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ABSTRACT. In this paper we extend previous work on isolated word
recognition based on hidden Markov models by replacing the discrete
symbol representation of the speech signal by a continuous Gaussian
mixture density. In this manner the inherent quantization error
introduced by the discrete representation is essentially eliminated. The
resulting recognizer was tested on a vocabulary of the 10 digits across
a wide range of talkers and test conditions, and shown to have an error
rate at least comparable to that of the best template recognizers and
significantly lower than that of the discrete symbol hidden Markov
model system. Ssveral issues involved in the training of the continuous
density models and in the implementation of the recognizer are
discussed.

1. Introduction

Template based approaches with dynamic programming (DP) have
been demonstrated to be one of the most effective methods for isolated
word recognition. Several alternative approaches, however, have been
proposed, due to:

1. the high computational cost of the DP approach;

2. the difficulties in extending the DP recognition paradigm to
more difficult problems — e.g., continuous speech;

3. the desire to use a parametric model to represent the
speech, rather than the non-parametric template;

4. the desire to use speech units smaller than words ~ e.g.,
syllables, demisyllables, phonemes.

These alternative approaches include using vector quantization
(VQ) in the DP computation, using word-based vector quantization to
eliminate the DP processing, using VQ as a front end preprocessor, and
using hidden Markov models (HMM?s) to represent the speech signal.
Among these, the HMM recognizer is of great interest because of its
potential low cost and its capability of modelling various events
(phonemes, syllables, etc.) in the speech signal with efficient
parametric representations. In our previous work [1], we studied how
to apply discrete observation (i.e., vector quantized LPC vectors from a
fixed size codebook) HMM’s in isolated word, speaker independent
speech recognition applications over dialed-up telephone lines. Work
performed at IBM [2], CMU [3], and more recently at Phillips [4] has
used continuous HMM’s where it was assumed that all parameters of
interest had Gaussian distributions. The HMM’s to be discussed in
this paper are based on continuous, mixture density models of the
distribution of LPC derived parameter vectors. We have devised
training procedures for obtaining maximum likelihood estimates of the
parameters of the mixture distribution and applied the models to the
problem of recognizing isolated digits. Our results show that the
average error rate of such HMM recognizers are essentially identical
to if not better than that of the best template approaches using DP
methods, and considerably lower than that of an HMM recognizer
with a discrete symbol VQ front end.

II. The Conticuous Mixture Density HMM

Figure 1 shows the type of HMM we are considering here. It is
based upon a left-to-right Markov chain which starts in state 1 and
ends in state N. The observed signal is assumed to be a stochastic
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Fig. 1  Representation of left-to-right hidden Markov model.

function of the state sequence of the Markov chain. The state
sequence itself is unobservable (hidden). The goal is to choose the
parameters of the hidden Markov model to optimally match the
observed characteristics of a given signal.

The parameters which characterize the HMM of Figure 1 are the
following: 1) N, the number of states in the model; 2) A4 = [a;],
1 <, j < N, the state transition matrix where a;; is the probability
of making a transition from state { to state j; and 3) B, the
observation probability function. If we assume that the signal to be
represented by the HMM consists of a sequence of observation vectors
0 =1{04, 0, ..., Or}, where each O, is a vector which characterizes
the signal at time ¢, then we can consider two types of observation
probability functions, namely discrete and continuous. Discrete type
HMM’s have been extensively discussed in [1]. In the continuous case
we have the probability density function B = {b;(x)}, 1 < j < N,
where b; (x)dx is the probability that the vector O, lies between x and
X 4+ dx. The types of density functions allowed for b;(x), for which a
reestimation algorithm exists, include strictly log concave densities [5],
elliptically symmetric densities [6], and more recently mixtures of
strictly log concave or elliptically symmetric densities [7]. In this
paper we will consider Gaussian mixture densities of the form

M
bj(x) = 2 Cjk-/V(X, ik, Ujk) (I)
k=1

where A(x, g, U) denotes a D-dimensional normal density function of
mean vector g and covariance matrix U.

To summarize the discussion above, a complete specification of a
continuous mixture density HMM requires choosing values (parameter
estimates) for the following: 1) N — number of states in the model; 2)
M — number of mixtures; 3) D — number of dimensions in each
vector; 4) A = [a;;] — state transition matrix; 5) C = [c;] — mixture
gain matrix; 6) u = [g;s] — means of the mixture components; and
U= [Ujkde] ~— covariance matrices of the mixture components, For
the work to be presented here, we have chosen N = 5 states on the
basis of previous studies with discrete symbol models [1]. Also our
signal observation vectors are cepstral coefficient vectors derived from
an 8th order LPC analysis of the speech signal.

