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Speaker-lnde 

Abstract-In  this  paper, we propose a speaker-independent  isolated 
word  recognition  system  whose  performance  is  comparable to that  of a 
conventional  isolated  word  recognizer,  but  whose  computation  is  greatiy 
reduced.  The  structure  of  the  proposed  recognizer  consists of a word- 
based  vector  quantization (VQ) preprocessor, followed by a conven- 
tional  DTW  postprocessor.  The  purpose  of  the  preprocessor  is  essen- 
tially  to  eliminate  from  further  consideration  all  words in the  vocabu- 
lary which a r e  unlikely  recognition  candidates. In some  cases,  the 
preprocessor will  he  able to  eliminate  all  word  candidates  except  one; 
for  such  cases,  there  is  no  further  processing  required  for  word  rec- 
ognition.  In  all  other  cases  (Le.,  when  more  than  one  word  candidate 
is  passed  on), a dynamic  time  warping (DTW-) processor is used to re- 
solve  finer  acoustical  distinctions  among  the  remaining word candi- 
dates.  The  performance  of  this  type  of  recognizer (i.e.,  using  a  word- 
based  preprocessor  and a standard  DTW  cornparison  to  make  finer 
distinctions) is affected by a number  of  factors involved with  the  details 
of exactly  how  the  system  is  implemented-e.g.,  the  distortion  measure 
used  in  the  preprocessor  and  in  the  DTW  comparison,  the  size  of  the 
VQ codebook for each  vocabulary  word,  the  decision  thresholds of the 
preprocessor,  etc.  Several  of  these  factors  were  studied  experimentally 
using  testing  databases  consisting of isolated  digits  and  words  from  a 
vocabulary of 129 airline  terms.  The  results  show  that  the  proposed 
preprocessor  has  the  capability  of  reducing  computation  for  recogni- 
tion by up  to   an  order  of  magnitude,  while  maintaining  the  same  per- 
formance  as  that  obtained  using a DTW  comparison  without  the  pre- 
processor. A somewhat  smaller  reduction  in  memory  over  the  straight 
DTW  implementation is also  obtained  in  the  proposed  approach. 

I. INTRODUCTION 
EVERAL different approaches have been proposed for 
recognizing isolated words; the most popular and the 

most successful  systems are still the  ones based on a con- 
ventional statistical pattern recognition model  [1]-[SI. 
Such a model is  depicted  in  Fig. 1. The speech signal is 
first analyzed  and a time  series of feature vectors that 
characterize  the  spectral  content of the  speech  sounds is 
extracted. Typically, the  feature vectors are the short-time 
spectra of the  speech signal obtained from  an analysis via 
a bank of bandpass filters or through a linear predictive 
coding (LPC) analysis. The resulting test  pattern  (i.e., the 
temporal sequence of feature  vectors)  is  then  compared to 
a set of prestored  reference  patterns,  and  the  correspond- 
ing similarity (distance) score  for  each  reference  pattern 
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Fig. I.  Block  diagram of pattern  recognition  model for isolated word rec 
ognition. 

is determined.  The most successful  pattern comparison 
method for speech recognition has been  the so-called dy- 
namic programming or dynamic  time warping (DTW) al- 
gorithm in  which reference-and  test word patterns are dy- 
namically time  aligned  and  the  resultant  alignment path 
of maximum similarity is obtained.  Associated with the 
pattern  matching algorithm is a distance measure.  This 
distance  measure  can  be as simple as summing the differ- 
ence of magnitudes between frames of the time-aligned 
reference  and  test  patterns [ E ]  or as complex as that gen- 
erated using LPC distances [2]. The final stage of the pat- 
tern recognition model is the decision block  which  makes 
a recognition decision (or decisions) based on the similar- 
ity or distance  scores provided by the  pattern comparison 
block. The most commonly used decision rule for recog- 
nition is the  nearest  neighbor  rule which chooses the rec- 
ognized word as the  reference word with the smallest dis- 
tance  score. A generalized version of this rule, called the 
K-nearest neighbor (KNN) rule is often used in a speaker- 
independent word recognition environment to achieve 
more robust, and  usually  better, recognition performance 

The DTW-based isolated word recognition approach 
described above has been shown to yield very high rec- 
ognition accuracies compared to other approaches [1]-[5]. 
However,  it does so at a high computational cost. The high 
number of computations required by the DTW-based al- 
gorithm has been a major obstacle to its widespread use 
in many applications. Recently, several different ap- 
proaches have been  proposed  where  the  amount of  com- 
putation is highly reduced over that required for the  DTW 
method.  These  approaches  include using hidden Markov 
models (HMM’s) [Q], vector-quantization-based DTW 
recognition [7], [SI, and a recognizer without time align- 
ment [9]. The first two alternatives are still under inves- 
tigation and show great  potential, but  at the  current  time, 
they  yield degraded performance with most reasonable size 
vector quantizers.  The  third low computation  alternative 
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Fig. 2. Block diagram of isolated word recognizer  incorporating  a word- 
based VQ preprocessor  and  a  DTW-based  postprocessor. 

used a word-based vector quantizer without relying on any 
temporal  information. For speaker-trained isolated word 
recognition and with a highly nonconfusable vocabulary 
of 20 words, Shore  and Burton reported 99 percent word 
recognition accuracy [SI. The results were significantly 
worse for speaker-independent word recognition, where an 
accuracy of 88 percent was achieved with the  same vo- 
cabulary. This  approach required relatively low computa- 
tion, but its  performance in a speaker-independent mode 
was not adequate for many applications. Recently, this 
method has been altered to add temporal information di- 
rectly into  the codebook design, with greatly improved 
recognition performance [ 101. 

