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Performance Tradeoffs in Dynamic Time Warping
Algorithms for Isolated Word Recognition
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Abstract—The technique of dynamic programming for the time regis-
tration of a reference and a test pattern has found widespread use in
the area of isolated word recognition. Recently, a number of variations
on the basic time warping algorithm have been proposed by Sakoe and
Chiba, and Rabiner, Rosenberg, and Levinson. These algorithms all
assume that the test input is the time pattern of a feature vector from
an isolated word whose endpoints are known (at least approximately).
The major differences in the methods are the global path constraints
(i.e., the region of possible warping paths), the local continuity con-
straints on the path, and the distance weighting and normalization used
to give the overall minimum distance. The purpose of this investigation
is to study the effects of such variations on the performance of differ-
ent dynamic time warping algorithms for a realistic speech database.
The performance measures that were used include: speed of operation,
memory requirements, and recognition accuracy. The results show that
both axis orientation and relative length of the reference and the test
patterns are important factors in recognition accuracy. Our results
suggest a new approach to dynamic time warping for isolated words in
which both the reference and test patterns are linearly warped to a
fixed length, and then a simplified dynamic time warping algorithm is
used to handle the nonlinear component of the time alignment. Re-
sults with this new algorithm show performance comparable to or
better than that of all other dynamic time warping algorithms that were
studied.

I. INTRODUCTION

TIME REGISTRATION of a test and a reference pattern
is one of the fundamental problems in the area of auto-

matic isolated word recognition. This problem is important
because the time scales of a test and a reference pattern are
generally not perfectly aligned. In some cases the time scales
can be registered by a simple linear compression and expan-
sion [1], [21; however, in most cases, a nonlinear time warp-
ing is required to compensate for local compression or
expansion of the time scale. For such cases, the class of algo-
rithms known as dynamic time warping (DTW) methods have
been developed. These algorithms have been shown to be
applicable to the isolated word speech recognition problem
and to greatly improve the accuracy of such systems [2] —[5].

Because of their importance to isolated word recognition
systems, several investigations have been carried out to deter.
mine the "best" implementation of a dynamic time warping
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algorithm [61, [7]. Unfortunately, there has been no ex-
tensive evaluation in which all of the parameters of the DTW
algorithms have been systematically varied to determine their
effects on the performance of the recognizer. Thus, one of the
purposes of this paper is to provide results on such a perfor-
mance evaluation for a broad class of DTW algorithms. The
second purpose of this paper is to unify the notation and
mathematical framework for DTW algorithms for word recog-
nition so that it is relatively easy to specify new variants of the
algorithm, and to calculate their effects on basic parameters
of the DTW method.

The organization of this paper is as follows. In Section II we
give the mathematical framework for a general DTW algorithm
and show how all previous formulations fit into this frame-
work. In Section III we discuss the measures of performance
used to compare the different DTW algorithms, namely,
memory, speed of execution, and recognition accuracy. In
Section IV we present results of a series of tests in which
comparisons are made using each of the performance mea-
sures. Finally, in Section V, we discuss the implications of
the results for isolated word recognition systems and present a
modified algorithm for dynamic time warping which performs
as well as or better than all the other algorithms tested.

H. SPECIFICATION OF THE DTW ALGORITHM

We assume throughout this paper that, prior to the applica-
tion of the DTW algorithm, the endpoints (beginning and end-
ing frame) of the unknown isolated word (called the test)
have been accurately located. We also assume that, via a con-
ventional training process, the endpoints of each reference
pattern (template) are accurately known. Hence, the problem
of dynamic time warping can be formulated as a path finding
problem over a finite grid as shown in Fig. 1. We denote the
reference pattern as a sequence of frames, R(n), n = 1,2,

N, where R(n) is, in general, a multidimensional feature
vector that describes the characteristics of the nth frame of
the spoken word. In Figs. 1 and 2, for the sake of illustration
and clarity, we show R(n) and T(m) as one-dimensional func-
tions of n and m. (Typically, a frame of data encompasses
from 10—50 ms of data, and consecutive frames often overlap
in time.) We denote the test pattern as a sequence of frames,

m = 1, 2, . , M, where T(m) is also a multidimensional
feature vector.

Based on the model of Fig. 1, the DTW problem is to find an
optimal path

mw(n) (1)
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illustrating the grid for warping T(m) to R(n) via
the path m = w(n).
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where d(R(n), T(w(n))) is the local distance between frame n of
the reference pattern and frame m = w(n) of the test pattern.
A typical path w(n) is shown in Fig. 1. It is important to note
that w(n) is restricted to begin at the point n = 1, m 1, to
pass through the grid of points (n, m) and to end at the point
n =N, m =M.

In the formulation of (1) we have tacitly assumed that the
path we are seeking can be expressed by a simple functional
relation between m and n. It is not unreasonable, however,
that the best warping path may not be functional [61. In such
cases, it is necessary to create a common time axis k, and to
express both time axes (n and m) as functions of k, i.e.,

ni(k), kl,2,",K (3a)

mj(k), k=1,2," ,K (3b)

where K is the length of the common time axis. Fig. 2 shows a
typical example in which 1(k) and 1(k) are shown as simple
functions of k. The resulting curve in (n, m) space is shown
in the middle of Fig. 2. It can be seen that the resulting curve
is a monotonically increasing path from the point (1, 1) to the
point (N, M).

