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Abstract-The vast  majority of commercially  available isolated word 
recognizers  use a filter bank  analysis  as the front end  processing for 
recognition. It  is not well understood how the parameters of different 
filter banks (eg., number of filters, types  of filters, fiiter spacing, 
etc.)  affect recognizer  performance.  In this paper we  present  results of 
performance evaluation of several types  of filter bank  analyzers in a 
speaker  trained isolated word recognition test using  dialed-up telephone 
line recordings. We have studied both DFT (discrete  Fourier  transform) 
and direct form implementations of the filter banks. We have also con- 
sidered  uniform  and nonuniform filter spacings.  The  results indicate 
that the best performance (highest word accuracy) is obtained by both 
a 15-channel uniform filter bank  and a 13-channel nonuniform fiiter 
bank (with channels  spacing along a critical  band scale). The  perfor- 
mance of a 7-channel  critical  band fiiter bank is almost as good as that 
of  the two best filter banks.  In  comparison to a conventional linear 
predictive coding (LPC) word  recognizer, the performance of the best 
fdter bank  recognizers  was, on average,  several percent worse  than that 
of an eighth-order  LPC-based  recognizer. A dicussion as to why some 
filter banks  performed better than others, and why the LPC-based sys- 
tem did the  best, is given  in this paper. 

S 
I. INTRODUCTION 

INCE the early 1970's, researchers have been  working on 
building  machines that have the  ability to communicate 

with man  in  his  natural  method of communication.  One re- 
search  area that has  developed from this work is that  of  speech 
recognition. The general goal of  speech  recognition is to under- 
stand  normal  human speech and  then  to be able to  perform 
some task based on this  understanding. This  is a very natural 
goal in that  it requires  machines to adapt to humans  rather 
than vice  versa.  In this way speech  recognition  would  provide 
a  convenient  method of communication  with  machines (e.g., 
computers) via terminals and  ordinary  telephone  handsets. 

Progress has  been  made  toward the general  goal of speech 
recognition by imposing  some  restrictions on  the speech input. 
These  restrictions  are usually in  the  form of limits  placed on 
the  vocabulary,  the  set  of allowable users, or  the  mode  of  the 
input.  The  purpose  of this  last  limitation (probably  the  most 
severe one) is to restrict  the  form  of  input  speech to a set  of 
isolated  word  commands,  instead  of continuous speech,  in 
order to achieve reliable recognition.  With  these  restrictions 
speech  recognition  has  made  major  strides  forward  in  the  past 
decade  and several commerical  systems have appeared [ 13 - [6] . 
These systems  are  predominantly  isolated  word  speaker-trained 
systems.  The  availability of these  systems  has  led to  an  in- 
creased  interest  in  the  possibility  of  producing  terminal  equip- 
ment  that uses this  new  technology.  In  this  type  of  environ- 
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ment,  what  is  needed  is a  recognition  system that is modular, 
low-cost,  and highly  accurate.  At  present none  of  the available 
systems  fulfill all of  these  requirements. However, in  the  near 
future,  with  improvements in both  the algorithms  used to per- 
form the recognition  task  and  the  integrated  circuit  technol- 
ogy used to construct these  systems,  practical  systems will 
clearly become  feasible. 

The  speech  recognition  system  developed  in the Acoustics 
Research Department  at Bell Laboratories [7] -[IO]  meets 
two of the  three essential  requirements  for the terminal  equip- 
ment  market.  That is, the  system is modular  and highly  accu- 
rate.  However, the system is still too costly  for  practical and 
widespread use. In order  for  the Bell Laboratories  system to 
be applicable  in  standard  communication  tasks, the  cost  of  the 
system  must be reduced  substantially.  There  are two possible 
ways  of  accomplishing  this  cost  reduction. The  fust  of these 
is to change the  recognition  algorithm to reduce  system  cost 
while trying to maintain high accuracy. An alternative is to  
change the hardware used by  the system to take advantage of 
current  integrated  circuit  technology. 

This paper  describes  work on  an alternative  low-cost  feature 
analysis system  for the'Bell Laboratories  word  recognizer.  The 
current recognizer  uses linear  prediction  coefficients (LPC) to 
represent the  input speech.  At  present, the  calculation  of  these 
coefficients  requires relatively expensive  hardware (=$loo- 
1000).  The  proposed  method  of  reducing  the  cost  of  the 
recognizer  is to replace the LPC representation  by  a  filter  bank 
analysis to represent the  input  speech. Because it is possible to  
construct  an inexpensive ( ~ $ 1 0 )  integrated  circuit version  of a 
filter bank,  this  alternative is very  attractive [l I ]  . 

Besides its  low  cost,  there are  two good  reasons for examin- 
ing filter  bank  recognizers.  First, the  ear is known to process 
speech using a structure similar to a  filter  bank  (albeit  with 
highly nonuniform filter  spacing and  with  filter  characteristics 
that would  be  difficult to  match  with  conventional  filters) 
[ 121 . Second,  previous  research has  shown  that  an LPC-based 
recognition  system and a  filter  bank  recognition  system  [using 
wide-band  speech (0-1 0 kHz)]  could  achieve  essentially  identi- 
cal recognition  accuracy on some  standard  word  vocabularies 
[ 131 . This suggested that  implementation  of the less expensive 
filter bank  system  need not necessarily  cause a  degradation  in 
recognition  accuracy. 

Although  a  number of different  filter  bank  structures have 
been  proposed  for  recognition,  there is no simple  guideline for 
choosing  an  optimal  filter  bank  for a  particular  application. 
By this we mean  that,  to  date,  there have been only a small 
set  of  comparisons of the  effects  on  performance  (word  error 
rate) of different  filter  bank  structures  in  an  automatic  speech 
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recognizer [ 141 , [ 151 . Even simple  questions  such  as  the  type 
of filter  bank  (FIR  or  IIR filters), the filter spacing (uniform 
or nonuniform, nonoverlapping or overlapping), the  number  of 
filters, the filter  types,  etc., have not been  systematically  in- 
vestigated  for any  common vocabulary or recognition  system. 
Other  important  questions  of  interest are the ways  in  which 
filter  bank feature  sets  are preprocessed and  postprocessed  for 
use in  conventional  dynamic  time  warping (DTW) structures. 
The  purpose  of  this  paper is to investigate several of  the issues 
mentioned above  in  order to more  fully  understand  the  factors 
affecting  performance of filter bank analyzers  in  word  recogni- 
tion  systems. 

An overview of the work  presented  in  this  paper is as follows. 
In  Section I1 the general  implementation  of  a  filter  bank  fea- 
ture  measurement  system is described.  This  section  includes  a 
brief description  of  the overall  recognizer as well as the filter 
bank analyzers.  The  details of the  implementation  structures 
for-the different  filter  banks  are discussed in  Section 111. This 
is then  followed  by a  description,  in  Section  IV,  of the particu- 
lar filter  banks that were  studied.  In  Section V we  describe 
the  experiments  performed to evaluate the  word recognizer, 
and give word  error  rate  scores  for several filter  bank  analyzers. 
Finally,  a discussion of  the results is  given in  Section VI. 

11. GENERAL  IMPLEMENTATION OF A WORD 
RECOGNIZER BASED ON FILTER BANK 

FEATURE SETS 
Fig. 1  shows  a  block diagram of  a  filter  bank  feature  mea- 

surement  system [ 161 . In this  system the  speech is first passed 
through  a  bank  of Q bandpass  filters.  For the purposes of this 
study all filters were implemented digitally to faciliate  making 
design changes.  This bank of bandpass  filters  separates the  fre- 
quency  spectrum  of  interest (in our case 100-3200 Hz since 
we are  concerned  primarily  with  telephone-based  systems’ ) 
into various  frequency  bands.  In  existing  systems (i.e., com- 
merical  or experimental  word  recognizers)  the  number  of 
filters (Q) has varied from 3 to 32. In part, this is because 
many  of  the  filter  bank analysis systems  for  speech  recognition 
are  based on designs  used in  vocoder  applications.  The  spacing 
of these  filters is usually such  that  they  are  continuous over 
the  frequency  spectrum  and  the  composite  spectrum  of  the 
overall filter bank is essentially  flat (i.e, no sharp valleys be- 
tween  adjacent  filters).  This assures that  equal  weighting is 
given to all frequencies of the  spectrum  of  interest.  The  fre- 
quency spacing  of the filters  in the filter  bank can be  deter- 
mined  in  a  number  of ways. A fairly  standard  technique is 
to divide the frequency  spectrum  uniformly  and to space the 
filters on a  uniform  frequency scale. Other possibilities are 
to space the filters  equally on a  logarithmic  frequency scale 
(e.g., octave or 4 octave  spacing) or along  a  frequency scale 
related to a speech information  measure  such  as  the  articula- 
tion  index. 