In this paper, we propose  a complete speaker-indepen- 
dent,  isolated word recognition system using a word-based 
VQ preprocessor  to  screen out all word candidates which 
are unlikely to match the unknown word. Based upon the 
average frame  distortions of an unknown utterance with 
respect to  a word-based VQ codebook for each vocabulary 
word, the  preprocessor  eliminates  as many unlikely word 
candidates as possible. (In many cases,  all word candi- 
dates but one  are  eliminated  and no further processing is 
required.) Consequently, the  preprocessor  eliminates  or 
greatly  alleviates the computational load of the DTW pro- 
cessor. In addition, the distances required for the DTW 
processor are  the  same vector quantization distances com- 
puted in the  preprocessor in our  system;  hence, the amount 
of computation of the  entire recognizer is reduced even 
further. 

The  organization of this  paper  is as follows: in Section 
I1 we describe in detail  the overall recognition system 
which incorporates  a word-based VQ as  a preprocessor. 
In this  section, we explain the  use of a hybrid distortion 
(distance) measure which combines the  LPC likelihood ra- 
tio  distance with an added energy distance. We also  dis- 
cuss the method used to generate  the word-based VQ 
codebooks. In Section 111, we describe  the  three databases 
used in our experiments and explain the quantitative per- 
formance measures used. In Section IV,  we present the 
results of several pilot experiments in which we chose pa- 
rameter and threshold values for the overall recognition 
system.  In  Section V, we present overall recognition re- 
sults obtained by testing  the recognizer on  three  different 

databases. In Section VI, we summarize  our findings and 
discuss  some  directions for future  research. 

11. WORD-BASED VQ AS A PREPROCESSOR IN AN 
ISOLATED WORD  RECOGNITION SYSTEM 

A .  Overall  Recognition  System 

A block diagram of the proposed isolated word speech 
recognizer is given in Fig. 2. The system consists of three 
major blocks, namely, an  LPC  spectral  analyzer,  a word- 
based VQ preprocessor, and a  DTW postprocessor. The 
input speech signal is first digitized,  endpointed  into 
words, and spectrally  analyzed. As a  result,  a  time  series 
of LPC vectors is thus  formed.  The  preprocessor includes 
a  set of word-based VQ codebooks. Each word  in the vo- 
cabulary is characterized by its own codebook. For an un- 
known test word, the  series of LPC vectors extracted from 
the  analyzer is vector quantized by each individual code- 
book,  and  the  corresponding  frame  distortions  are  accu- 
mulated over the  duration of the word. The average frame 
distortion of each codebook is calculated,  and  the  prepro- 
cessor decision logic chooses a  list of possible word can- 
didates for further processing. In the  case when  only a 
single word candidate is selected for postprocessing, the 
preprocessor makes a final recognition decision, and no 
further processing is required.  Otherwise, no final deci- 
sion will be made by the  preprocessor and the  set of 
“good”  candidates are passed to  the DTW postprocessor 
(i.e., unlikely candidates which are of large average dis- 
tortion are eliminated by the  preprocessor). By incorpo- 
rating this preprocessor  into  the standard recognizer 
structure of Fig. 1, we can dramatically alleviate  the com- 
putational load of the DTW postprocessor  or even elimi- 
nate it completely if  a final recognition decision can be 
made by the preprocessor. In addition,  the  DTW postpro- 
cessor can be even further simplified by vector quantizing 
the  reference word templates with the VQ codebooks 
stored in the preprocessor.  In  this way, in the recognition 
phase,  the  distances (or the  frame distortions) needed in 
the  DTW  process are readily available through  a simple 
table-lookup procedure  since  all  distances have been com- 
puted in the  preprocessor  stage.  Hence,  the computational 
complexity of the DTW processor is further  reduced. 
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1)  The  VQ Preprocessor: The recognition procedures 
of the VQ preprocessor can be formally stated as follows. 
Assumeathat  there  are N frames in a  test  utterance (word 
to be recognized) which can be  represented  spectrally by 
N LPC vectors a l ,  * - - , aN. Also assume  that  there are V 
words in the recognition vocabulary and the LPC  code- 
book for the ith word is bl, b2, * * * , bt where L 
is the codebook size. (We assume a fixed codebook size 
for each word.) 

The average distortion by encoding (vector quantizing) 
the  test  utterance with the ith codebook is given by 

, 1  N 

E' = - min [d(a,,bi)] (1) 

where d(a,,bf) is  the  distance between the  two  LPC vec- 
tors a, and bf. 

The  decision rule logic of the  preprocessor consists of 
two  possible decisions based on  the  average  distortions 
(eil 1 5 i I V } .  Define the word i* as  the word whose 
codebook yields  the minimum averaged distortion, i.e., 

N n = 1  1 5 I S L  

i* = argmin (2) 

and the word k* as the word whose codebook yields the 
second smallest distortion, i.e., 

1 s i s V  

k* = argmin E' (3 )  
I c i s V  
i#i* 

The decision rules of the  preprocessor  are as follows. 
Rule I (Final  Word Candidate  Rule): 

Choose word up iff 5 dl and ck* - E 2 d2 (4) 

where d l  and d2 are two empirically chosen thresholds for 
the best absolute average distance  and  the separation lie- 
tween the best and  the second best candidates. Rule 1 ba- 
sically chooses word ui* when its average frame distortion 
is sufficiently small that a good confidence match is 
achieved, and when no other good matches occur among 
all  other vocabulary words. If Rule 1  fails, then Rule 2 is 
used to select all likely candidates and pass them to the 
DTW postprocessor. 

Pass word ui to DTW postprocessor iff ci - ei* 

i* 

Rule 2 (Valid Candidates Rule): 

5 d3 i = 1, 2;*. ,  V. (5)  

This rule says that any word whose average VQ distortion 
is within some threshold of the minimum distortion is con- 
sidered a valid candidate for further DTW processing. 