The formulation of (3) subsumes the formulation of (1) in
that, if we choose the function i(k) to satisfy the constraint

ni(k)k, (4a)

then we get the result

m =1(k) = 1(n) = w(n). (4b)

In order to find the best path in the (n, m) plane, based on
the parametric formulation of (3), several factors of the DTW
algorithm must be specified, including:

1) endpoint constraints on the path,
2) local continuity constraints, i.e., the possible types of

motion (e.g., directions, slopes) of the path,
3) global path constraints, i.e., the limitations on where the

path can fall in the (n, m) plane,
4) axis orientation, i.e., the effects of interchanging the

roles of the test and reference patterns,
5) distance measures, i.e., both the local distance measure

and the overall distance metric used to determine the optimal
path.

In the remainder of this section we discuss each of these
factors and show how they affect the implementation (and
performance) of the DTW algorithm.

A. Endpoint Constraints

For the case of isolated words with precisely determined
endpoints for both the reference and test patterns (as assumed
here), the parametric path endpoint constraints are of the
form

i(1)= 1, j(l) 1, beginning point (5a)

iK) =N, 1(K) M, ending point. (Sb)

B. Local Continuity Constraints

To further specify the optimal path, some local constraints
must to be applied in order to guarantee that excessive corn-

(2) pression or expansion of the time scales is avoided. A first

m
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Fig. 1. An example
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Fig. 2. An example of a parametric mapping of T(m) to R(n) via the
intermediate time axis k.

in the (n, m) plane to minimize a total distance function D of
the form

N
D = d(R(n), T(w(n)))
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Next we would like to restrict the local range of the path in
the vicinity of the point (n, m) as shown in Fig. 3(a). Here we
assume that the oniy valid paths to the point (n, m) come
from the points (n—i, m — 1), or (n — 1,m —2), or (n —2,
m — 1). Hence, this set defines one possible set of local con-
straints. For this example, if we further assume that the path
from (n - 2, m — 1) must go through the intermediate point
(n - 1,m), and the path from (ii - 1,m -2) must go through
the intermediate point (n, m — 1), we get the set of local con-
straints (which we call Type I constraints) shown in Fig. 3(b)
[6].

Clearly, it is possible to specify a large number of sets of
such local constraints for any particular problem. Thus, we
need some formal method for specifying constraints of this
type. One possible way would be to express the constraints as
a set of productions in a regular grammar [8]. A production
is a rule of the form

Fr (") r)) (r) r)) - . - (a I3.,)) (7)

where r signifies the i-th production and L(r) is the length of
the rth production. The interpretation of the (a, )'s as a pro-
duction are that of the local changes used to reach a point in
the path, i.e., to reach the point i(k) =n, 1(k) m, using a
single production r, the path is traced backwards through
L(r) points as1

kthpoint: i(k)n, j(k)m (8a)

(k - s)th point: i(k - s) = i(k) - (8b)

fk - s) 1(k) - (8c)

fors=l,2,-,L(r).
As an example, the set of productions for the Type I local

constraints of Fig. 3 are

Fir (1,0) (1, 1)

-4' (i, 1)

-÷ (0, 1)(1, 1). (9c)

Using the productions of (9), an entire path from (N,M) to
(1, 1) can be expressed as a sequence of productions. By way
of example, Fig. 4 shows a path specified by the productions
(9)

rL(r) (r) /L(r) (r)1
EMAX = max z / a1

j(r) j= / 1=1

constraint of this type is the monotonicity constraint, namely,

i(k+1)'i(k) (6a)

/(k+ 1)/(k).

m. . •(nrn)

rn-I® ®

(6b) m-2. C

® LEGAL PREVIOUS POINTS

2

TYPE I LOCAL CONSTROINTS

Fig. 3. An illustration of local path constraints to reach the point
(ii, m), and the resulting set of productions which describe the valid
paths.

m

(N,M)

///K'"
(1,1)

I b-fl
N

SAMPLE PATH (TYPE I CONSTRAINTS)
PROOuCTIONS: P1 p1P2 P1P3P2P2

PATH: (1,O))1,I))1,O) Ill)) 1,I))1O)(1,1) (0,1)) 1,I)(1,I)( 1,1)

Fig. 4. A sample path and the set of productions for an illustrative time
warping example.

P—(1,0)(1, 1)(1,0)(1, 1)(1, 1)(1,0)(1, l)(0, I)

(1,1)(l, 1)(1, 1).
We see that this sequence specifies, tracing backwards, the

path used to reach the point (N,M) from the point (1, 1).
9aj Using the concept of productions to specify the local path
(9b) constraints, the monotonicity conditions (6) are readily given

as

a, '0 for all 1. (10)

Furthermore, simple expressions can be obtained for the maxi-
mum and minimum amount of expansion (or inversely com-
pression) of the time scales directly from the productions. If
we denote the maximum expansion as EMAX, and the mini-
mum expansion as EMIN, then

(ila)

(lib)

The actual path may be obtained by substituting the defini-
tions of the productions to yield the sequence

1The reader should recall that for DTW algorithms, the path is re-
trieved backwards from the end to the beginning since the optimal path
is indeterminate until the end is reached,

rL(r) (r) /L(r) (r)1
EMIN min 13i / . ai](r) L1=1 / 1=1
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LOCAL CONSTRAINTS
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I RULE
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I
P1 — 110)11, 1) I I

I I

CTIONS MIN

I P2—(1,II 2 1/2

P3— 101)111)

P4—I21) I

P2—I11) 2 1/2

P3 • I P3—Il2) I

I P1 11,01(1,1)

In P2—(1,O)I12I
I

•
P3—(11)

'2 P4 P4 —-—(12)

2 1/2

1'1 .0)0)11,1)
• P2—.-(1,O)(1,O)(l,2)
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• P(1,O) ((0)1 3)
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I P6—- (.1,0)11,3)
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j(k) 2(1(k)-N) 4-M
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ITAKURAI

• X
2 1/2

Fig. 5. Asummary of the types of local constraints investigated in this
paper.