As shown  in Fig. 1 ,  the  output  of  each bandpass  filter is 
generally passed through  a  nonlinearity  such as a square-law 
detector  or a full-wave rectifier.  This  nonlinearity  has  the 
effect  of  nonuniformly  distributing  the original band-limited 

‘It should be noted  that very few  commerical  word recognizers  have 
been designed for use  over the  telephone system. 
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Fig. 1. Block diagram of  filter  bank  feature  measurement system. 

signal energy over the  entire  frequency  spectrum. However, 
the signal energy at low  frequencies is generally proportional 
to  the  total band-limited signal energy. Thus, when this non- 
linearity is followed  by  a low-pass filter,  the  output of the 
low-pass filter is a  measure  of  the  energy  of the speech signal 
in the particular  frequency  band.  This low-pass filter is then 
decimated  at  a  rate  twice  that of the low-pass filter  cutoff  fre- 
quency,  typically  40-60 Hz. For  purposes  of  dynamic  range 
compression, the energy is encoded  by  a  logarithmic  transfor- 
mation.  The  set  of  energy values, at each instant of time,  con- 
stitute a  @dimensional  feature  vector.  The time variation  of 
these  feature  vectors  defines  a  pattern  for  the  speech.  Thus, if 
we denote  the signal, at time m,  for filter  channel i, as Xi(m), 
then  the  feature vector at time m is 

= {XI (m),  X,(m>, . . * > X,(m>) (1 1 
and  the  pattern T,  defined  for m = 1, 2, . - , M ,  is 

T={X(l),X(2);..,X(M)}. (2) 

Fig. 2  shows  a  block diagram  of the overall word  recognition 
system based on a  filter  bank analysis. Following  filter  bank 
analysis the  pattern is subjected to a  postprocessor  which  pro- 
vides some time  and/or  frequency  normalization  to  the filter 
bank  output vectors.  Although  a  variety  of  techniques  could 
be used in the  postprocessor, we  have used only  two  of  them, 
namely  channel  thresholding  (to  further  reduce  dynamic range 
of the  channel energies) and energy  normalization. We describe 
these procedures  in  Section 11-A, 

Following  postprocessing, the modified pattern is either used 
in a  training  mode to obtain  speaker-dependent,  word  refer- 
ence  templates,  or in a  testing mode to compare against stored 
reference patterns (using a DTW alignment and distance algo- 
rithm),  and to give word  distance scores which  are then passed 
on to a decision box  to choose  the Lcrecognized”  word. The 
word endpoint  detector, training  procedure, DTW alignment 
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u- 
Fig. 2. Black diagram of word recognition system. 

algorithm,  and  decision  boxes  are  similar to those used pre- 
viously in  the LPC-based word recognizer [7] -[lo] . 
A. Channel Thresholding and Energy Normalization 

As mentioned  above,  the  first  step in the postprocessing  of 
the  channel signals  is to  apply  a  threshold to  limit the dynamic 
range of  the  channel signals. The  purpose is to  prevent a chan- 
nel signal from  varying too  much  at  times  when  essentially  no 
speech signal is present  in  that  band.  At  such  times the chan- 
nel output varies greatly  depending on the  background noise 
level. By applying  a  threshold so that signal  levels below the 
threshold  are  clamped at  the  threshold value, much less sensi- 
tivity to  background  noise is achieved. 

In a  practical  isolated  word  recognizer,  channel  thresholding 
is achieved  automatically by the  quantization  inherent  in  each 
channel  of  the  recognizer. We have used the  channel  clamping 
at  a  fixed  threshold  to  model  just  the  finite  dynamic range of 
such  a  practical  quantizer. We have found,  in  practice,  that  for 
clamping  thresholds  on  the  order  of 50 dB below peak  signal, 
as used  here,  the  clamping  threshold is applied  only  rarely, 
and  has  the  effect of clamping  large  spectral  differences  for 
extremely  low level channel signals. 

In  particular,  for  each  channel  and  for  each  word,  the  peak 
signal  level  in each  band, Xyax is obtained as 

ximax = max [Xi(m>l (3 1 
i<m<M 

and  the  threshold  for  the ith channel is set at 
= X y  - T" (4) 

where T* is a  parameter  of  the  recognition  system.  For  tele- 
phone  inputs, where the average signal-to-noise  ratio is about 
35 dB,  and  typical  peak  signal-to-noise  ratios  are 50 dB, a 
value of  T" = SO (dB) is used. The specific  choice  of T"  is 
not  terribly  important as long as T" is in  the range of 50 (dB). 
The  major  effect  of a finite value of T* (rather  than T* = m) is 
to eliminate  gross  recognition  errors  due to widely varying sig- 
nal energies in bands  with  no  speech  energy. 

Fig. 3 illustrates  the use of  thresholding on  a  typical  channel 
output. Fig. 3(a)  shows the original  channel  energy  (for a  typi- 
cal channel  for  the  word /REPEAT/) and Fig. 3(b)  shows the 
thresholded  channel  output (in (b)  the  peak  energy is nor- 
malized to 0 dB). It can be seen that  three regions  of the  pat- 
tern were clamped at the  threshold,  two  within  the  word 
(from T I  to Tz and  from T3 to T 4 )  and  one  at  the  end  of  the 
word  (from  T5 to  T6). It was found  that  without such  thresh- 
olding,  errors in matching  in  the regions  of  low  energy (the 
clipping  regions)  led to gross recognition  errors in some cases. 

The  second  function  of  the  postprocessor is a level nor- 
malization to  compensate  for  variations in speech level from 

THRESHOLDED 
CHANNEL 
OUTPUT 

T I M E  4 

(b) 

Fig. 3. Example of channel  thresholding for the  word /REPEAT/ .  

utterance  to  utterance.  For  each  frame X(m), the  average 
value x ( m )  is calculated  as 

and  the "average normalized"  feature  vector i(m) is  given  as 

2(m) = X(m) - 2(m) (6) 

i j ( m )  = x i ( m )  - X(m). (7) 

with  components 

It  should be clear that if a  feature  set T i s  derived  from the 
speech signal s(n), the  feature  set T '  derived  from 

s'(n) = as(n) (8) 

is identical to T after  the average normalization  of (5)-(7) is 
carried  out.  Thus,  this  processing  correctly  handles  simple 
gain variations. It should  also be clear that  the  ordering o f  the 
thresholding  and average normalization  operations is impor- 
tant. The  thresholding  procedure  should be done  before  the 
average normalization  to  more  closely  approach  equal average 
levels for  both  reference  and  test  frames. 

The  reader  should be aware that  the  mean  normalization 
technique  described  here has been found  to  perform well 
in  practice  with  our  recognition  system.  However, we make 
no  claims as to  its  optimality;  hence,  alternative  normaliza- 
tion  schemes  may work as well or  better  for  this  and  other 
recognizers. 
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B. Modifications of the DTW Algorithm 
mentioned previously, the DTW algorithm designed for 

the LPC-based feature set was used in  the  filter  bank recog- 
nizer.  Only one simple  modification was required in  the local 
distance  calculation to replace the log likelihood  distance  mea- 
sure  used for LPC coefficients.  The  local  distance  between  the 
test T a t  frame m, and a  reference R at  frame n is the simple 
absolute value distance 

Q 
dm, = d(~(rn) ,  ~ ( n ) )  = 1 rm(i) - ~ n ( i > l .  (9) 

i = l  

This distance  metric was chosen because of  the simplicity of 
implementation  (no  multiplies, Q additions and subtractions) 
and because it  has been  shown to work well in  practice [17],  
[ 181 . Alternative  distance  metrics for  speech recognition have 
been proposed by Klatt [ 191 , but have not  been  studied here. 