2) DTWProcessor: In the DTW processor, the  test ut- 
terance  is compared to reference  patterns of the candi- 
dates that were not eliminated by the preprocessor. We use 
Q = 12 reference  patterns for each word in the recogni- 
tion vocabulary to account for speaker differences [ 3 ] .  
Hence, Q time warps are performed for each word can- 
didate passed on to the DTW processor, with each time 
warp resulting in  a  distance  score between the  test and 
reference  patterns along the resulting time alignment path. 

The KNN rule is used to select the recognized word 

using the  distance  scores for all the  reference  patterns of 
the DTW candidates. If  we assume that there are J word 
candidates (passed from the  preprocessor), and we define 
Dj.4 as  the DTW distance of the 4th reference  pattern 
(q  = 1,2, - e ,  Q)  of thejth candidate word ( j  = 1,2,  + e ,  

J), then by reordering the Q DTW distances for each word, 
we  have 

Dj,[lI < - ~ j , [ 2 1  I . . . 5 D ~ , [ Q I  (6) 

and  the average distance of the best K patterns for each 
word ,(i.e.,  the K nearest  neighbor (KNN) rule) is then 
given by 

, 1  K 
r J  = - Dj,Lkl (7) K k = l  

The final word recognition decision is then given by j *  
where 

j* = argmin rj .  (8) 
1 sjcJ 

With Q = 12, K is typically chosen as  2. 
There  are  three different ways to  prepare the reference 

and test word patterns for the DTW process, namely, 1) 
no vector quantization of either  reference  or  test  vectors, 
2) vector quantizing both the  reference and the test word 
patterns,  and 3 )  vector quantizing the reference  patterns 
only. The first method is expected to achieve the best rec- 
ognition performance, in general, because no quantization 
error is introduced. By vector quantizing both the refer- 
ence  and  test  patterns (in the second method), we can re- 
place the  distance computations in the DTW processing 
by simple table-lookup operations, but at a price of per- 
formance  degradation. However, it has been shown that 
the  performance  degradation  due to vector quantizing the 
test word patterns is absolutely unnecessary [7], [8]. This 
is  because if  we  want to vector quantize the  test word pat- 
terns, we  have to compute the distances between each VQ 
codebook vector and each  frame of the test  utterance. 
These  distances are exactly the same distances needed in 
the DTW  process if  we vector quantize only the  reference 
word patterns.  Therefore, no computation overhead is re- 
quired if  we choose not to vector quantize the  test  pattern 
and the resulting performance degradation is eliminated. 
The implementation of this  procedure is straightforward. 
The  frame  distortions,  computed in the  preprocessor 
stage,  are  stored in a table as  illustrated in Fig. 3. In the 
DTW process,  the  distance between an input frame, e.g., 
ai, and the vector quantized reference frame,  e.g., $, can 
be easily retrieved from the  distance table of Fig. 3. There 
are two  possible implementations in vector quantizing the 
reference  patterns. We can vector quantize a reference 
word pattern  either by its own word-based codebook or by 
all codebooks. Except for the  one time effort  in quantizing 
the  reference word patterns,  these two implementations 
require exactly the  same amount of computation in the 
recognition process. 

In summary, three different ways can be used to prepare 
word templates, namely, 



PAN et al. : VECTOR-QUANTIZATION-BASED PREPROCESSOR 549 

WORDBASED CODEBOOKS 

WORD I WORD V 

Fig. 3. Distance computation in the word-based VQ preprocessor. By sav- 
ing each individual distance computation in  a table, a reduction in  quan- 
tization error in the DTW stage is achieved. 

1) no VQ, use  unquantized  test  and reference patterns 
2) VQ/REF,  SELF  VQ, vector quantize each reference 

3) VQ/REF,  ALL VQ, vector quantize each reference 
pattern  with  its own codebook only 

pattern with all codebooks. 

B. Log Likelihood  Ratio LPC Distance and Additional 
Energy  Information 

The  LPC  spectral analysis can  be  interpreted  as  a spec- 
tral matching  method which minimizes  the difference be- 
tween  the input signal spectrum  and all-pole model spec- 
trum.  The  spectral difference used  is commonly known as 
the Itakura-Saito (I-S) distortion measure,  and has the 
form 

where Sjn(w) is the input signal spectrum  and S(w) is the 
resultant LPC all-pole model spectrum given by 

d 
’(01 11 + ale-ju + a2e-2jw + . . . + ape-jpw 2 * 1 

(10) 
The  same distortion measure  can  be  used  to  measure the 
spectral difference between two all-pole spectra SR(w) and 
ST(w) .  The  corresponding Itakura-Saito distortion mea- 
sure  can be computed in the autocorrelation domain  as 

where aR = [l, al ,   a2,  - - * , a,]’, V,  is the Toeplitz matrix 
of the autocorrelation of S T ( w ) ,  and 4 and .‘R are the LPC 
gain terms for the two  frames.  Without modification, the 
original I-S distortion measure is not appropriate for 
speech recognition applications because it is sensitive to 
the  absolute  gain.  For  example, the’I-S distortion between 
a  frame of speech  and  an amplified version of  itself is 

which is undesirable. To accommodate this gain sensitiv- 
ity problem,  there exist two modifications of the I-S dis- 
tortion, namely, a  gain-normalized I-S distortion measure 

and  a  gain-optimized  measure. The first one sets the gains 
4 and & to  be  equal,  and  the resultant distortion measure 
(likelihood ratio) is 

The second  one,  proposed by Itakura [2], is of the form 

Both modifications yield roughly the same recognition 
performance.  Since the likelihood ratio measure  needs no 
logarithm operations and it is more  mathematically tract- 
able in VQ codebook  generation, it has been widely  used 

Incorporating naively the absolute energy (or gain) in- 
formation in the distortion measure  such as the original 
I-S distortion is inappropriate for speech recognition since 
gain variations, between  recordings,  can lead to large dis- 
tances between inherently similar spectra. However, since 
the  energy  contour of an utterance  carries  some phoneti- 
cally relevant prosodic information, by adding  energy (or 
gain) information to the spectral distortion measure prop- 
erly, we should  be able to  improve  the recognizer perfor- 
mance. The method we use  is the one  proposed by Brown 
and  Rabiner [13]. The combined distortion measure be- 
tween  two  frames of speech,  i.e.,  frame n of a  test  pattern 
T(n) with  an  LPC vector uT and  frame m of a reference 
pattern R(m) with  an  LPC vector aR, can  be  written  as 

[111, W I .  