For the Type I local constraints of Fig. 3, EMAX =2 and
EMIN

Fig. 5 illustrates four additional types of local constraints
that were investigated for isolated word recognition. A
pictorial representation of the local paths is given, along with
the set of productions, and the values of EMAX and EMIN for
each type. Type II local constraints have the same initial and
final points as Type I constraints; however, these paths do not
go through the intermediate points. Type III local constraints
are a generalized form of those proposed by Itakura [4].
Both Type II and Type III constraints have EMAX = 2 and
EMIN 4. Type IV constraints are an expanded version of
Type III constraints in which the maximum expansion is
increased to three. This set was included to see if increases in
EMAx would help or hurt the performance of the DTW
algorithm. The last type of constraints, denoted as Type
Itakura in Fig. S is the exact set proposed by Itakura [4]. The
crossed out path denotes the nonlinear weighting used by
Itakura to prevent a path from staying flat for two consecutive
frames. This modification, however, prevents us from char-
acterizing the local constraints by a set of productions. The
difference between Itakura's local constraints and Type III
local constraints is a subtle one. It is related to the look-ahead
(or equivalently the looking back) capability of the local
constraints in finding the best path to the point (n, m) in the
grid. For Itakura's constraints, the look ahead capability is
only one frame. Hence, whenever a best path to the grid point
(n — 1,m) came from the point (n — 2, m) (i.e., it was a flat
path), then no best path can ever go from the point (n - 1, m)
to the point (n, m), i.e., this arc is completely eliminated from
all subsequent best paths. However, for Type III constraints,
the look-ahead is two levels; hence, even if the best path to
the grid point (n — 1, m) came from the intermediate point

Fig. 6. The effects of global range constraints, and range limiting, on
the grid of possible paths for time warping.

(n - 2, m), there can be paths to the grid point (n, m) which
pass through the intermediate point (n — 1, m) as long as they
started from either the points (ii — l,m — 1) or (n — 2, m — 1).
Thus, for Type III constraints, the true best path can be
found even when two horizontally adjacent points both have
horizontal arcs as the last segments on their locally optimal
paths.

C. Global Path Constraints

Because of the local path constraints, certain parts of the
(n, m) plane are excluded from the region in which the opti-
mal warping path can lie. A simple set of relations can be ob-
tained for expressing the boundaries of the allowable regions
of the (n, m) plane. These relations are of the form (assuming
EMIN = l/EMAX)

1 + (z(k)- 1) j(k)1 +EMAX(i(k)- 1) (12a)
EMAX

M+EMAX(i(k)- N)j(k)M+ (z(k)- N)
(12b)

EMAX

Equation (12a) can be interpreted as limiting the range to
those grid points which can be reached via a legal path from
the point (1, 1), whereas (l2b) represents those points which
have a legal path to the point (N, M).

Fig. 6 illustrates the effects of the constraints of (12) in the
(n, m) plane for a maximum expansion of EMAX =2 (recall
that EMIN = 1IEMAX). The range of valid paths is restricted
to be within the parallelogram (shown by diagonal lines)
defined by the lines of slope 2 to 1 and 4 to 1 [6], [4].

An additional restriction on the global range, proposed by
Sakoe and Chiba [6], is that

(13)
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where R is the maximum allowable absolute time difference
(in frames) between test and reference patterns. The effect of
this additional restriction is to reduce the size of the parallelo-
gram grid by cutting off the corners, as shown in Fig. 6. The
cross-hatched area, in this figure, is the difference between the
full parallelogram range [without the restriction of (1 3)} and
the restricted range.

D. Axis Orientation

In (3), we arbitrarily assigned n to i(k) and m to j(k).
Another equally arbitrary assignment of variables would be

n1(k), k=1,2,",K
mi(k), k=1,2, ,K.

(14a)

(14b)

In cases when both the local constraints are symmetric, and
the distance metric is symmetric, there are no differences
between the variable assignments of (3) and (14). However,
when there is asymmetry in either local constraints (e.g.,
Type III constraints), or in the distance metric, then the
differences in variable assignments of (3) and (14) can be
significant. To distinguish these assignments, we refer to those
of (3) as "reference along the x-axis" and those of (14) as
"test along the x-axis." (Unless otherwise noted, the assign-
ments of (3) will be used in subsequent discussions.)

E. Distance Measure

The last factor of the DTW algorithm is the distance func-
tion used to obtain the optimal warping path. A general form
for such a distance function is

K
d(ik), 1(k)) W(k)

D(i(k),j(k))
k=i

N(W)

where D(i(k),j(k)) is a functional (i.e., a function of a set of
functions) that gives the totaldistance along the path of length
K, (defined by the K pairs (i(k), 1(k), k = 1, 2, . . , K),
d(i(k), 1(k)) is the local distance between frames i(k) of the
reference, and 1(k) of the test, W(k) is a weighting function
of the kth arc of the path, and N(W) is a normalization factor
which is a function of the weighting function W.