111. GENERAL  DESIGN OF THE ANALYSIS 
FILTER BANKS 

A variety of  considerations goes into  the choice of  filters  for 
the  filter  bank  of Fig. 1. The  first issue that  had  to be resolved 
was the  type  of filter used for  the bandpass  filters  in the  struc- 
ture.  The possible choices  include finite impulse  response 
(FIR)  and  infinte'impulse response (IIR) filters. Because  of 
their  linear  phase  properties and because simple  implementa- 
tions  are  possible,  FIR  filters were chosen  for  the bandpass 
filters [20] . 

Once we  have decided on using FIR  filters  for  the  bandpass 
filters, the  next  question is the  number  of  filters, Q, and  the 
filter spacing. The  choice of a value for Q depends  upon the 
intended  application  of  the  spectrum; values of Q from 10 to 
32 have typically  been used in  vocoder  applications [21]. For 
(axis crossing) estimation  of  formant  frequencies or gross mea- 
sures  of the  spectrum, smaller  values of Q (3-7) have been 
used. For  recognition  purposes  it is not clear just  how  many 
filters  are  required. 

The  second issue in the design of  the analysis filter  bank is the 
filter spacing. One  standard  method is to design a  uniform fil- 
ter bank in which the  center  frequency f i  of  the  ith  channel is 

Fs 
f '=n . ' i  

i = , 1 , 2 ; . *  , Q  (1  01 

where F, is the sampling  rate  of the  input, N is the  number  of 
filters that span the baseband  frequency of the signal, and Q 
satisfies the  property 

Q < N/2 (1 1 )  

since channels  for i > N/2 are  mirror images of those for 
i < N/2. 

An alternative  filter  bank design  is to choose  channel  band- 
widths  equally  spaced on a  logarithmic  frequency scale. I f  we 
define  channel  bandwidths AFi as 

AFi=cuAFi- ,   i=2 ,3 ;* . ,Q ( 1  2a) 

AF1 = C, (1 2b) 

then channel  center  frequencies  are given as 

where Fo is the lower  frequency  of  the  first  band. Fig. 4(a) 
illustrates  an octave  band  filter  bank design (a = 2)  for Q = 4 
with Fs = 6400 Hz. For this  example C =  200 = Fo. Clearly, 
Fo could be lower (i.e., the first  channel  could  go  from  say 
100  to 300 Hz) and all other  properties  of  the  filter  bank  would 
be  preserved. In Fig. 4(b)  a  12-channel 5 octave (a = 413) fil- 
ter  bank design  is  also  given with Fo = 200,  and C z 50. 

Alternative ways of  choosing  filter spacings are available 
including the so-called critical  band [22] filter  banks  (with 
channels  uniform  until about  1000 Hz and  then logarithmic 
above 1000 Hz), and  arbitrarily spaced  filter  banks  where other 
considerations  are used in designing the  individual  filters. 
Fig. 5 illustrates  a  7-channel  critical  band  filter  bank design. 
We will discuss these  filter  banks more in  Section IV. 

Once we  have  designed the necessary bandpass  filters, the 
next  step is to choose  the  nonlinearity  and design the re- 
quired  low-pass  filter.  The  nonlinearity  chosen for this study 
was a full-wave rectifier. This  is standard  for  most  filter  bank 
applications.  For  the low-pass filter,  an  infinite impulse re- 
sponse (IIR) filter was chosen because of  the  narrow  band- 
width  of  the filter. An FIR filter  would have required  a  pro- 
hibitively  long  impulse response. The  cutoff  frequency  of  the 
low-pass filter was chosen to be 30 Hz to allow  for  sampling 
the  channel  outputs  at a  rate  of 67 Hz. The  desired  low-pass 
filter was  realized  using a  third-order Bessel IIR filter.  The  im- 
pulse and  frequency responses of  this  filter  are  shown in Fig. 6. 

A. Implementations of the Bandpass  Filters 
Since each of the bandpass  filters is an  FIR design, the  en- 

tire analysis filter  bank  can be implemented in a  direct form 
structure in  which the bandpass output signal  is obtained as 
the  convolution  of  the  input signal with  the  filter impulse re- 
sponse.  Thus, if  we define  the input  to  the  ith bandpass  filter 
as s(n), the  impulse response  of the filter as hi(n j, and  the  out- 
~ u t ~ i ( n > ,  we get 

Li-1 

where Li is the  duration  of  the impulse  response hi(m). Tech- 
nically yi(n) need  only be computed  at a  rate  twice  the  band- 
width  of  the bandpass  filter. However, if  we use highly  non- 
uniform  bandwidths  for  the  individual  filters,  and if we  desire 
to  keep  the sampling  rates  of  each  channel the same, then we 
can only achieve a 2-to-I  reduction  in sampling  rate  for  some 
of the filter  banks (in particular the octave-spaced design). 
For  such  filter  banks  there is  very little gain in lowering the 
sampling  rate  of the bandpass  filter outputs. Since we follow 
the bandpass  filtering  by  a  nonlinearity,  it was decided to keep 
the sampling  rate at  the original  sampling  rate to minimize the 
frequency  distortions  due  to  the  nonlinearity. 

For  the  uniform filter  banks,  however, an  alternative,  more 
efficient  implementation is possible  using discrete  Fourier 
transform  (DFT)  structures. Each bandpass  filter  response 
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Fig. 5. Ideal  critical  band  spaced fiiter bank over baseband of interest (200-3200 Hz). 

hi(n) can be represented as a  frequency  modulated  low-pass 
filter, i.e., 

hi(n) = w(n) e i 2 Tfin (1 5) 

where w(n) is the  FIR  protdtype low-pass filter,  and  the  factor 
e i 2nfin modulates  the  center  frequency  of  the  filter  from 0 
frequency to frequency 

Then we can  write  the  response  of  the  ith  bandpass  filter as 

= e  j (2nlN) Fsin 

(1 7b) 

Equations (1 7a) and (1 7b)  show  that yi(n) could be computed 
by multiplying  the  input signal x(n) by the  time reversed and 
shifted  window w(n - m), taking  an  N-point  DFT  of  the  prod- 
uct,  and  then  modulating  the resulting signal by  the  factor 
e (to give a  bandpass signal). If we  consider all N 
DFT  outputs of (1 7) we see that  the  terms  for i = 1 , 2 ,  - * - , Q 
define  the Q desired  filter  outputs (in complex  form)  and  the 
terms  for i = 0 and  for i > Q are for  frequency  bands  that  are 
of no interest.  Hence, we have an efficient implementation of 
a Q channel  uniform  filter  bank if the  center  frequencies  obey 

j(2nlN) Fsin 

O 1 Z  0 0 TIME  (SAMPLES)  1023 0 3 
0 

TIME  (SAMPLES)  
1023 

FREQUENCY (HZ) 

(b) 
Fig. 6. Time  and frequency responses of low-pass filter. 

(16), if the filters  obey (1 9 ,  and if the  required value of N is 
a power of 2. 

Fig. 7  shows  a  summary  of  the  required  processing  for  im- 
plementing  the  uniform filter  bank based on  the  DFT  struc- 
ture. The input signal is multiplied  by  the  time reversed and 
shifted low-pass window w, an FFT is taken,  and  the  complex 
modulation  factors are applied.  There is a  consideration  that 
needs to be discussed to  complete  the  implementation. If we 
define  the  length  of  the  prototype low-pass filters as L sam- 
ples, then when L > N special care  must be exercised to create 
the  N-point signal needed  for  the  DFT  implementation.  In 
these cases Schafer  and  Rabiner [ 171 have shown  how  the L-  
point signal x(m) w(n - rn) can be  time aliased onto itself to 
give the  N-point signal ;(m), by forming  the  sequence 



Fig. 7. Summary  of processing  necessary to  obtainN-point windowed  sequence to  be used to calculate  filter  bank  outputs. 

x i ( P ) =  x ( M i  + I )  9. = O , I . . , L - 1  
i = O , l . . , I  - 1  

Fig. 8. Block diagram of DFT  implementation of a uniform  filter bank. 

m 

x"(m) = x(m + rN) w(n - m - rN) 
y = - m  

m = O , l ; * * , N -  1. (1 8) 

This aliasing process is illustrated in Fig. 7. Fig.  7(a) shows 
x(m), Fig.  7(b) shows the low-pass response w(n - m), and 
Fig.  7(c) shows the  product which is nonzero  for m = n - 
L t 1, . . . , n. Fig.  7(d) shows the principle components  of 

Fig. 8 shows  a  block diagram of the uniform  filter  bank  fea- 
ture analysis  system. This system is a  block processing system 
in  which  a  frame  of L speech  samples is processed to yield  a 
single feature vector. This is done  by  taking advantage  of the 
fact that  the window is nonzero  for  only L time  samples. 
Thus, to obtain a  feature  vector,  the  speech signal is blocked 
into L sample  sections (frames) for  feature  measurement. 
Consecutive  frames  are  spaced M samples apart.  Clearly, the 
choice of M determines  the sampling rate at  the  output of the 
filter  bank. 