D(T(n),R(m)) = D c L R ( T ( ~ ) , R ( ~ ) )  (15) 

+ d(DdT(n)   ,R(m)) ) .  
The likelihood ratio distance has been modified to include 
a  clip threshold dCLIP and  the resultant clipped likelihood 
ratio distance DCLR is given as 

where VT is the Toeplitz autocorrelation matrix of the test 
frame  and dcLIp\is a suitably chosen  maximum allowable 
value for DLR tin  practice, we use  a value of 2.5) which 
prevents any  single distance from greatly altering the av- 
erage  frame distortions in the preprocessor or greatly in- 
terfering with the DTW optimal path search.  The  energy 
distance DE(T(n),  R(m)) is  given by 

DdT(n)  ,R(m)) 

where ER(m) is the log energy  (in decibels) of the frame 
R(m) and E:,, is the maximum  energy (in decibels) over 
all frames of the whole utterance,  and similarly for ET(n) 
and E L x .  In this manner,  each  frame  energy is normalized 
with respect to  the  maximum point in the energy  contour 
of the  entire  utterance  and the resultant ER(m) - E:,, (or 
ET(n) - E:,,) is the relative energy  measured in decibels 
down from I?:,, (or E:ax). 
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Fig. 4. Nonlinearity  applied  to log energy  difference  between  frames  for 
the  energy  distance  calculation. 

The  nonlinear function f on the energy distance is de- 
fined as 

have found that several different variations in the training 
procedure gave rise to insignificant differences in the re- 
sulting codebooks. Therefore,  the binary-split procedure 
is chosen because computationally it is the most efficient. 

111. DESCRIPTIONS OF DATABASES AND PERFORMANCE 
MEASURE 

A. Databases 
Three different databases were used to test the proposed 

overall isolated word recognizer. They consisted of two 
different vocabularies,  a ten-word digits vocabulary (zero 
through nine) and a 129-word airline vocabulary [ 151, [ 161. 
Two different databases were used for the  digit vocabulary 
and one for the  airline vocabulary. 

The first database for the ten-word digits vocabulary 131 
was generated by 100 talkers, equally divided between 
male and female. Each  talker gave  two repetitions of all 

where EL,, EOF, and EHI are  three appropriately chosen 
thresholds. The  functionf(E) is shown in Fig. 4. It assigns 
no penalty for any I E(  less than E,, (i.e., small energy 
difference) to  account for insignificant variations of en- 
ergy. For large energy differences, f ( E )  is clipped at an 
appropriate level EHI to prevent it from becoming un- 
bounded. Energy differences between these two extremes 
are linearly weighted by a  factor of a. 

C. Generation of Word-Based LPC Vector Codebooks 
In the preprocessor, each word is represented by the VQ 

codebook. Each codebook is designed from a  training  se- 
quence that comprises the LPC vectors from a  large num- 
ber of utterances of the particular word spoken by many 
different talkers.  These  same  training sequences are used 
in template  creation;  hence, no additional recording is  re- 
quired for codebook generation over that required for tem- 
plate generation. 

Assume a  set of training  LPC vectors ci, i = 1, . . -, I .  
We design a codebook of  arl optimal set of LPC vectors 
bl, 1 = 1, . . -, L such that for this given size L ,  the average 
distortion in replacing each vector in the training set ci by 
the closest vector bl is minimized. This average distortion 
is given as 

1 
I i=l  I-=/-=L 

I 

DL = - min [d(ci,bl)]. (19) 

The  iterative algorithm we used to solve (19) is essentially 
the one proposed by Linde et al. [Il l  or commonly called 
the binary-split algorithm. There are several variations to 
the above-mentioned algorithms in terms of different split- 
ting procedures and the way to repopulate any empty cell 
in the training  procedure. However, Rabiner et al. [14] 

the  ten digits with a period of four weeks separating the 
recording of the two repetitions. Hence, for each repeti- 
tion,  there were 100 utterances of each word in the vocab- 
ulary, giving a total of 1000 utterances for the entire rep- 
etition. We shall call this database  the  REFERENCE 
database, denoting the first repetition as the  training set 
and the second repetition as  the  test  set. 

The second database for the digits vocabulary, which  we 
shall call the KLS database  [17], was generated by a  set 
of ten  talkers,  also equally divided between male and fe- 
male. These  ten  talkers were different from the 100 talkers 
who generated  the  REFERENCE  database. Each talker 
spoke each digit 20  times, giving 200 total utterances per 
talker, and a total of 2000 utterances for the  entire data- 
base.  These  ten  talkers were chosen from a  larger popu- 
lation of 100 talkers on the basis of their observed higher 
error  rates  in previous recognition experiments. 