The definition of the optimal path can be made directly
from (15), as the path that minimizes the total distance
D(i(k), 1(k)). More formally, if we denote the minimum path
distance (i.e., the distance along the optimal path) as D, then

B mm Dik), 1(k))).
(K, i(k),j(k))

(16)

In order to implement the computation of (15) and (16),
three functions must be specified, namely, the local distance
function d, the weighting function W, and the normalization
factor N(W). The local distance function d depends only on
the feature set used to create the test and reference patterns,
and is independent of the details of the DTW algorithm. As
such, we defer specification ofd until Section Ill of this paper.

The weighting function W depends only on the local path.
Four types of weighting functions have been proposed [6].
These have the form

(0) %V(k) MIN(i(k) —i(k—.1),j(k)—J(k——1))

(nm)

(b) W(k)MAX(i(k)—i(k—1), j(k)—j(k—1))

(C) kIk)-i)k—1

(dl ')k) i(k)—((k—1) +j(K)—j)k-1)

(nm)

Fig. 7. Examples illustrating the application of weighting functions to
Type II constraints.

k) = mm (i(k) — ik — 1), 1(k) — j(k — 1)) (Type a)

(17a)

r2ik) = max iQc)
- ik 1), /Qc) - jQc - 1)) (Type b)

I/(k)=i(k)- i(k- 1) (Typec)

(17b)

(1 7c)

(15) l(k) =i(k)— i(k — 1)+/(k)—j(k —1) (Typed) (17d)

where i(O) and 1(0) are defined to be 0 for initialization

purposes.

Fig. 7 gives a pictorial representation of the four types of
weights as applied to the Type II paths. The number above
each arc is the weight attached to that arc. We observe that
weighting function Type a weights all arcs (whose slopes are
not 0 or oo) equally, weighting function Type b weights the
arcs of slope and 2 more strongly than the arc of slope 1,
weighting function Type c weights the arcs according to the
distance moved in the x direction, and weighting function
Type d weights the arcs according to the sum of the distances
moved in the x and y directions. As another example of the
use of the weighting function, the left-hand side of Fig. 8
shows the weights applied to Type I paths. It can be seen that,
for Types a and c weights, some arcs of the path receive 0
weight. For such cases the local distance does not contribute
to the overall distance. To eliminate such a nonphysical
occurrence, the use of a smoothing function on the weights
was suggested by Sakoe and Chiba [6]. The smoothing func-
tion averages the weights along multiple segments of a local
path. The result of applying the smoothing to the weights of
Type I paths is shown on the right side of Fig. 8. In this
manner equal weight is given to all segments of a local path.

The choice of the normalization factor N(W) is determined
by the constraint that the total distance D(i(k), 1(k)) be the
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Fig. 8. Examples illustrating the effects of smoothed weighting func-
tions on the paths of Type I constraints.

average local distance along the path and, as such, is indepen-
dent of both the lengths of the reference and test patterns, and
also is independent of the length of the particular time align-
ment path. As such, the normalization is of the form

K.
N(W) = > W(k).

k =1

For Types c and d weighting functions, the normalization is

K
N(W) = (i(k) — i(k — 1)) = i(K) — i(O) =N

k =1

K
N(Wd)= (i(k)—i(k— l)+j(k)—j(k—l))

k=1

=i(K)- i(O)i-j(K)-j(O)=Ni-M.
However, for Types a and b weighting functions, N(W), as
defined in (18), depends strongly on the path. This result is
illustrated in Fig. 9 which shows two paths in a grid (N = M
for convenience). Path 1 is a straight line of slope 1 from
(1, 1) to (N,N). Path 2 has two sections, the first of which
has slope (from (1, 1) to ((2N + 1)73, (N + 2)/3)) and the
second has slope 2 (from ((2N+ 1)/3, (Ni- 2)/3) to (N,N)).
For Type a weights, the normalization along the path is

Path 1: N(Wa) =N (20a)

Path 2: N(Wa) = 2N/3 (20b)

Similarly, for Type b weights we get

Path 1: N(Wb)=N (21a)

Path 2: N(Wb) = 4N/3.

While it is possible, in principle, to compute normalization

factors of the form of (18), it is not possible when the com-
putation is performed by a recursive (dynamic programming)
algorithm, since in such an algorithm the minimization process
is performed locally, and hence a path dependent normaliza-
tion of this type is clearly inappropriate. As such, an arbitrary
normalization must be chosen for Types a and b weights. For
these cases we define the normalization to be

N(Wa)N (22)

and similarly for Type b weights we use

N(Wb)=N. (23)

Clearly, the normalizations of (22) and (23) for Types a and b
(18) weights leads to a bias in the DTW algorithm, i.e., a preference

for some paths over others. For Type a weighting, the DTW
algorithm has a preference for longer paths, whereas for Type
b weighting, the preference is for shorter paths. It is antici-
pated that this bias will affect the performance of the DTW

(19a) algorithm, and may prevent the method from finding the
optimal path.2

F. Dynamic Time Warping Implementation
In order to implement a time warping algorithm in a dy-

(19b) namic programming manner, two basic principles are used,
namely:

1) a globally optimal path is also locally optimal;
2) the optima! path to the grid point (n, m) only depends

on values of n', m' such that n' (n, m' <m.
These two principles define the standard dynamic program-

ming recursive relationship. Using them, it is possible to create
a partial accumulated distance function DA (n, m), representing
the accumulated distance along the best path from (1, 1) to
(n, m), of the form

(0) W(k) MIN (i(k)- (k-i), )(k)-j)k-U)
•

1/2
SMOOTHED •

• •

)b) (k) MAX (ok)— i(k-l),j (k) - j(k-1))

(nm)

SMoOTHED:

(C) W(k) (k)-i(k-1)

(d) W(k) i)k)-i(k-1) + ()k)-j(k()

N'M

(nm)

Fig. 9. Illustration of two possible paths through a grid.