(1 8). 

If we denote  the  ith  frame of speech  as x&), we  have 

xi@) = x(Mi + I) 
I = O , l ; * . , L -  1 

i = O , l ; - * , I -  1 

where i = 0 is the first  frame  and i = I - 1 is the  Ah frame  of 
speech. Next,  these  frames  of  speech are multiplied  by the 
time-reversed low-pass window  resulting in  the windowed sig- 
nal x^&) 

X^i(Z) =xi(l) * w(L - 1 - I).  (20) 

The  windowed signal  is then time-aliased as shown  in  (18) to 
obtain  the desired N-point signal 2&). The  next  step in the 
analysis  is to calculate the DFT of  this signal resulting  in the 

filter  bank outputs. These filter  bank outputs are then de- 
modulated to give z i ( e  i(2nlN) k 1 as 

zj[ei(2n'wk] = Re {Xj[e i(277lN)k I1 * COS ( 4 )  

t Im { X i  [e "2n'qk~) . sin (e j )  (21 1 
where 

6$ = 2n . mOdN ((i - 1) * M . K)/N.  (22) 

From  the above discussion it can  readily be seen that  the 
design of  a  uniform  filter  bank  reduces to choosing  a value for 
Q (the  number  of  filters)  and designing an  appropriate low- 
pass window. 

IV. DESIGN OF THE FILTER BANKS 
A. Uniform Filter Bank Designs 

For  the  uniform filter  banks, the design  involves choosing 
the  number of filters and  then designing an  appropriate win- 
dow (low-pass filter).  In  this study we chose to  look  at  four 
different values of Q, namely, 3 , 7 ,  15, and 3 1 (filters). These 
values correspond to  the calculation  of 8, 16,32,  and 64 point 
FFT's, in  the  structure  of Fig. 7,  respectively. With these 
choices for Q, M (the frame  shift) was chosen to be 10 samples 
for  the first  three  filter  banks and  25 samples for  the  31 - 
channel  filter  bank. This results  in  sampling  rates of 667 Hz 
(for M =  10) and  267 Hz (for M =  25) at  the  output of  the fil- 
ter  banks. The lengths  of the windows  used to  implement the 
filter  banks were 51, 51, 101, and 201 samples,  respectively. 

To design the low-pass  window function  it was decided that 
a Kaiser window  should  be  used [23]. This window type has 
the  property  that  it is the finite  duration  sequence  that  has the 
maximum  spectral  energy  contained  in the main  lobe. This 
window was used in  two  different ways. The first was to use 
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Fig. 9. Example  of  uniform  filter  bank using DFT implementation. 
This  example  shows the results  obtained  for  a  15-channel  filter  bank 
using the window design technique. 

the Kaiser window to design an  appropriate  low-pass  filter  by 
using the well known window design technique [24]. When 
the Kaiser window is used  in  this  manner it has the desirable 
property  that  the composite  spectrum  of the filter bank is 
extremely flat [25] . The  second was to use the window  di- 
rectly,  since  the window is essentially  a  low-pass  filter  with 
poor  frequency  characteristics. When used in this  manner 
the composite  spectrum is not  flat,  but  contains valleys be- 
tween  adjacent  filters in the  filter  bank. The  premise that  a 
flat  composite  spectrum is necessary to  obtain good  recogni- 
tion  accuracy.could be tested  in  this way. The  results  of the 
window design for Q = 15 are  shown  in Figs. 9  and  10.  In 
Fig. 9(a) the  time response of the low-pass  window is plotted. 
Fig. 9(b)  shows the  frequency responses (log magnitudes)  of 
the  individual  filters  in the 15-channel  filter  bank. Fig. 9(c) 
shows the  composite  spectrum of the overall  15-channel  filter 
bank.  It  can be seen that  the composite  spectrum is essentially 
flat over the frequency range of the filter  bank. 

Fig. 10 shows a similar set  of  plots for  the 15-channel  filter 
bank  where the Kaiser window is used directly.  In  this  case, 
the individual  filters  are  narrower  in bandwidth  and  the overall 
filter bank shows 18 dB gaps at  the boundaries between each 
filter. 

In  this  study  a  set of  eight  uniform  banks  were designed- 
four, using the Kaiser window  directly,  and  four using the 
Kaiser window to aid in designing a  window-based  low-pass 
filter.  The  specifications of each of the  four basic Kaiser win- 
dows  are given in  Table I which  shows values of Q (number of 
filters), L (impulse  response  duration), M (frame  shift), p (nor- 
malized bandwidth of the Kaiser window), and 01 (peak side- 
lobe attenuation of the resulting  low-pass  filter).  Values of 01 

from  53  to 60 dB were attained  for  the  four designs. 

B. Nonuniform Filter Banks 
For  the  nonuniform filter  banks we chose to investigate 

three  different  filter  bank  spacings;  octave  spacing,  critical 
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Fig. 10. Example  of  uniform  filter  bank using DFT implementation. 
This  example  shows  the  results  obtained  for  a  15-channel  filter bank 
using the Kaiser window  directly. 

bands, and 3 octave  spacing. In particular we considered  4-, 
7-, and 12-channel  filter  banks for  the octave,  critical  band, 
and + octave  filter  banks.  The  ideal  filter  characteristics of 
a  4-channel  octave-band  filter bank were  shown in Fig. 4(a) 
when the band  of  interest was from  200 to 3200 Hz. Simi- 
larly,  the ideal  filter  characteristics  of  a 12channel 4 octave 
filter bank were shown  in Fig. 4(b). Plots  of the  actual  filter 
characteristics  for both  the octave and $ octave  filter  banks 
are given in Figs. 1  1  and  12. These  figures  show  plots  of the 
log  magnitude  responses of each  of  the channels and also the 
composite  frequency  response of the  filter  bank. The  ideal 
filter  characteristics of the filters in  the critical band filter 
bank are  based on  the  articulation  index  [22] and  were  shown 
in Fig. 5 .  The  filters  in  this  filter bank were  spaced to  incor- 
porate  two critical  bands in each  filter. A plot of the  actual 
filter  characteristics and  the  composite  spectrum  for  the criti- 
cal band  filter  bank is given in Fig. 13. 

In  addition to the  above  set  of  uniform and  nonuniform fil- 
ter banks, two specially designed nonuniform  filter banks  were 
studied.  The  first was a  5-channel  filter  bank designed for use 
in the IBM speech  terminal  by  Silverman  and  Dixon [ 2 6 ] .  For 
use in a  recognition  system  based on  telephone  quality speech, 
the  cutoff frequencies  of the lowest and highest  frequency 
bands were suitably  changed to  200  and  3200 Hz, respectively. 
As a  result of  the changes  made to these low  and high  fre- 
quency  cutoffs,  the  performance of this  modified IBM filter 
bank  need not reflect the performance  of the original  5-channel 
filter  bank  as designed by Silverman and Dixon. Fig. 14 shows 
plots  of  the log magnitude  responses  of the five channels  of 
this  filter  bank, and  the  composite  frequency response.  The 
composite  frequency  response is seen to  be essentially  flat 
from 200 to 3200 Hz, and each  individual  channel  provides 
about 70 dB  of  out-of-band signal rejection. 