The airline vocabulary comprised 129  words that are 
commonly used in  airline information and reservation sys- 
tems, such as city names, days  of the week, digits, words 
used to combine the  terms  into  sentences,  etc.  The data- 
base for the airline vocabulary consisted of a training set 
and a  test  set.  The  training set was generated by a set of 
100 talkers (50 males  and 50 females),  each of them 
speaking all  the words in the recognition vocabulary once. 
This gave 100 utterances for each of the 129  words in the 
recognition vocabulary. The  test set for the  airlines data- 
base was generated by a set of 20  talkers who were dif- 
ferent from those who generated  the  training  set.  This set 
of 20  talkers was also evenly divided between male and 
female; every talker. spoke each word in the vocabulary 
once. All three databases described above have  been  used 
in previous recognition experiments [3], 1161, 1171. All 
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the isolated utterances were recorded off a standard dialed- 
up telephone line,  and the endpoints of words were care- 
fully monitored for accuracy. The two sets of data for the 
digits vocabulary were used to give an indication of the 
performance of the overall recognizer for a small size, 
standard vocabulary. The  airline  database was intended  to 
show the feasibility of using the proposed recognizer on a 
much bigger and 'harder vocabulary that had many more 
acoustically similar words than the simple digits vocabu- 
lary. 

B. Performance Measures 
Recognition accuracy, computational complexity, and 

storage requirements are the  three main criteria we use to 
judge  the performance of the overall speech recognizer. 
To quantitatively characterize  the  errors (as well as  the 
correct decisions) made by the recognizer at different 
stages of the overall system, we define  the following pa- 
rameters. 

Cf : Average fraction of correct final decisions made by 
the  preprocessor, i.e., when a single candidate is chosen 
by the  preprocessor. 
El: Average fraction of errors made by the  preproces- 

sor when a final recognition decision is made. 
E2: Average fraction of errors made by the  preproces- 

sor when it fails  to pass the  true word candidate to the 
DTW postprocessor. 

C3: Average fraction of correct decisions made by the 
DTW postprocessor. 

E3: Average fraction of errors made by the DTW post- 
processor. 

Two useful performance parameters can be derived from 
the above definitions, namely, the following. 

y: Average fraction of all recognition trials in which 
the  preprocessor makes a final decision,  correct  or wrong. 
Obviously, y = C1 + El. 

6: Average fraction of candidates passed to the DTW 
postprocessor when  no final decision is made by the  pre- 
processor. 

The breakdown of all  the  soprces of errors and correct 
decisions and the  corresponding  stages where the  errors 
and correct decisions are made is depicted in Fig. 5. The 
total  error  rate of the overall system is  the  sum of the pre- 
processor  errors El + E2 and the  DTW  postprocessor 
errors E3. 

C. Computational Complexity 
A  major consideration in evaluating the  performance of 

the overall recognizer of Fig. 1 is its computational corn- 
plexity. To understand this issue, we have to examine the 
required computation in the preprocessor  CPRE, the DTW 
postprocessor  CDTW,  and  the overall system. To 'quantify 
these concepts, we first define C,,, as 

CpRE = V * N L (distance calculations) (20) 

where a  distance computation requires approximately 
(p + 1) additions and (p + 1) multiplications for a  pth-order 
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Fig. 5 A breakdown of the potential  sources of error in the preprocessor 
and  in the DTW stage of the recognizer. 

ergy distance  adds negligible computation if the loga- 
rithms are computed before the  distance  calculation. 

The  computational complexity of the  DTW  processor 
CDTw is readily shown to be a function of the vocabulary 
size V ,  the number of reference  templates for each word 
Q,  and  the  type of DTW implementation (i.e., whether or 
not VQ is used).  There are two components to CDTW, 
namely, distance  calculations, and combinatorics. When 
VQ is used, the  cost of distance  calculations becomes neg- 
ligible (they become table lookups), and when  no  VQ is 
used, the cost of distance calculations dominates  the com- 
putation. Using the approximation that  the  cost of a com- 
binatorics calculation  is about 1/5 that of a full distance 
calculation (as is  the  case on most general-purpose com- 
puters), we get  the following results: 

CDTW = $ VQ N2/3 (distance calculations) (21) 

and 

CDTW/VQ = VQ N2/3 (distance calculations). (22) 

The overall computation of the  recognizer of Fig. 2, 
CALL, can now be  expressed in terms of CPRE, CDTW, y,  
and 0. The  resulting expression is of the form 

CALL = CPRE + (1 - Y)PCDTW (23) 

when  no VQ is used in the DTW processor,  and 

CALLIVQ = CPRE + (1 - YIP CDTWIVQ (24) 

when a VQ is used in the  DTW processor. 
From (20)-(24), we get 

LPC analysis using the likelihood ratio distance: The  en-  CALLNQ = N U L  + (1 - Y>P QNI . (25b) 
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We can readily define computational gain ratios as table then becomes MDIsT = N . L. In addition, each vec- 

CDTW 
tor of the reference  patterns need only be stored as an 

RALL = - (26a) integer index of the corresponding codebook vector, as 
CALL opposed to the @+ 1) floating-point numbers required for 

and  each  LPC vector. The resultant memory requirement is 
then 

CDTW 
RALLIVQ = ___ 

CALLIVQ (26b) MDTWIVQ = V * Q N (fixed-point numbers) 

which express the reduction in computation of the overall = 4 V * Q . N (floating-point numbers) 
recognizer as  compared to a conventional DTW system 
without VQ.  Consider  “typical” values of the system pa- (30) 
rameters for a digits vocabulary. For this  case, we  have 
y = 0 . 9 , / 3 = 0 . 2 , V = 1 0 , Q = 1 2 , N = 4 0 , L = 1 6 ,  where we  have assumed the  storage requirement for a 

giving fixed-point number to be half the  storage requirements for 
a floating-point number. 

ory MALL is 
RALL = 10  With the above assumptions,  the total amount of mem- 

RALLIVQ = 11.5. 