3/2

3/2 nm)

SMOOTHED

DA(n, m)= mm

(i(k),j(k), K)
s.t. i(K') =n,j(K') =m

1K'
d(i(k), j(k)) W(k)

Lk=i

(24)

(21 b) 21t should be noted that White and Neely [21 used Type b weights.
This may account for their lack of improvement of the DTW time align-
ment over simple linear time alignment for the alpha-digit vocabulary.
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DA(n, m) depends only on the paths from (1, 1) to (n, m) and
can be defined recursively in terms of an intermediate point
(n', m') where n' <n, m' <m, as

DA(n, m) = mm EDAn', m') + 2(n', m'), (ii, m))] (25)
(n', m')

where a is the weighted distance from (n', m) to (n, m), i.e.,

a((n', m'), (n, m)) = d(i(K' - 1), j(K' - 1)) i(K' - 1),

(26)

and in which L is the number of segments in the path from
(n', m') to (n, m), and where

j(K')=m (27a)

i(K' - L) =n', j(K' - L) = m'. (27b)

For an efficient implementation of (25), it is only necessary
to restrict the range of(n', m') of(25) to the set of grid points
which use a single production to reach (n, m) from (n', m').
Fig. 10 illustrates this important point with four examples.
The first example uses Type I local constraints and Type a
weights (smoothed) and is shown in part a of Fig. 10. In this
case (25) becomes

DA(n-1,m-l)+d(n,m) 1
DA(n,m)min DA(n-lm-2)+(d(nm-l)+d(nm))(.

DA(n-2,m-l)+(d(n- l,m)+d(n,m))j
(28)

Similarly, part b shows an example of Type II constraints with
Type d weighting, and part c shows an example of Type III
constraints with Type c weighting. In part d we show Itakura's
DTW algorithm. The purpose of the g(k) function is to dis-
allow paths which go horizontally for more than one frame.

Whenever N(W) is independent of the path, or equivalently,
whenever a solution to the unnormalized minimization prob-
lem provides a solution to the normalized minimization prob-
lem, it is possible to minimize (15) as follows:

K
d(i(k), j(k)) W(k)

15= mm
k=1

(i(k),j(k), K)

1K
mm J d(ik), 1(k)) W(k)I

i(k),jk,K) Lk=i J

N(W)

In such cases we may use (25) to give

D(N,M)
N(W)

and the implementation of the DTW algorithm is a three step
procedure.

1) Initialization: Set DA(l, 1)d(l, 1) W(l).
2) Recursion: Compute DA(n, m) recursively for 1 n N,

1<m<M.
3) Termination: Set B DA(N,M)/N().

(a) TYPE I CONSTRAINTS WEIGHTING FUNCTION TYPE A
SMOOTHED

• o(n,mIMIN
1/2 1 1/2 (DAn-1,m-fl+ d(fl,m),DA(fl—1,m_2)+ 1/2

[d(n,m-1) +d(n,m)],D4(n-2,m.-1)i-1/2
1/2 •

[d(n-1m) +d(n,m)])

(b) TYPE a CONSTRAINTS WEIGHTING FUNCTION TYPE D

DA(n,m)MIN•
I (DA(n-1,m—2)+d(n,m)•

• D*(n—1,mIg(k)+d(n,m))
j(k—1 )øj(k—2)
j(k—1)j(k—2)

Fig. 10. Examples illustrating the computation of the accumulated dis-
tance function.

We have now defined all the variables which are of interest
in the implementation of a dynamic time warping algorithm
for isolated word recognition. In the next section we discuss
the performance measures used to compare the effects of the
DTW variables, and in Section IV we present the results of a
series of isolated word recognition tests on the various DTW
algorithms.

III. PERFORMANCE CRITERIA AND MEASUREMENTS
FOR DTW ALGORITHMS

Although the DTW algorithms of Section II can be evaluated
(29a) in a variety of applications, we are only concerned here with

their performance in an isolated word recognition system of
the type shown in Fig. 11 [4], [5]. This recognition system
has been applied in a variety of tasks [4], [5], [9]—[12] and
has been found to be a reliable and robust system for isolated

(29b) word recognition. The analysis features are a set of (p + 1)
(p = 8) autocorrelation coefficients for each frame, where a
frame is 45 ms of speech, and frames overlap by 30 ms (i.e.,
67 frames/s). The local distance for comparing frames of the

(30) reference and test is the log likelihood ratio distance proposed
by Itakura [4], [13]. The output of the DTW algorithm for
the vth reference word is the disfance (30), and the deci-
sion rule processes the set of scores to determine an
ordered list of recognition candidates. The "recognized" word
is generally the candidate with the smallest value of

In a practical implementation of the recognition system of
Fig. 11, it is found that the DTW computation contributes

• •__ D(n,m)=MIN
(on-i,m-i +2d(n,mI,D4(n-1m-2) +

3d(n,m),DAIn-2,m-l)+ 3d(n,m))
• •/3 •

(C) TYPE lit CONSTRAINTS WEIGHTING FUNCTION TYPE C

DAIn,m)MIN

(D4n-1,m— 1> +d(n,m),DA)n-j,m_2) +
d)n,m),oa(n_2,m —I) + d(n-i,m)+

I • dln,m),DA(n_2,m_2)+ d(n_1,m)+d(n,m))