2.1 Training the HMM

For each word, v, in a vocabulary of V words (V = 10 for the
digits), an HMM is designed; i.e., the set of parameters above is
estimated from a training set of data representing multiple occurrences
of the vocabulary word by multiple talkers. The procedure for
obtaining model parameter estimates is shown in Figure 2. We assume
a training set of data consisting of Q sequences of observations, where
each sequence, O' = (0}, 0%, ...,0%}, 1 <i < Q is the set of
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Fig. 2 The training procedure used to estimate parameter values.

vectors (observations) constituting a single occurrence of the word. An
initial model estimate is assumed. This initial estimate (unlike the one
required for reestimation) can be chosen randomly, or based upon any
prior knowledge.

The second step in the training procedure is to segment each wor_d
occurrence, O, into states based on the current model. This
segmentation is achieved by finding the optimum state sequence Vi.a Fhe
Viterbi algorithm. The result of segmenting each of the Q.tralmng
sequences is, for each of the N states, a set of the observaFlons thz}t
occur within each state according to the current model. This step, in
effect, isolates the observation stochastic processes from the under}ymg
Markov chain so that the initial estimate of the observation statistics is
not interfered by the Markov chain estimate. To illustrate this and the
need for mixture densities, we compare the marginal distribution
b; ()| mfy,~) of a 5 term Gaussian mixture distribution with
diagonal covariances against a histogram of the actual observation§ in
the corresponding state in Figure 3 for a 9 dimensional representation.
The need for values of M > 1 is seen in the histogram of the lst, 2nd,
4th, and the 8th parameters.

Following the above segmentation, a segmental K-means procedure
is used to cluster the vectors in each state into a set of M clusters
(using a Euclidean distortion metric and a VQ design algorithm).
From the clustering, an updated set of model parameters is derived as
follows: 1) ¢ = number of vectors classified in cluster ¥ of the jth
state/number of vectors in state j; 2) fxs = dth component of mean
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Fig. 3 Comparison of estimated density (jagged contour) and model
density (smooth contour) for each of the 9 components of the
representation vector.

of vectors classified in cluster £ of state j; and 3) I]jk,s = {r, s)th
component of covariance matrix of vectors classified in cluster ¥ of
state j. The transition matrix coefficients, a;, are not changed
according to this procedure since no information about state transitions
is retained. At this point the formal reestimation procedure is used to
reestimate optimal values (in a maximum likelihood sense) of all
model parameters. The resulting model is then compared to the
previous model by computing a distance score which reflects the
statistical similarity of the HMM’. If the model distance score
exceeds a threshold, the model is updated and the overall training loop
is repeated. The iteration stops when the distance falls below a
prechosen threshold.

Since the steps of segmenting the training sequences into states,
and clustering the vectors via a VQ clustering procedure are relatively
inexpensive (in a computational sense), whereas reestimation is an
exceedingly costly procedure, a practical implementation of the
training procedure of Figure2 is to bypass the step of model
reestimation until local model convergence is obtained, and then apply
the reestimation procedure at the final step.

Aside from using the reestimation algorithm to achieve maximum
likelihood, we also developed a parameter estimation procedure based
upon histogram fitting (for each observation state). The results
obtained from this histogram fitting algorithm are comparable to those
from the maximum likelihood estimate.

2.2 The HMM Recognizer

Once the HMM’s have been trained on each vocabulary word, the
recognition strategy is straightforward. Figure 4 shows a block
diagram of the recognizer. The speech signal, s (n), for the unknown
word is first analyzed using an 8th order LPC analysis. The speech
sampling rate is 6.67 kHz, and overlapping sections of 45 msec of
speech are analyzed every 15 msec to give a set of 8 LPC coefficients.
An LPC transformation algorithm is used to convert the LPC
representation to an LPC derived cepstrum. Then, for each vocabulary
word model, the optimum state sequence is found via the Viterbi
algorithm and the log likelihood score for the optimal path is
computed. The decision rule assigns the unknown word to the
vocabulary word whose model has the highest log likelihood score.

2.3 Incorporation of Duration into the Recognizer

Inherently, each state in the HMM has an exponential duration
probability. A state j, with a probability @;; of returning to itself, has
a state duration probability of

p;(@) = (1=a;)af™

where £ is the number of frames occurring in state j. To better
exploit the state sequence information in the recognizer, we considered
two alternatives, namely modification of the scoring procedure to
include an internal durational model, and application of a post-
processing durational model on the state sequence as determined by
the Viterbi algorithm. In either case, in the training phase, we
estimate a state duration probability of the form

p;(€¢/T) = probability of being in state j for (¢/T) of the word,
where T is the number of frames in the word and ¢ is the
number of frames in state j.

For each word and each state, the quantity p;(¢/T) is estimated for
25 values of ¢/T from 0 to 1.
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Fig. 4  Block diagram of the HMM recognizer.
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For scoring a given observation sequence using the internal
durational model, a recursion of the Viterbi procedure is required. The
recursion is considerably more costly than the implementation of the
standard Viterbi scheme.