Hence,  a reduction in computation of more than 10 to 1 is 
entirely feasible with the proposed approach. MALLIVQ = MPRE + MDIST + MDTWIVQ (DTW/VQ). 

D. Storage Considerations (3 1 4  
In our  storage analysis, we will only be  concerned with The  storage requirement of a  straight DTW recognizer 

the  amount of memory or  storage required by the VQ (without a VQ preprocessor) is 
codebooks, the  test  utterance,  the  reference  patterns for 
the  DTW  processor,  and  the local distance  storage re- MALL = MDTW + MTEST. (32) 
quired when DTW processing is done using vector-quan- 
tized reference  patterns. We will neglect the differences 

MALL = MPRE + MTEST + MDTW (DTW/no VQ) 

TV. INITIAL PILOT EXPERIMENTS 

in program storage requirements between the overall ret- Before evaluating the proposed recognizer, we first car- 
ognizer and  that of the DTW processor  for the reasons that ried out Some pilot experiments to study the effects Of var- 
the program storage  requirements are negligible compared ious system parameters On the recognizer performance-  In 
to the  factors mentioned above. Recall that there are V particular, we studied the 
words in  the recognition vocabulary, L LPC vectors in each 1, Performance Of the preprocessor when energy infor- 
VQ codebook, Q DTW reference per word, and mation is incorporated  into  the distortion measure. 
we assume  that  there is an average of N frames of speech 2, Of the preprocessor when the decision 
per reference  pattern, and each reference or test  template d l ’  d27 are varied. 
is of @+ 1)  dimensions. Under these assumptions,  the 3) Effects of adding energy information to the distor- 
amount of memory required by the  preprocessor and the tion on the performance Of the DTW processor. 
DTW processor  is given by 4) Effects of using word-based VQ codebooks for quan- 

MpRE = V - L ( p +  1) (floating-point numbers) All pilot experiments were conducted using the REF- 
tizing the reference  templates in the DTW processor. 

ERENCE  database unless specified otherwise. 
(274 

M~~~ = V - N . ( p +  1) (floating-point numbers). A .  The Effects ofAdding Energy Information to the 

(27b) 
Distortion Measure in the Preprocessor 

Three different sets of parameters were used to  find the 
The memory required to store the test  utterance is best way to incorporate energy information in the distor- 

tion measure. We used several different sets of parame- 
MTEsT = N - ( p  + 1) (floating-point numbers). (**I ters, CY, ELo, EHI, and EOF, including the following. 

The memory required to store the local distances com- 
puted in the  preprocessor  state is given by 

MDIsT = N * V - L (floating-point numbers). (29) 

When using vector-quantized reference  patterns for the 
DTW processor, the LPC vectors of the text utterance  do 
not have to be retained since the DTW algorithm will only 
require the table of local distances computed by the pre- 
processor. The memory required for storing the distance 

1) CY = 0.0 (LPC likelihood ratio only, no energy); this 
condition is labeled LR  in the text. 

2) CY = 0.1 E L 0  = 6.0, E H I  = 20.0, EOF = 0.0 (LR  with 
energy information, smooth offset); this condition is la- 
beled LRSO in the  text. 

3 )  CY = 0.1 E L 0  = 6.0, E H I  = 20.0, Eo, = 6.0 (LR with 
energy information, discontinuous offset); this condition 
is labeled LRDO in the text. 

The  first  case with CY = 0.0 is the original likelihood 
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TABLE I(a) 
AVERAGE  DISTORTIONS FOR LPC AND ENERGY ( E )  DISTANCES AS A 

FUNCTION OF CODEBOOK  SIZE AND TYPE OF DISTORTION  MEASURE NOTE 
THE ENERGY DISTANCE SHOWN HAS NOT  BEEN  SCALED  DOWN BY THE 

WEIGHTING FACTOR or 

Codebook-Sire 
Distortion 4 
Measure 

LRSO 

TABLE I(b) 
AVERAGE  DIGIT  ERROR RATES OF THE PREPROCESSOR AS A FUNCTION OF 

CODEBOOK  SIZE AND DISTORTION  MEASURE 

I M y  Distortion lmi 
17.3 11.8 9.9 7.2 

LRSO 6.7 4.7 5.0 
L R W  9.5  6.8 4.8 4.8 

ratio distortion measure with no additional energy infor- 
mation. The second and third distortion measures are  a 
linear combination of the likelihood ratio LPC  spectral 
distortion measure  and  a linearly weighted (a = O . l )  en- 
ergy  distance.  The  LRSO distortion adds  a gradually in- 
creasing energy  distance to the  LPC  distance, whereas the 
LRDO distortion has a discontinuous energy distance  step 
at E,, = 6 dB; hence,  a heavy penalty is paid when the 
energy difference between frames exceeds 6 dB. 

Using the  training  set of the  REFERENCE  database 
(which comprised 100 utterances for each of the  ten dig- 
its), different size word-based VQ codebooks consisting 
of 4, 8, 16, and 32 LPC vectors were designed for each 
digit. Each of the  three distortion measures LR, LRSO, 
and  LRDO were used. A breakdown of the resultant av- 
erage  distortions for different codebook sizes and distor- 
tion measures is given in Table I(a). As expected,  the av- 
erage  distortions  decrease with increasing codebook sizes. 
It is also  interesting to see  that, for a given codebook size, 
the  LPC  spectral  distortions are higher for LRSO and 
LRDO than for LR.  This is a natural consequence of in- 
corporating 'energy into  the distortion measure  since,  im- 
plicitly, some of the codebook vectors are used to  encode 
the energy information.  Comparing  the breakdown of the 
LPC  spectral  distortions and the energy distortions, we 
also  note that by using LRDO  as the overall distortion 
measure,  a  greater emphasis is placed on energy distor- 
tion. Therefore, for larger codebook sizes,  LRDO achieves 
lower energy distortions at the expense of higher spectral 
distortions than the  LRSO. With the codebooks generated 
through these  three different distortion measures, we used 
the  preprocessor  as  a complete recognizer (i.e., no DTW 
processing was used) and measured its performance.  The 
test  set of the  REFERENCE  database was used in these 
tests.  The recognition error  rates (average fraction times 

100) of the  preprocessors are shown as  a function of code- 
book size and distortion measures in Table I(b). 