(d) ITAKURA CONSTRAINTS WEIGHTING FUNCTION TYPE C

N(W) J
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Fig. 11. A block diagram of the isolated word recognizer used in the
performance evaluations.
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substantially to the overall computation of the system (typi-
cally from 50 to 90+ percent, depending on the number of
reference patterns). As such, speed of computation is an im-
portant consideration in evaluating the performance of a DTW
algorithm. Similarly, the required space (memory) for im-
plementing the algorithm is an important factor since we
would like the overall recognition system to be easily imple-
mented in either general purpose software, or special purpose
hardware. Typically, a DTW algorithm is computed as a series
of vectors, i.e., n is fixed and DA(n, m) is computed for all m.
As such, the natural unit to measure storage is the number and
size of the vectors needed. In most applications vectors are
stored for both DA(n, m) and d(n, m). Finally, the last, and
most important, index of performance is the accuracy with
which the DTW algorithm finds the best path for the spoken
word, as measured by the word recognition accuracy of the
system.

Thus, the three performance criteria of the DTW algorithms
are as follows.

1) Memory Requirements: The number and size of the
vectors that need to be stored in order to compute the ac-
cumulated distance function DA(n, m).

2) Efficiency (Speed of Computation): The amount of time
required by the time warping algorithm to compute the opti-
mal path. For this measure there are two components, namely,
time for combinatorics and time for local distance calcula-
tions. The combinatorics time is the time to compute the
accumulated distance function, given the values of the local
distance function.

3) Recognition Accuracy: The probability (measured as the
percentage of occurrences) that the reference word with the
smallest distance D(v) matches the spoken word in a series of
isolated word recognition tests.

In the next section we study the effects of varying the
parameters of the DTW algorithms on each of the performance
criteria.

-

IV. RESULTS OF PERFORMANCE EVALUATIONS

A series of recognition tests were performed using the recog-
nizer of Fig. 11. Two test sets of data were used.

1) TS1—Two talkers, (SD1 and SD2), speaker dependent
reference patterns (2/word), 39 word vocabulary (A—Z, 0—9,

STOP, ERROR, REPEAT), five replications of each word for
each talker in the test set.

2) TS2—Four talkers (SIl, S12, S13, and 514), speaker inde-
pendent reference patterns (2/word) generated from a cluster-
ing analysis [11], 54 word vocabulary of computer terms
[11], one replication of each word for each talker.

All recorded words were obtained from previous investiga-
tions of word recognition [5], [11]. A total of 606 words
(5 X 39 X 2 + 4 X 54) were used in each recognition test.

The entire experimental system was implemented in For-
tran on a Data General Eclipse S230 minicomputer. Measure-
ments of memory usage were made from the Fortran code of
the DTW algorithms. Measurements of computational speed
were made by averaging the results of 1500 separate time
warps using a computer controlled microsecond clock that was
accurate to ± 10 ps. Recognition accuracy scores were ob-
tained by counting the number of correct recognitions and
normahzing by the number of spoken words.

A. Memory Requirements
As mentioned previously, the differences among the DTW

algorithms with respect to storage are related to the number
and the size of the vectors needed for accumulated distances,
local distances, and possibly side information (for Itakura's
local constraints). Table I summarizes the requirements on the
number of vectors (all of size M) needed for each of the types
of local constraints. (No other DTW parameter affects
memory size.) Both Type II and Itakura constraints each re-
quire two vectors, while Types I and III require three vectors,
and Type IV constraints require five vectors. (It should be
noted that one of the two vectors for Itakura's constraints is
the side information—the g function—which can be coded to
1 bit.) Since the total storage required by any of the con-
straint types is small (M typically is less than 75 for isolated
words), it is concluded that memory requirements are not a
factor in the choice of a DTW algorithm.

B. Computational Efficiency
The results on computational speed are presented in Table II

and Fig. 12. Table Il-A shows the effect of the type of local
constraint on the average time required to perform the com-
binatorics part of the DTW algorithm. Both Type II and

REFERENCE REFERENCE
UPDATING PATTERNS

AUTOMATIC ISOLATED WORO RECOGNIZER
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Vectors
Needed I II Ill IV Itakura-

Accum ulated
Distance 2 2 2 3 I

Local
Distance 1 0 I 2 0

Side
Information 0 0 0 0 I

Total 3 2 3 5 2

Itakura constraints required about 25 percent less time than
Type I and Type III constraints. The time for Type IV con-
straints (where EMAX was 3) was about 3—4 times greater than
the time for any other type of local constraint. Table Il-A
also shows that the orientation of the test and reference pat.
terns (with respect to the x-axis) was irrelevant as far as the
timing for conbinatorics was concerned,

Table TI-B shows that the weighting function had only a
negligible effect on the time for combinatorics for both
Type I and Type II local constraints.

The major factor which affected computational efficiency
was the number of local distance calculations (a dot product
on vectors of length p + 1) that had to be performed for each
point within the range of a given time warp. Table 11-C shows
the effect of the local constraints on the average number of
local distance calculations. Types II, III, and Itakura all had
the smallest average number of local distance calculations,
with Type I constraints requiring only a somewhat larger num-
ber. Type IV constraints required a 50 percent increase in the
average number of local distance computations—a significant
overall increase in computation time.

Since local distance calculations required about 80 percent
of the total computation time for the DTW algorithm, tech-
niques for reducing the number of such calculations are poten-
tially very useful. The range limiting technique of Section II
(as proposed by Sakoe and Chiba [6]) is one such technique.
Fig. 12(a) illustrates the reduction in global range (i.e., num-
ber of distance calculations) as a function of M (for N = 40)
and R. It can be seen that as R goes from 00 (no range limit-
ing) to R = 5, a reduction of about 50 percent in the global
range occurs when MN40. It can also be seen in Fig.
12(a) that when N— MI approaches R, a very sudden reduc-
tion in the global range occurs, since the endpoints of a path
(N, M) no longer are points within the global range, i.e., there
is no legal path from (1, 1) to (N,M).