The post-processor durational model, on the other hand, uses the
original Viterbi alignment procedure. Then for each word, the optimal
state sequence is determined, and the duration of each state is obtained
via a backtracking procedure. The log likelihood is then augmented by
the log duration probabilities (suitably weighted) to give the final score
for the recognition decision, as shown in Eq. (2):

a N
log f =log f + a3 log (p;(£;/T)) . )
j=1

III. Experimental Evaluations

Four sets of spoken digits recorded over standard dial-up telephone
lines, were used to evaluate the performance of the HMM recognizer
with the mixture density representation. These consisted of the
following:

DIG 1 — 100 tzalkers (50 male, 50 female), | replication of each digit
by each talker.

DIG 2 - Same 100 talkers and recording conditions as DIG 1;
recordings made several weeks later than those of DIG 1.

DIG3 — 100 new talkers (50 male, SO female), 1 averaged
occurrence of each digit by each talker obtained from
averaging a pair of robust tokens of the digit. The
transraission conditions (i.e., analog front end, filter cutoff
frequencies, etc.) differed slightly from those used in
recorcing the DIG 1 and DIG 2 databases.

DIG 4 — A second group of 100 new talkers (50 male, 50 female),
20 recordings of each digit by each talker. A random
sampling of 1 of the recordings of each digit by each talker
was used. The transmission conditions again differed
somewhat from those used in recording the other sets.

For model training, only one digit set (either DIGI or DIG4) was
used; for testing and performance evaluation, each of the 4 sets was
used.

3.1 Diagonal Versus Full Covariance Matrices

Two forms for the U matrices of Eq. (1) were considered, namely
diagonal matrices (with assumed zero correlation between components
of the representation), and full covariance matrices. Recognition tests
with diagonal covariance matrices using M =1, 3 and §, and full
covariance matrices using M == 1 only were performed. The results
showed that performance with the full covariance matrix with M =1
was better than that obtained using only the diagonal covariance
matrix with M =1 or 3; however for M == 5 the performance with the
diagonal matrix was comparable to that of the full covariance matrix
with M = 1. Both full covariance and diagonal covariance matrices
were used in subsequent recognition tests.

3.2 Applicability of Word Clustering to Model Generation

We also considered combining the word clustering procedure with
model estimation, to give more than one HMM per word. We tested
this idea in the following way. First a single HMM per word was
created on training set DIG 1; next the 2 cluster per word template set
was used to segment the 100 token training set into two groups. For
each group a single HMM was created; hence a total of 2 HMM’s per
word was used in the performance evaluation. The potential
disadvantage of this procedure should be clear, i.c., the training data
per model available for estimating HMM parameters is half that used
for the single model case and hence the estimates may be less reliable.
Results of experiments with each of the 4 test sets and with 1 and
2 models per word showed that in the diagonal covariance case, a

performance improvement of 0.65% was realized using 2 models per
digit, and in the full covariance case the improvement was 0.25%.

3.3 Effects on Different Number of Mixtures

Using meodels trained on DIG1, the number of mixtures, M, was
varied from 1 to 7, in steps of 2, for the diagonal covariance case, and
from 1 to 2 for the full covariance case to see the effects on recognition
performance. The results of these tests on the 4 digit data bases are
given in Table I. The results show an improvement in performance
from an average digit error rate of 2.95% for M =1 down to an
average digit error rate of 1.95% for M = 5. Results for M = 7 show
a slight increase in average digit error rate to 2.23%. This result
seems to indicate that the improvement in modelling the statistics of
the “limited” observations from using more mixture terms is offset by
the accompanying effect of broadened fitting range that helps incorrect
words during recognition.

For the full covariance case the effect of increasing M from 1 to 2
is an increase in digit error rate by 0.95%. Hence we again see the
evidence of sparser training data that makes model estimates
unreliable and not robust for open recognition tests over a wide range
of signal conditions.

3.4 Effects of Energy and Duration

To study the effects of including energy in the signal
representation, and of including the durational model in the testing, a
series of recognition runs were made using the diagonal covariance
matrix models with M = 5, using 2 models per word. The results of
these recognition tests are given in Table II. The durational model
was implemented as a post-processor computation in all cases. The
results show clearly that the addition of either energy or duration
uniformly improves the performance of the HMM recognizer.
Furthermore the combination of both energy and durational model
yields better performance than either factor individually. The biggest
improvements in performance were obtained for test sets DIG 3 and
DIG 4 where the transmission characteristics of the speech were
different from those of DIG 1 and DIG 2. In these cases the addition
of energy and duration model make the system more robust because
these features are, for the most part, insensitive to differences in
transmission conditions.