The  second  specially designed filter  bank was based on  the 
system by Martin [27]. The  filters  used  were  spaced  along 
critical  bands;  however, the  frequency selectivity  of  these  fil- 
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TABLE 1 
U N I F O R M  FILTER BANK DESIGN PARAMETERS 

3 I 5 1  I 10 I 5.65 1 60.00 
7 I 51 1 10 I 4.961 I 53.72 

I I I I 1 

15 1 101 I 10 I 4.864 I 52.84 
31 I 201 1 25 I 4.864 I 52.84 
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Fig. 13. Results of  critical-band spaced  filter  bank design. The re- 
sponses of the individual  channels  and the composite are shown. 
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Fig. 11. Results of octave  filter  bank design. The  response of the indi- 
vidual channels  and the  composite  are shown. 
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Fig. 14. Results of redesigned IBM filter bank. The  responses of the 
individual  channels  and  the  composite  are  shown. 
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Fig. 12. Results of $-octave filter  bank design. The responses  of the 
individual  channels  and the composite  are  shown. 

ters was  very poor  (the  ratios of center  frequency to band- 
width were about 8). This poor  frequency  selectivity was 
chosen to provide  good  time  resolution.  Plots of  the indi- 
vidual channel  frequency  responses  as well as the  composite 
frequency  response  are given in Fig. 15. A slight nonflat over- 
all frequency  response is  seen in this  figure.  The  filters  in  this 

filter  bank are highly overlapping  in contrast  to all previous 
cases where  there was little or no filter  overlap. 

Table I1 shows the  actual bandpass  filter cutoff  frequencies, 
the resulting  passband and  stopband ripples, and  the  actual 
FIR filter  lengths for  the 4-channel  octave  band design, the 
5-channel IBM design, the 7-channel  critical  band design, and 
the  12-channel  octave design. Table 111 gives the filter  cen- 
ter  frequencies (f,) and filter  durations  for  the  13-channel 
filter  bank. 

C. Summary of Filter Banks 

A total of 13 filter  banks were implemented  and  studied. 
Eight of  the filter  banks were uniformly  distributed in fre- 
quency  with as few as 3 and as many  as 31 channels  covering 
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CHANNEL 1 CHANNEL 6 CHANNEL41 TABLE I11 
DESIGN PARAMETERS  FOR  13-CHANNEL NONUNIFORM FILTER BANK 

( L  = 201) "Vyy 
- 600 3.33 :hanncl No. Center Frquency (Hz 3.33 

CHANNEL 12 CHANNEL 2 CHANNEL7 
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- 600 O m  3.33 v. DESCRIPTION OF EXPERIMENTS AND RESULTS 
In order to evaluate the  effects of  filter bank  parameters  on 

speaker-trained  isolated  word  recognition  accuracy, a 39 word 
vocabulary  which  consisted  of the  alphabet,  the digits, and 
three  command words (STOP, ERROR, and REPEAT) was chosen. 
This vocabulary was selected  for its high  degree of complexity 
and  moderate size [28]. The  measured  recognition  accuracy 
for  this  vocabulary  has  been  shown to be  relatively  low  in  pre- 
vious tests [ 101 , [29] . Thus, small differences  in  system  per- 
formance  can  often be reliably  measured  with  a  reasonable size 
set  for  this  vocabulary. 

To  evaluate the recognition  performance  of the  filter banks, 
a  set  of  reference  patterns was collected for several talkers 
over a several week period. These reference patterns consisted 
of a  set  of 39 robust  tokens,  one  for each  of the words  in the 
vocabulary [30]. This was done  for each of four  talkers  (two 
male, two female)  for  all thirteen  filter banks.  Each  of the 
four  talkers  had  participated  in  a wide  variety  of  offline  tests 
of  isolated  word  recognition  systems, i.e., with  no  feedback 
as to  how  the recognizer  performed on  their  spoken  inputs. 
Next,  an  independent  test  set,  consisting  of  ten  recordings  of 
the 39 word  vocabulary  spoken  by  each  of the  four  talkers, was 
recorded several weeks  later.  In  this  manner  a  total  of  390  iso- 
lated-word inputs  for each of the  four speakers was obtained. 

Each  of the isolated  words  (for both  the reference and  test 
recordings) was obtained  by  flashing  the  word  on  a  video 
monitor  and asking the  talker to  speak the word after hearing 
an  appropriate  starting  cue (a beep). An automatic word  end- 
point  detector was used to locate  word  boundaries [31]. 
About  2  percent of the words (all of these  occurred  for  one 
of the  four talkers) had  endpoint errors  which  were  corrected 
manually. 

A modified form of the  robust  training  procedure  [30] was 
used to provide  a single reference  template from  the set  of  ref- 
erence tokens  for each  talker.  The  modification  consisted  of 
using filter bank  channel signals in place of the LPC vectors 
of the  standard  robust training  algorithm.  The  philosophy  of 
the  robust training  procedure was preserved in the modified 
algorithm. 

For  each  test  set  three  experiments  were  performed.  The 
first  consisted of testing  each  filter bank  with  the  entire  test 
set for each of  the  four  talkers. The  measure  of  performance 
for  this  experiment was the  error  rate as a  function  of  the 
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Fig. 15. Result of digital simulation of the Martin  filter  bank. The re- 
sponses of the individual  channels  and the  composite are  shown. 

TABLE I1 

(Q = 4, 5,  7 ,  12), F, = 6.67 kHz 
DESIGN PARAMETERS  FOR NONUNIFORM FILTER BANKS 

:hannel  Lower  Stopband Lowu Passband Upper Passband  Upper  Stopband 
No. Frqucncy (H3 Frqucncy (Hz) Frequency (H3 Frqucncy (Hz) 6, 6, 

1 
2 

I50 250  350  450  ,133  a133 
350  450  750  850  .OBI0 .0081 

3 750 850 
4 1550 1650 

1650 a743 .0074 
3250 a722 

.0072 , 1550 
3150 

(a)  Bandedgc  frcqucncics for Q - 4 filtcr bank  with L - IO1 
2 
1 

381 
0 

586 
154  45 I 

917 
605 .W39 . C O L I  
1122 .0015 .ooo4 

3 
4 

881 
1279 

1086 
2084 

1915  2120  ,0019 .m5 
2416 

5 
2621  .0016 .ooO5 

2279  2584 ' 3122  3333  ,0020 ,0005 

(b)  Bandedge fwuencies for Q - 5 filter bank  with L - 101 I 
1 
2 

150  250 
350 

350 
450 

450  ,1334  ,0133 

3  580 
580  680  ,1253  ,0125 

680 
4  870  970 

870  970  ,0737  ,0074 

5 
I220  1320 ,1009 .0101 

1220  1320 
6  1670  1770  2270  2370  ,0788  .0079 

1670  1770  .0790  .0079 

7  2270  2370  3150  3250  ,0803 ,0080 

(c) Bandedgc frqucncics for Q - 7 filtcr bank  with L - 101 

1 175 
2  225 

225 
275 

225 

3 
290 

290 340 375 
4  375  425  475 
5 475  525  605 
6  605  655  775 
7  775  825  975 
8 
9 

975 
1235 

IO25 1235 

10  1575 
1285  1575 

I I  1975 2025 
1625 

2495 
1975 

12  2495  2545  3175 

275 

425 
390 

525 
655 
825 

1285 
1025 

2025 
1625 

2545 
3225 

,1744 ,0174 
,0982 .0098 
,0918 ,0092 

,0876 ,0088 
,0980 ,0098 
,0792 .CHI79 
,0827 ,0083 
,0735 ,0074 
,0745 ,0074 
,0751 ,0075 
,0660 ,0066 

(d)  Bandedgc frqucncics for Q - 12 filter bank  with L - 201 

the baseband of interest  (200-3200 Hz). The  remaining five 
filter  banks were implementations  of  octave  band, $ octave 
band,  critical  band, and  two specially-designed  filter  banks. 
In the  next  section we describe the  experiments used to mea- 
sure the  performance  of  each  of  the  filter banks in a  speaker- 
trained  isolated word recognition  test. 



candidate  position C. This  error  measure is defined to be the 
percentage of correct  words  which  are not  in  the  top C word 
choices. For most  applications the results  for C = 1 (top  can- 
didate)  provide the best measure  of  recognizer  performance. 
For some  tasks,  however, it is reasonable to compare  error 
rates for C >  1 since task syntax  can be  used to detect  and 
correct  errors in the  top C recognition choices [14] . Using 
standard  statistical  tables,  it  can  be  shown that  at  the  99  per- 
cent  confidence level, a  difference  of about 1.5-2 percent  in 
error  rate is statistically  significant. 