Fig. 12(b) shows another effect of range limiting. Only
those reference-test pairs whose lengths are sufficiently close,
i.e., IN - MI 'R, can be compared via a fixed range DTW
algorithm. Here we plot the percentage of possible warps
which are actually performed. Two cases are shown, namely,

Orientation l II III IV Itakura

Reference Along
x-axis 85.1 63.2 82.8 249.3 63.2

Test Along
x-axis 86.5 63.6 83.0 - 63.7

Average 85.8 63.4 82.9 249.3 63.5

Average Combinatorics Time (Milliseconds) Per Warp
(A)

Weighting Function

Local
Constraints

Type
a

Type
b

Type
c

Type
d

1 90.2 80.6 85.1 90.8

II 57.8 65.9 63.2 69.6

Average 74.0 73.3 74.2 80.2

Average Combinatorics Time (Milliseconds) Per Warp
(B)

Local Average Number of
Constraint Distance Calculations

1 543.2

II 491.7

Ill 504.4

IV 781.0

Itakura 504.4

Average Local Distance Calculations Per Warp
(C)

the first, in which the reference and test pattern represent the
same word, and the second, in which the reference and test
pattern represent different words. It would be ideal if no
reductions occurred when the test and reference were the same
word; however, this is not the case, as seen in Fig. 12(b).
Although the reduction in range for "same" words is consider-
ably smaller than for "different" words, a fairly strong effect
is noted for "same." We will discuss this issue in more detail
in Section IV where we show how range limiting can be suc-
cessfully applied in a normalize/warp DTW algorithm.

TABLE I
THE MEMORY REQUIREMENTS FOR DTW ALGORITHMS AS A FUNCTION

OF THE TYPE OF LOCAL CONSTRAINTS

Local Constraints

TABLE II
COMPARISONS OF TIMINGS AMONG THE DTW ALGORITHMS

Local Constraints
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0.8

(b)
Fig. 14. Plots showing (a) the effects of ranging limiting on error rate

for both the standard DTW algorithm (solid line) and the normalizef
warp DTW algorithm (dashed line) and (b) the effect of the ratio
N/M on the average distance between reference and test when both
reference and test were the same words.

test is along the x-axis rather than the reference. This effect
has been previously noted 171.

In order to understand why axis orientation is important we
must examine the effects of the choice of weighting function
on the performance of the various DTW algorithms. In Table
III we show the total number of errors for local constraints I
and II as a function of the choice of weighting function. The
results for weighting functions Types a, b, c, and d were com-
puted with reference along the x-axis. Weighting function
Type c' is weighting function Type c as computed with test
along the x-axis. Weighting function Type c is used twice
because it is the only asymmetric weighting function. We ob-
serve that, while weighting function Type c is the worst for
reference along the x-axis, it is the best overall when computed
with test along the x-axis. Thus, we must conclude that im-
provements in recognition accuracy that occur when the test
pattern is along the x-axis are due to some property of weight-
ing function Type c. As Sakoe and Chiba observed, the use of
weighting function Type c is equivalent to integration along
the x-axis [6]. Based on the above reasoning, we conclude
that by applying an equal weight to all test frames, a better
differentiation between "same" and "different" pairs is
achieved.

Examination of Table III reveals another interesting result
regarding the performance of a DTW algorithm as a function
of the choice of weighting function. We observe that, in agree-
ment with the results previously reported by Sakoe and Chiba
[61, a symmetric weighting function (weighting function Type
d) performs better than an asymmetric weighting function
(weighting function Type c) when the reference pattern is
placed along the x-axis, but that biased weighting functions
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Fig. 12. Plots showing the effects of range limiting on (a) the percent-

age of the total range used and (b) the percentage of possible warps
that are performed.
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Fig. 13. Plots showing the effects of local constraints, and axis orien-
tation, on overall error rate for both the standard DTW algorithm
(solid lines) and the normalize/warp DTW algorithm (dashed lines).

C. Recognition Accuracy
The results on recognition accuracy are presented in Figs.

13 and 14 and Table III. The solid curves of Fig. 13 show the
average recognition error rate as a function of the type of local
constraints for both reference and test along the x-axis. (The
dashed lines will be explained in Section V.) Weighting func-
tion Type c with no range limitations was used in obtaining all
the recognition scores. It can be seen that the local constraints
have negligible effect on the error rate.3 However, the axis
orientation shows a consistent decrease in error rate when the

3Type IV local constraints, however, gave significantly higher error
values than the other local constraints, and hence are not given in Fig.
13. This effect has been noted previously [6].
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TABLE III
TOTAL NUMBER OF ERRORS As A FUNCTION OF THE TYPE OF

WEIGHTING FUNCTION

Weighting Function

Speaker
Type

a
Type

b
Type

c
Type

d
Type

c'

SDI 22 21 21 22 23

SD2 8 7 8 9 7

SIt 11 8 10 10 10

S12 7 12 14 10 7

S13 12 13 14 12 10

S14 5 1 4 4 2

Total 65 62 71 67 59

Total Errors

Local Constraints Types I and II

(weighting functions Types a and b) perform better, not
worse, than unbiased weighting functions. However, since
the largest difference in error rate between weighting functions
is small, and since the relative error rates are not constant over
all speakers, we conclude that there is no significant difference
in the performance of a DTW algorithm regarding the choice
of weighting function, but that the combination of test along
the x-axis and weighting function Type c provides significant
improvement in recognition accuracy.

