 10 I=1,N
10 XAR(I)=O.

RETURN
END

C
C
C SUBROUTINE: IZERO
C ZERO OUT A FIXED POINT ARRAY
C

SUBROUTINE IZERO( IAR ,N)
DIMENSION IAR(1)

C
C IAR=ARRAY TO BE ZEROED OUT
C • N=NUMBER OF POINTS IN ARRAY lAiR
C

DO 10 I=1,N
10 IAR(I)=0.

RETURN
END

C
C
C SUBROUTINE:GNAME
C
C THIS PROGRAM IS MACHINE DEPENDENT
C n FORTRAN CODE HAS BEEN SUPPLIED FOR A DATA GENERAL COMPUTER
C *** WITH A FORTRAN 5 COMPILER
C
C THIS PROGRAM READS ASCII DATA INTO AN ARRAY "NAME(I)'
C IN A FORMAT THAT MAY BE USED BY : OPEN ICH, NAME
C WHICH OPENS DISX FILE tNAME' ON FORTRAN CHANNEL ICR
C
C

SUBROUTINE GNAME C NAME)
DIMENSION NANEC1O)
ITTI=1 I

C
C READ UP TO 10 CHARACTERS FROM DEVICE ITTI IN S (STRING) FORMAT
C THE CHARACTERS ARE PACKED 2 PER 16 BIT WORD AND ARE LEFT
C JUSTIFIED IN THE ARRAY NAME
C

REAID(ITTI,9999) NAMEI1)
9999 FORMAT(S10)

RE TUB N

END

3 CONTINUE
IF (L. EQ LR) RETURN
D=0
0=0
DO 4 Lzl,L
K=L-I+2
D=D+A( I) *R( K)
Q=Q+F(I) *R)K)

4 CONTINUE
STOP
END

C

C
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