The  second  experiment  consisted  of  measuring  the  perfor- 
mance  of  a  standard LPC system [7]- [ lo]   on each  test  set 
used in the first  experiment.  The  performance  measure  for 
this  experiment was  again the  error  rate  as  a  function  of the 
candidate  position.  The  purpose of this  experiment was to 
determine  the relative  performance  of the LPC and  filter  bank 
systems. 

The  third  experiment  evaluated  the  performance  of  both 
LPC and filter bank systems  with  a  subset  of the original test 
set.  This  subset  consisted  of  only the digits vocabulary.  This 
vocabulary was chosen because of  its  low  complexity and 
small size, and because the digits are widely  used in  many  ap- 
plications. In this  way,  differences in  performance on a  simple 
recognition  task  could be measured.  This  experiment was car- 
ried out  by using the  100 digits of the  390 isolated  word in- 
puts  in  the original test  set.  The  measure of performance  for 
this  experiment was the  error  rate  of  the  first  candidate  only. 

A. Results for Experiment 1 
The  results of experiment  1  are given  as a series of  plots  of 

average word  error  rate  for  each  talker as  a function  of  either 
best candidate  position  or the  number  of  channels in the filter 
bank. 

The  results  for the  uniform filter  banks  are given in Figs. 16 
and  17. Fig. 16 shows  plots  of average word  error  rate versus 
candidate  position  for  each of the filter  banks for  each  talker. 
Fig. 16(a)  and (bj corresponds to male talkers while Fig. 
16(c)  and  (d)  corresponds to female  talkers.  The  solid curves 
are  for filter banks  using window designed  low-pass filters  and 
the dashed curves are  for  filter  banks using the window  itself 
as the low-pass filter.  The  reader  should  note  the  different 
scales on  the  ordinates  for  different talkers. 

Two general trends emerge from  the curves of Fig. 16. First 
we  see that  the  word  error  rates differ  greatly  among  talkers, 
i.e., the  first  talker  had  about  an 8.5 percent  word  error  rate 
(C= 1, Q = 15, window design), whereas the  fourth  talker  had 
an 18.5 percent  word  error  rate  with  the  same  conditions. 
This variation  in  error  scores is typical  for  the alphadigits vo- 
cabulary [25] , and  the scores  of the  four  talkers fall  within 
the  normally  expected range. 

The  second trend seen in the curves  of  Fig. 16 is that  the 
uniform  filter  banks  with  a  flat  composite  spectrum (solid 
curves) generally  do better  than  those having the same num- 
ber of  channels  with  a  composite  spectrum  which  contains 
valleys (dashed curves). This  result is independent of the 
number  of  channels  of  the  filter  bank  with  only  one  exception. 
This exception is for  the first  talker and  the  3-channel  uniform 
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Fig. 16. Plots of word  error  rates versus candidate  position  for  the uni- 
form  filter  banks for each of  the  four talkers. 
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Fig. 17. Plots of word  error  rates versus number of channels for the 
uniform  filter  banks  for each of the four talkers. 

filter  bank. Because of  the  poor  performance of the 3-channel 
uniform  filter  bank  this  deviation  has  little  significance. 

Fig. 17 shows  plots  of the average word  error  rate versus Q, 
the  number  of channels in  the filter bank,  for  three values of 
C (C = 1,  2, 5j,  and  for  each  talker.  Here we  see two different 
trends  depending upon  the sex  of the talkers. For  the males 
it  can  be seen that as Q increases to  31 the word  error  rate  has 
a  tendency to steadily decrease. Conversely,  for females as Q 
increases beyond 15 the error  rate  has the  tendency  to increase 
substantially. This effect  occurs because as the  number of 
channels  increases, the  bandwidth  of  the  filters decreases, and 
at some point  the  bandwidth becomes small enough to  that 
there is a  high  probability  that  there will be  no energy from 
the speech signal present  in  a  particular  band. When this  oc- 
curs the  pattern  matching algorithm  effectively attempts  to 
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18. Plots of word  error rates versus candidate  position  for  the  non- 
uniform filter banks  for  each of the  four  talkers. 
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Fig. 19. Plots of word  error  rates  versus  number of channels  for the 
nonuniform filter banks  for  each of the  four  talkers. 

match  random background level energies.  For  such cases sub- 
stantial  variability  in  channel  distances  leads to  increased  word 
error  rate.  This  effect  occurs  predominantly  for  female  talkers 
because  for  voiced  sounds  only  a  few  harmonics  are  present  in 
the speech  due to  the high  female  pitch.  Therefore, the likeli- 
hood of  a  fixed bandwidth channel  measuring  only  back- 
ground  noise is higher for females than  for males. 

The  results  for the  nonuniform  filter banks  are given in Figs. 
18 and 19. Fig. 18 shows  plots  of average word  error  rates 
versus candidate  position  for  each  of  the  filter  banks  for  each 
talker. As was the case with  the  uniform  filter banks, we see 
that  the word  error  rate  curves  differ  greatly  among  talkers. 
In Fig. 19 it is shown  that  the 13-channel  filter bank does not 
follow the  trend (for the females)  of  increasing  error rate as 
the number of  filters  increases.  This  is,due to  the  fact  that  the 

C A N D I D A T E   P O S I T I O N  (C) C A N G I D A T E   P O S I T I O N   I C )  

Fig. 20. Plots of word  error rates versus candidate  position  for standard 
LPC system and selected  fdter  bank  systems  for  each of the  four 
talkers. 

TABLE IV 
WORD ERROR RATE (PERCEYT) AS A FUNCTION OF CANDIDATE POSITION 

C FOR LPC AND SELECTED  FILTER BANKS 

LPC 
2  4.1 2.3 0.8  0.3  0.3 
1 5.1  0.5 0.0 0.0 0.0 

3 10.3  2.3  1.3 1.0 0.5 

MEAN 7.8 3.0  1.4  0.7 0.4 
4 11.8 6.7  3.3 1.3 0.8 

7shannel 1 11.0 3.8 1.3 0.8 0.0 
uniform 2  6.4 2.6 1.3 1.0 1.0 

filter hank 3 11.8 3.3 1.8 0.8 0.5 
4 19.7 7.9 3.1 1.5 0.8 

MEAN 12.2 4.4 1.9 1.0 0.6 

15-channel 1 8.5  2.6  0.5 0.3 0.0 
uniform 

filter bank 3 12.6  5.6  3.6  2.3  0.8 
2 6.2 1.8 1.3 0.8 0.0 

MEAN 11.5 3.9 1.7 1.1 0.3 
4 18.5 5.6 1.5 1.0 0.3 

non-uniform 2 6.7 1.8 0.5 0.0 0.0 
7shannel 1 10.0 2.3 1.0 0.5 0.0 

filter bank 3 16.7  5.9 2.1 1.0 0.3 

MEAN 13.1  4.3 1.3 0.6 0.2 
4 19.0 7.2 1.5 0.8 0.5 

13shanncl I 9.0 4.1 0.5 0.5 0.0 
non-uniform 2  5.4 2.3 1.0 0.5 0.3 
filter bank 3 13.1 2.8 0.5 0.3 0.3 

MEAN 11.6 4.4 1.6 0.9 0.5 
4 18.7 8.5 4.4 2.1 1.3 

13-channel  filter  bank  consisted  of  poor  frequency  reso- 
lution, good  time  resolution  filters. Because of  this,  the  prob- 
ability  of  a single filter  measuring  only  background  noise for 
high-pitched  female  talkers is greatly  reduced. 