Covariance Average Digit Error Rate (%)
Matrix
M |DIG 1|DIG 2 |DIG 3|DIG 4 |Overall
1 1.1 1.3 32 6.2 2.95
Diagonal |3 | 0.2 1.1 4.1 5.2 2.65
5| 0.1 0.7 3.0 4.2 2.0
7] 00 0.8 3.1 5.0 2.23
Full 1] 02 09 29 4.7 2.18
21 00 1.2 6.0 5.3 3.13

Table 1. Comparison of Performance of HMM
Recognizer with Different Values of M

Average Digit Error Rate (%)
Condition |[DIG 1|DIG 2{DIG 3{DIG 4|Overall

No Energy
No Duration{ 0.3 2.5 4.3 8.0 3.78

Energy but
No Duration | 0.3 0.9 2.5 5.5 2.3

Duration but
No Energy 0.1 1.3 33 5.4 2.53

Energy and
2.8 i 42 1.95

Duration 0.1 0.7
Table 11. Comparison of Performance of HMM Recognizer
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3.5 Comparison of Internal and Post-Processor Durational Models

The two different implementations of the durational model, namely
the internal durational model and the post-processor durational model
were also compared. In both cases the same state-duration probability
density function was used, with a multiplier of & = 3.0. (This factor
was locally optimum based on preliminary experimentation.) The
results show that the performance of the HMM recognizer with the
post-processor duration model was uniformly slightly better than for
the recognizer with the internal durational model. Across the 4 data
sets the improvement in performance was almost 0.7%.

3.6 Effects of Different Training Sets

As noted earlier, the recognizer used in the above experiments was
trained on data set DIG1. To study the effects of training data, we
also trained a new series of HMM’s on DIG4, which is less
homogeneous in recording conditions than the other 3 data sets. These
HMM'’s use single multivariate Gaussian density with a full covariance
matrix. Recognition results based on this new set of HMM’s are
shown in the first row of Table III. Results of the recognizer trained
on DIG1 are shown in the second and third rows of Table IIL. It is
seen that this new recognizer achieves a performance improvement of
about 0.2%. What is more significant is that the error rate resulting
from this has much less variation across the different test data sets
than that obtained from the earlier training set.

IV. Comparison with Previous Recognizers

The above results characterize what can be achieved by the
continuous mixture density HMM recognizer. Another way of
measuring the effectiveness of the approach is to compare the current
performance results with those of alternative recognition systems based
on discrete densities (i.e., VQ symbols) [1], and based on templates
[8]. Such a comparison is given in the last 2 rows of Table III. For
the discrete density HMM recognizer, results are given only for the
DIG 2 data set where the performance is significantly worse than that
of the HMM recognizer with a continuous mixture density. For the
template-based DTW recognizer, the results, based on the latest
clustering procedure are comparable to those of the continuous density
HMM recognizer. Since the template-based DTW recognizer has
been studied for about 10 years and has been highly optimized in its
performance, the equality between the HMM recognizer and the DTW
recognizer, at least for the digits vocabulary, is highly significant.

[Training] Cov. T Type of Average Digit Error Rate (%) _
Set Type Recognizer

DIG 1 |DIG 2|DIG 3|DIG 4|Overall
DIG4 |Full HMM-Continuous| 2.5 1.7 2.1 0.8 1.78
DIG1  |Full M=1 02 | 00 | 22 | 47 | 193
DIG!  |Diagonal | HMM-Continuous

M=5 01 | 07 | 28 | 42 | 195
DIG! NA HMM-Discrete - 29 - - -
DIGI |NA __ |DTW-Templates | 00 | 0.6 | 27 | 39 | 18

Table 1. Comparison of Performance of Several Recognizers

V. Summary

In the previous sections we have developed and tested an HMM
isolated word recognition technique which uses a continuous mixture
density model for the probability densities of the feature vector. Based
on experimentation with the recognizer, in a speaker independent
mode, using a vocabulary of 10 digits, the following general results
were obtained:

1. The proposed model training procedure, with an iterative K-
means. loop for estimating initial values for the means and
covariances of the components of the mixture model, works
extremely well in practice and was able to converge to a local
maximum of the likelihood function in & small number of
iterations (typically 2-4 in most cases).

2. Mixture models with diagonal covariance matrices need a larger
number of mixtures than mixture models with full covariance
matrices in order to give the same performance.

3. Combining the techniques of clustering and HMM models can
lead to small improvements in the performance of the HMM
recognizer.

4. The addition of a word normalized energy contour (as an extra
dimension to the feature vector) as well as durational
information uniformly improves performance of the HMM
recognizer and makes it more robust to differences in talker
populations and transmission conditions.

5. The combination of normalized energy and durational
information works better than either factor alone in the HMM
recognizer.

6. The durational model of the HMM recognizer can be
conveniently implemented as a post-processor to the Viterbi
decoding procedure.
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