The results of Table I(b) show that codebooks designed 
on the basis of the VQ distortion and energy distortion 
(LRSO and LRDO) performed significantly better than 
codebooks designed with LPC  spectral  distance alone 
(LR). The performance difference between LRSO and 
LRDO is not significant for codebook sizes larger than 4. 
These results strongly  indicate that by using energy infor- 
mation, we can improve the  performance of the  prepro- 
cessor. We also  see that the  performance  saturates at code- 
book size 16 for both the  LRSO  and  LRDO distortion 
measures. For this digits database,  a codebook of size 16 
seems to be adequate  to  characterize  the vector space 
spanned by most of the  utterances.  Thus, although having 
more than 16 vectors might allow more  outlying  frames in 
the  training sequence to  be  represented  in  the word-based 
codebook, in the recognition phase,  this  tends to reduce 
both the average distortion of incorrect words and the av- 
erage distortion of the  correct word; hence, no recognition 
performance improvement is  obtained. 

B. Effects of Preprocessor Decision  Thresholds on 
Performance 

decision thresholds, namely, 
We recall that  the word-based preprocessor had three 

dl  = threshold on average word distance for best can- 
didate  to  be considered as  a valid recognition can- 
didate 

d2 = threshold on difference in average word distance 
between best and second best word candidates for 
only a single candidate  to be chosen by the  pre- 
processor 

d3 = threshold on difference in average word distance 
between best and any word candidate for passing 
on the word candidate  to  the  DTW postprocessor. 

For convenience, and  since it is reasonable, we set d3 = 
d2 in all simulations. We also used the LRSO distortion 
measure in all  experiments to be described in this section. 

The threshold values dl  and d2 = d3 were systematically 
varied,  and we measured  their effects on the system error 
rate  parameters C1, E l ,  (1 - y), E2, and p. Figs.  6 and 
7 show typical plots of the variations of these  parameters 
as  a function of dl (for the fixed value d2 = d3 = 0.05) 
and for codebook sizes varying from 4 to 32. From Fig. 
6, we see  that  for small values of d l ,  values of  (1 - 7) are 
very close to 1 ,  indicating that very few recognition de- 
cisions were made by the preprocessor. As dl  increases, 
(1 - y) quickly approaches  a  steady-state value of about 
0.1, indicating that  about 90 percent of the words were 
uniquely recognized by the preprocessor. The resulting 
steady-state values of C1 and El are about 0.9 and 0.0, 
indicating that  at  these  thresholds, essentially the  prepro- 
cessor made final decisions about 90 percent of the  time, 
and all  the  preprocessor decisions were correct.  Similar 
behavior of E2 and  are noted in Fig. 7 for this set of 
E2 and are noted in Fig. 7 for this  set of decision thresh- 
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CODEBOOK SIZE 1 

0 2.0 

e o  2.0 c 

0 2 0  
THRESHOLD dl 

Fig. 6. Plots of the  variation of C,, E , ,  and (1 - y) as a  function of the 
preprocessor  threshold d ,  for  several  codebook  sizes for the  digits  vocab- 
ulary. 

2 .o 
0 

o o ,  8 ,  I E Z I I ~ ~ ~ I , I I I I ~ ~ O  

THRESHOLD dl  
2 0  

Fig. 7. Plots of the  variation of (3 and E ,  as a  function of the  preprocessor 
threshold d ,  for several  codebook  sizes for the  digits  vocabulary. 

olds.  The  steady-state values of 0 and E2 for large values 
of dl are about 0.22 and 0, indicating that  an average of 
2.2 words get passed to the DTW postprocessor and the 
correct word is essentially always one of the words passed 
on. 

From Figs. 6 and 7, we also  see that for smaller size 
codebooks, in  order for the preprocessor  to make the same 
percentage of recognition decisions [i.e., fixed values of 
(1 -7)], d l  had to be set to a higher value since,  intrinsi- 
cally, a  smaller size codebook yielded larger average dis- 
tortions. 

Based on curves of the type shown in Figs. 6 and 7, it 
is clear that  a good strategy is to choose the smallest value 
of d l  for which the  parameters C1, El, E 2 ,  /3, and (1 - 7 )  

TABLE I1 

METRICS AND METHODS OF QUANTIZATION 
AVERAGE DIGIT RECOGNITIOX ERROR RATES FOR SEVERAL DISTANCE 

Data ]Base 

LRSO 2.8 

LRDO 2.8 3.3 

(a) 

Quantization I Data Base I 
in DTW 

REFERENCE KLS AlRLJNE 
I I I 

NO VQ 

14.0 4.2 2.8 VQiRW 

10.2 2.8 2.1 

I I I I 
VQiREF 
V Q m  

3.8 - 4.0 

Codebook 
Size VQ/REF, SELF VQ 

(c) 

3 Method 

are all at steady-state values. We will defer  a choice of 
d2 = d3 until later in this section since this threshold pa- 
rameter  has  the most influence on the  performance  trade- 
offs of interest. 