B. Results of Experiment 2 
The  results of the recognition  experiment using a standard 

LPC system  are given in Fig. 20 which  shows  comparisons 
between average word  error  rates versus candidate  position 
for  both  the LPC system and  the  four best  filter  systems.' As 
with  the filter  bank  systems,  a  great  deal  of  variation  of  perfor- 

2These were the 7- and 15channel uniform filter banks,  and the 7- 
and  13-channel  nonuniform filter banks. 
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TABLE V 
W O R D  ERROR RATt  (PER(.I.NT) FOR DIGITS VO(.AtiCL,\RY 

Talker Number 

0 (Uniform) -2- -3- 4 MEAN 

3 
7 

7.0 5.0 1.0 7.0 5.0 

15 
0.0 0.0 1.0 0.0 0.3 

31 
0.0 0.0 1.0 0.0 0.3 
0.0 0.0 3.0 3.0 1.5 

9 (Non-Uniform) 

4 0.0 0.0 1.0 0.0 0.3 
5 1.0 0.0 1.0 1.0 0.8 
7 0.0 0.0 1.0 0.0 0.3 

12 0.0 0.0 6.0 8.0 3.8 
13 0.0 0.0 1.0 0.0 0.3 

LPC 0.0 0.0 1.0 1.0 0.5 

mance is observed  between  talkers.  The  results for  the  stan- 
dard LPC system  are given in Table IV  along  with those of 
the  four best  filter  banks.  The  data  in  Table IV  show  that  the 
LPC system  has,  on average, a 4 percent  lower  error  rate  for 
the first  candidate  position  than  the  best of the filter  bank 
recognizers. It can also  be  observed that. as C increases to 5 ,  
the  performance of both  types  of systems  are  equal, to within 
statistical  variations. 

C. Results of Experiment 3 
The  results of the  third  experiment, in  which the vocabulary 

was limited to include  only the digits,  are given in Table V 
which shows the  number  of  errors  made  for each  talker on 
this  vocabulary for several filter  banks and  for  the LPC  recog- 
nizer. The  data given in  this  table  show  that,  for  the digits 
vocabulary, the  performance of the  filter  bank systems is 
nearly  identical to  that of the LPC system. 

VI. DISCUSSIONS 
The  results  presented in  Section V lead to  the following 

conclusions. 
1) Filter  bank recognizer performance degrades for filter 

banks  with too few  filters (Q in  the range  of 3) or too  many 
filters (Q in  the range  of 31)  for nonoverlapping  filter  banks. 
The  reasons  for  this  degradation  in  performance  are that  for 
small  values  of Q the system is  giving  very poor  frequency 
resolution  leading to an  inability to discriminate  between 
words,  and  for large  values of Q the individual  filters  become 
so narrow  in  bandwidth  that  they are often measuring  noise 
rather  than  speech.  This  effect is  especially pronounced  for 
female  talkers  (with  high  pitch) since the speech  harmonics 
are widely spaced; and  for large values of Q (e.g., Q = 3 1) a 
number of the bands are  usually measuring only  background 
noise. 

2) For all filter  banks (both  uniform  and  nonuniform)  the 
composite  spectrum  should be essentially without  sharp Val- 
leys (i.e., flat  or slowly changing as from  a mild preemphasis) 
so as to retain all the  information  about  the speech spectrum 
in the analysis. 

3) For  nonuniform filter  banks, the recognizer performance 
obtained  when  the  filters were spaced along a  critical  band 
frequency scale  was significantly better  than when the  filters 
were spaced  along  octave  bands, $ octave  bands, or  arbitrary 
spacings.  The  critical  band scale is essentially  a linear frequency 

scale in the range 100-1 500 Hz and becomes highly nonlinear 
above  this  frequency range. Hence, the critical  band scale can 
be considered  a  modified  uniform scale so this  result  indicates 
that  a  uniform  frequency  spacing up to 1500 Hz  is  desirable 
for  filter bank systems. 

4) The  performance  of  7-band  and  13-band critical band 
filter  banks was statistically the same as for 7-band  and 15- 
band  uniform  filter  banks. Again this  result  reflects the simi- 
larities  between both  types of filter  banks in  the  important 
frequency range from 100 to 1500 Hz. 

5) The  performance  of  the LPC-based word recognizer  was 
statistically better  than  that of any of the  filter  bank recog- 
nizers  (for the  conditions  studied)  for  the 39 word  alphadigits 
vocabulary.  In  particular, the average error  rate  for the LPC 
recognizer  was about 4 percent  lower  than  that  of  the best 
filter  bank  recognizer.  (The  reader will recall that a  1.5-2 
percent  improvement  in  performance is statistically  significant 
at  the 99 percent  confidence level). For the digits vocabulary, 
the performances  of both  the LPC and  the best filter  bank 
recognizers  were comparable  with  error  rates close to 0 percent. 

A key  question raised by the above  results is why  does the 
LPC-based  recognizer perform  better  than  any of the filter 
bank  recognizers? A related  question is why did  White and 
Neely, in a classical comparison of LPC and filter bank systems 
[ 131 , find  comparable  performances  for  both  systems using 
the same  alphadigits  vocabulary?  The  answers to these ques- 
tions  are  fundamental  and  are  related to the basic  ideas behind 
parametric  models  of LPC and  filter  banks. A Q-band  filter 
bank  analysis, as seen  in Fig. 1, is a fixed quantization  of  the 
frequency  axis  into Q regions. The designer of  the filter bank 
has  freedom to choose  the value  of Q and the way in  which 
the  frequency scale is subdivided;  however,  once  chosen,  this 
fixed  frequency  quantization is applied to all talkers,  words, 
etc.  Problems arise when  relevant  information in a pattern 
(e.g., for a  word) lies at  the edge of  a  band  (and  hence is pres- 
ent in one  band  during  training,  and  a  different  band  during 
testing) because large differences in  band  energy  between  test 
and reference  are often  obtained.  Other  problems  arise  when, 
during the course  of  a word,  little  or no energy  of the speech 
signal occurs  in  a given band.  In  such cases the measured level 
of the  pattern (either  reference  or  test) is  highly variable, and 
again leads to large random  distance components in  comparing 
test and reference  patterns. 

LPC analysis, on  the  other  hand, is an adaptive frequency 
quantization analysis procedure  in  that  the Q poles of  approxi- 
mation  (for  a  Qth-order  analysis)  distribute themselves to oc- 
cur  where the  speech  spectrum  has  the  most energy.  Hence, 
differences  in  frequency  locations  of  speech  energy  between 
reference and test  are  reflected as movements  of  the speech 
poles  (resonances)  and generally lead to distances  proportional 
to  the magnitude  of the difference  in  frequency  location. 
Thus, the distance  function for LPC recognizers is far  better 
behaved than  the distance function  for filter  bank recognizers 
when differences  occur  between test  and reference  patterns. 

One simple way of illustrating the relative  sensitivity  of  filter 
bank  and LPC-based  recognizers  is to show  plots  of  the  differ- 
ential  distance  histograms of both systems  for  correct recogni- 
tions  and  for errors.  The  differential  distance is defined  as the 
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I I I 

A 0  I INCORRECT 

@) 
Fig. 21. Histograms of  the  differential  distance for standard LPC sys- 

tem for talker T1. Histogram (a)  shows  differential  distance given 
correct  recognition, while (b)  shows  a similar histogram given incor- 
rect recognition. 

F I L T E R  B A N K  DISTANCES 

25 
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0 

AD I CORRECT 
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Fig. 22. Histograms of the  differential  distance for 15-channel  uniform 
filter  bank  system for talker T1. Histogram  (a) shows differential 
distance given correct  recognition, while (b)  shows  a similar histogram 
given incorrect recognition. 

magnitude of the difference in distance  between the  best refer- 
ence which is not  the  spoken  word,  and  the reference  which 
represents  the spoken  word, i.e., 

AD = Jd(T ,  Ri.)  - d(T ,  Ri*)l 

where d(T,  R p )  is the distance  between the test and  the refer- 
ence  corresponding  to  the  test  word,  and d(T,Ri*)  is the dis- 
tance  between  the  test  and  the  best  reference  which  does  not 
correspond to  the test  word. Figs. 21 and  22  show histogram 
plots  of AD conditioned in correct  recognition [Fig. 2l(a)] 

TABLE VI 
SEPARATION  STATISIICS OF SEVERAL OF THE WORD 

RECOGNITION  SYSTEMS 

Normalized Normalized 
Average  Average Average Average 

Differential  Differential  Differential  Differential 
Distance  Distance  Distance  Distance 