The effects of range limiting on the error rate are shown by
the solid curve in Fig. 14(a). This curve (obtained using Type
III local constraints, Type c weighting, and reference along the
x-axis) shows that as R decreases, the error rate of the system
rapidly increases. Thus, we conclude that too small a value of
R (too small a range) is harmful to the performance of the
DTW algorithm. This point is illustrated in Fig. 14(b) which
shows a plot of the average DTW distance (when reference and
test are the same words) as a function of N/M, the ratio of the
length of the reference to the length of the test. It is seen that
as NIM approaches or 2, the average distance increases
rapidly, indicating that there is very little area in the (n, m)
plane to find a good warping path. However, near N/M = 1

the average distance is essentially constant. We will use these
observations in Section V to propose a modified DTW algo-
rithm in which range limiting is generally helpful to the per-
formance of the algorithm.

V. DISCUSSION OF RESULTS

The results presented in the previous section show the
following.

1) There is little performance difference among the local
constraints of Types I, II, III and Itakura; however, local con-
straint Type IV has significantly worse performance than the
other types.

2) Range limiting serves to reduce the computation time but
to increase the error rate of the system. At what point this
tradeoff should be made depends heavily on the cost of in-
creased computation versus the cost of increased error rate.
However, we will show later that it is possible to reduce com-
putation without loss of accuracy.

3) Small but consistent improvements in recognition accu-
racy were obtained when the test pattern was oriented along
the x-axis.



634 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-28, NO. 6, DECEMBER 1980

R(n),nI2,..

MN

LINEARTm),mI,2, ' WARPING

Fig. 15. Processing used in the normalize/warp DTW algorithm.

4) Weighting function Type c provided the best recognition
scores for test along the x-axis, whereas weighting function
Type b provided the best recognition scores for reference
along the x-axis. The differences in error rate, among the
different weighting functions, however, were small and hence
these differences may not be significant.

5) The DTW algorithms performed best when the ratio of
the length of reference to the length of test approached 1 ,and
worst when the ratio approached -or 2.

The analysis of the above results led to a modified DTW
algorithm, called the normalize/warp method, in which a
length normalizing preprocessor is used on both the reference
and test patterns, prior to the DTW algorithm. Such an algo-
rithm has been in use at Threshold Technology since 1978,
and has recently been described by Welch [14]. The form of
the processing is illustrated in Fig. 15. The normalizing pre-
processor linearly interpolates (or decimates) the length of the
reference and test patterns to a fixed length N so that the
resulting length ratio N/M is 1. The normalized reference
pattern R(h) is given as

= (1- s)R(n) + s(R(n + 1)),

where

(N-i) I
+11n=k-1) (N-i) j

(N- 1) + 1 - ns(-1) (-1)

i=1,2," ,I\ (31)

and [xi denotes the greatest integer less than or equal to x.
Similarly, the test pattern T(m) is linearly warped to give
T(ñi). It can be shown that linear interpolation (or decima-
tion) is adequate for the patterns we are working with by
examining the log spectrum of any component of a reference
or a test pattern. It has been shown [15], that the log spectra
of these signals are extremely band limited; hence simple linear
warping is adequate. The value of N used in this system was
40, which was the average length over all words that were
used in the test.

Following length normalization, a DTW algorithm was ap-
plied to the normalized patterns. Both the memory require-

ments and the computational efficiency of the modified DTW
algorithm are, on average, the same as for the length unnor-
malized data. The effects of the normalize/warp algorithm on
recognition accuracy are shown by the dashed lines in Figs. 13
and 14(a). From Fig. 13 we see that, in general, the normalize/
warp DTW algorithm performs slightly better than the un-
normalized DTW algorithm, in almost all cases. More impor-
tantly, perhaps, Fig. 14(a) shows that range limiting does not
increase the error rate of the normalize/warp algorithm; in fact
the error rate decreased slightly as R went from 00to 54 One
reasonable explanation for this behavior is that the normaliza-
tion of lengths is equivalent to a linear time warping procedure
and that the actual nonlinear component is not very large.
This result has major practical significance, since range limiting
is a useful technique for reducing the computation involved in
the DTW algorithm.

The normalize/warp approach to dynamic time warping has
significant implementational advantages because of the fixed
length of the reference and test patterns. For example, the
fixed length reference patterns can be rapidly accessed without
an address table. Furthermore, the addressing and range
computation in the DTW algorithm can be performed once
and stored, thereby reducing overhead in this part of the
computation. Finally, since all reference and test patterns are
of a fixed length, no normalization of distances is required.
Hence, the final decision can be made on the basis of unnor-
malized distance scores.

VI. SUMMARY

The purpose of this paper was to study the effects of the
variable parameters of a DTW algorithm on its performance in
an isolated word speech recognition system. It was found that
the best performance among conventional DTW algorithms
was obtained with Type c weighting, test along the x-axis, any
of the simple local continuity constraints (Types I, II, III or
Itakura), and no global range limitations. The only real trade-
off in performance was between speed and accuracy when
range limiting was applied.

More importantly, however, the performance results led to
(32a) a modified version of the DTW algorithm called the normalize/

warp method whose performance was shown to be as good or
better than the other DTW algorithms that were investigated.

(32b) This new algorithm was also shown to have a number of im-
plementational advantages over conventional DTW algorithms.
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