For For For FOI 
Average Correct Incorrect C o r r a t  Incorrect 

System Talker Distance Recognition  Rccognition  Recognition  Recognition ------- 
7-channel 
uniform 

fdter bank 

I5shannel 
uniform 

filter bank 

non-uniform 
7shannel 

filter bank 

13shannel 
aon-uniform 

LPC 

1 14.80 
2 14.78 
3 16.68 
4 17.24 

2 45.44 
I 44.77 

3 48.75 
4 52.59 

2 13.64 
1 13.72 

3  16.73 
4  17.61 

1 22.63 
2  22.48 
3 27.10 
4  28.90 

2 .1755 
1 ,1832 

3 .2112 

6.734  1.634 
5.530 1.101 2.595 

3.347 .8 12 
,517 

5.657 1.258 2.684  .597 
5.125 , 1.729  2.040  ,688 

12.95  3.046  2.838 
14.73  2.693  3.036 ,555 

,667 

I I .08 3.466 
10.84  3.299 

2.567 
1.891 

303  
,567 

72.79  1.166 
8.171  1.205 

2.897 
3.602 

,464 

6.265  1.856 2.560 
.531 

5.743  1.730  1.969  .593 
,758 

11.91  1.764  3.285  ,486 
13.31 3.798 3.934 
10.18 2.478 

1.122 
2.562 

10.66  4.401  2.098 
,623 
3 6 6  

.2098  ,0233  3.592 
2602 ,0285 4.163 

,398 

.2126  ,0405  3.624 
.601 
,691 

4 .2550 .1742  .0762  2.101 ,919 

and  incorrect  recognition  [Fig. 21  (b)] for  the LPC recognizer 
and  the  15-channel  uniform  filter  bank (Fig. 22)  for  one of the 
four talkers.  Table VI gives statistics  on average distance  and 
average separations  for  the  best  filter  banks  and  for  the LPC 
system.  For  the LPC system  the  differential  distance  tends to  
be large for  correct  recognition  and  small  for  incorrect  recogni- 
tion, indicating  high  confidence in  the recognition  decision 
when correct  and  low  confidence (high uncertainty)  when  in- 
correct.  For  the  filter  bank  system,  the  differential  distance 
(suitably  normalized) is somewhat  smaller  for  correct recogni- 
tion  than  for  the LPC system,  and  somewhat larger for  incor- 
rect recognition. This result  indicates  poorer  confidence  in 
the recognition  system,  when correct,  and  lower  uncertainty 
in the decision  when  incorrect. 

The  question  then  remains  as  to  why White and Neely found 
comparable  performance  for LPC and  filter  bank recognizers, 
and why most commercial  systems use filter  banks.  The an- 
swers to this  question  are  related to  the differences  in  imple- 
mentation  and  application of the recognizers.  In the White 
and Neely study (as  well as for  most  commerical  systems) the 
input  speech is wide-band  and  includes  frequencies up to about 
7 kHz.  (White and Neely sampled the  speech  for the filter 
bank  system at a 20 kHz  rate.)  The  channels  from 3-7 kHz 
are  generally  broad bandwidth, high  time  resolution  channels 
that provide  accurate  and reliable information  about fricative 
sounds  and  speech  transients  (eg.,  bursts)  and  these  channels 
provide the margin of  improvement over LPC which  makes the 
overall performance of both systems  comparable. Further- 
more, commerical  systems  generally only use very  simple, 
highly structured  word vocabularies (e.g., the digits) for  which 
differences  in  performance  between LPC and filter  bank sys- 
tems  are negligible. 

Another reason for  preferring  filter  bank  recognizers over 
LPC-based  recognizers is their  robustness to channel noise and 
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other  forms  of  channel  distortion.  It is well known [32] that 
LPC analysis systems tend to become  error  prone  with  high 
background noise levels and  other transmission  distortions, 
whereas  filter  bank  systems seem to  be far less sensitive to 
noise. 

Cost  is also an  important  consideration in choosing  between 
LPC and  filter  bank analyzers.  Filter  bank  analyzers  are  lower 
in  cost than LPC-based systems,  although the  future availability 
of improved  integrated  circuit signal processors  may soon 
minimize this  cost  difference. 

VII. SUMMARY 
Performance of a wide variety  of designs of  filter bank  word 

recognizers  has  been  measured for a standard vocabulary  of 
alphadigit  terms.  Results  indicate that  the highest  word  ac- 
curacies  are obtained  with  either 15 filters  spaced  uniformly 
in  frequency or 13 filters  spaced  along  a  critical  band  fre- 
quency ’scale. In general, better  performance was obtained  for 
male talkers  than  for  female  talkers  because  of the  known  in- 
teractions  between  filter  bandwidths  and  pitch  harmonic  spac- 
ings. In comparison to a  standard LPC-based word  recognizer, 
the  performance  of  the best  filter bank  system was signifi- 
cantly  poorer  than  the LPC system for  the alphadigits  vocabu- 
lary. When the vocabulary  complexity was reduced to  that of 
a  digits-only  vocabulary, both systems  performed  equally well. 
A discussion of  the  strengths  and weaknesses of  the filter bank 
processing model  for  isolated  word  recognition was  given. 
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On  Tempora1,Alignment of Sentences of 
Natural and Synthetic  Speech 

Abrnwt-One way to improve  the  quality of synthetic  speech,  and to 
learn about  temporal  aspects of speech  recognition,  is to  study  the  prob- 
lem of time aligning pairs of spoken sentences. For example,  one  could 
evaluate  various  sets of duration  rules  for  synthesis  by  comparing  the 
time  alignments of speech  sounds  within  synthetic  sentences to those 
of naturally  spoken sentences. In this  manner,  an  improved  set of sound 
duration  rules  could  be  obtained  by  applying  some  objective measure 
to the  alignment scores. For speech recognition  applications,  one  could 
obtain  automatic  labeling of continuous  speech  from  a  hand-marked 
prototype to obtain  models  and/or  statistical  data  on  sounds  within 
sentences. A key  question in the use of  automatic  alignment of sen- 
tence  length  utterances is whether  the  time  warping  methods,  de- 
veloped for isolated  word  recognition,  could  be  extended to the  prob- 
lem of time aligning sentence  length  utterances  (up to several seconds 
long). A second  key  question is the  reliability  and  accuracy of such an 
alignment. In  this  paper  we investigate these  questions. 

It is shown  that,  with  some  simple  modifications,  the  dynamic  time 
warping  procedures  used  for  isolated  word  recognition  apply  almost as 
well to alignment of sentence  length  utterances.  It  is also shown  that, 
on the average, the  uncertainty in the  location of significant  events 
within the sentence is much smaller than  the  event  durations  although 
the  largest  errors  are  longer  than  some  event  durations. Hence, one 
must  apply  caution  in using the  time  alignment  contour  for  synthesis 
or recognition  applications. 
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T 
I .  INTRODUCTION 

HE state of the  art in speech  synthesis  by  rule is that  one 
can  synthesize  (from  either  printed text  or  from  a pho- 

netically  based  set  of input symbols)  speech  whose  intelligi- 
bility is quite  high  but  whose  naturalness is often poor.  One 
reason  for the  unnatural  quality is the  rudimentary  state of 
knowledge  as to  how  to properly  control  pitch  and  duration of 
sounds  within  a  sentence. In order to  make  improvements  in 
the  pitch  and  duration  rules  used  for  synthesis,  it  would  be 
helpful to be able to compare  rule  generated  synthesis of sen- 
tence  length  material to  natural  productions  of  the same  sen- 
tences. By time aligning events  within the  sentence,  one  could 
modify the  duration rules  of  the  synthesizer to improve the 
quality  of  the  match. By experimenting  with  a number of sen- 
tences  (and  talkers),  one  could,  hopefully,  make  major  im- 
provements in the  duration rules  of the  synthesizer. 

Another area that would  benefit from  the  ability  to  time align 
a  spoken  sentence  with  another  spoken version of the same 
sentence is speech  recognition.  One  of  the most difficult and 
time  consuming  problems  in  building  a  speech  recognizer is 
collecting  data for modeling  (statistically or otherwise) the 
properties  of  speech  sounds. By carefully hand labeling  a  set 
of test  sentences, one  could, in theory,  automatically  obtain 
a  good  set of labels on  repetitions of the  test  sentences  by us- 
ing a  time  alignment  procedure.  The  time  aligned  events  of 
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