C. Effects of VQ and Energy  Metrics on 
DTW Performance 

To provide benchmarks on the performance of the over- 
all recognizer structure of Fig. 2, we ran several experi- 
ments using only the DTW processor. The first such ex- 
periment used each of the  three distance measures, 
namely,  LR (LPC likelihood distance, no energy), LRSO 
(LPC likelihood distance combined with energy with no 
offset energy distance), and LRDO  (LPC likelihood dis- 
tance combined with energy with a 6 dB offset). Each of 
these  distance  metrics was used in recognition tests using 
the  REFERENCE and the KLS digit sets. Results of these 
experiments are given in Table II(a), which shows average 
digit error  rates for the three  types of distance measures. 
The results show that the LRSO measure achieved the best 
performance for both databases.  This shows that energy 
information, when used properly, can be used to improve 
recognition performance, even for a simple vocabulary 
such as the digits.  The results also show that both the en- 
ergy discontinuity measure (LRDO) and the measure 
without energy (LR) performed essentially the  same, 
namely, about 0.5 percent worse than the LRSO measure. 
On the basis of these  results, the LRSO measure was used 
exclusively in all  the remaining DTW processing. 

The second experiment considered the effect of using a 
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word-independent VQ on the  performance of the DTW 
word recognizer (i.e., again without the preprocessor).  In 
this  case,  a VQ with 128 codebook entries was used,  and 
the  testing  sets included all  three  databases, namely, the 
digit sets of the  REFERENCE and KLS databases,  and 
the  AIRLINE words. The results of this experiment are 
given in Table II(b), which shows average digit error  rates 
as  a  function of the  type of quantization of the  reference 
patterns  in DTW. The results show a substantial deterio- 
ration in  performance, for all  three  sets, when the VQ was 
used on just the  reference  templates alone. An  even greater 
performance  degradation  occurred when the VQ was  used 
on both the  reference  and  test  patterns.  Thus,  as men- 
tioned earlier, word-independent VQ leads to performance 
degradation  in  return for reduced computation. For the 
AIRLINE vocabulary, it can be seen that a  larger perfor- 
mance  degradation  occurs  than for the  digits. Sufficient 
evidence exists that for large vocabularies (e.g., the AIR- 
LINE  set),  the required size of the VQ codebook must be 
on the  order of 512-1024 entries [7], [8]. 

The  last  experiment considered the performance of the 
DTW  processor when the  reference  patterns were quan- 
tized using either  the individual word codebooks (SELF 
VQ) or using all codebooks for the vocabulary (ALL VQ). 
For this test, only the  REFERENCE digits were used. Re- 
sults of this  test are given in Table II(c), which shows av- 
erage  digit  error  rates (average fraction times 100) as a 
function of the individual word codebook size. It can be 
seen that with SELF VQ, codebook size 4 gave degraded 
performance  (there was too much quantization error); 
however, for codebook sizes 8, 16, and 32, the perfor- 
mance was essentially identical to that of the DTW system 
without VQ! For the  ALL VQ case,  a  small degradation 
in performance  occurred for the small codebooks (sizes 4 
and 8); however, for codebook sizes 16 and 32, we again 
achieved the  same  performance as the  DTW  processor 
without VQ. 
D. Summary of Pilot Experiment Results 

The results of the pilot experiments show the following. 
1) Incorporating  energy information into the distance 

metric improves the recognizer performance. 
2) The  preprocessor decision thresholds can be set to 

allow the  preprocessor  to make a final decision on close 
to 90 percent (y = 0.9) of all  trials reliably for the  REF- 
ERENCE  database. When the  preprocessor was unable to 
make a final decision, it eliminated close to 80 percent ( f i  
= 0.2) of all  candidates. 

3) Vector quantization can be  incorporated into the 
DTW process to significantly reduce computation at a cost 
of a small increase  in recognition error  rate. 

4) Word-based VQ codebooks perform  better than 
word-independent VQ codebooks, and  are comparable to 
the case when no VQ is used at all in the  DTW  stage. 

V. PERFORMANCE OF THE OVERALL 
RECOGNITION SYSTEM 

TO evaluate  the  performance of the complete speaker- 
independent,  isolated word recognizer of Fig. 2, three 

evaluations were performed. The first evaluation used the 
REFERENCE  digits  testing  database  and studied the be- 
havior of the overall system as a  function of the codebook 
size,  the  preprocessor decision threshold d2, and  as  a  func- 
tion of the method for quantization of the  reference pat- 
teins used in the DTW processing. The second evaluation 
used the KLS digits  database  and made similar measure- 
ments. The third evaluation used the  AIRLINE vocabu- 
lary  database  and, using the best values of d2 and  DTW 
implementation from  the digit runs, measured  the  result- 
ing  error  rate and the reduction in  computation. 

A .  Results on the REFERENCE Digits  Database 
For all  experiments  to be described in  this  section,  a 

value of dl  = 2.4 was used. This value guaranteed  the 
minimum preprocessor sensitivity to codebook size, vo- 
cabulary, etc.  The first tests  performed used a  DTW  im- 
plementation with no VQ (Method l) ,  one with VQ from 
individual word codebooks (SELF VQ or Method 2), and 
one with VQ from  all word codebooks (ALL VQ or 
Method 3), and  measured  the various recognizer error 
rates (Cl, E l ,  E 2 ,  C2,  E2) as a  function of L,  codebook 
size, and d2, the  preprocessor decision threshold. 

The results of these recognition tests are given in Table 
I11 (in which the average fractions  are converted to  error 
rates’by multiplying by 100) and Fig. 8-11, which show 
plots of overall error  rate (Fig. 8), average fraction of can- 
didates passed to  the DTW processor  (Fig. 9), average 
fraction of decisions made by the  preprocessor (Fig. lo), 
and computational complexity (Fig. 11) as a function of d2 
and codebook size.  (The results in Figs. 8-11 are for 
Method 1 ; similar results were obtained for Methods 2 
and 3.) 

The results of  Table  I11 and  Figs. 8-11 show the follow- 
ing. 

1) As d2 increases (especially for codebook sizes 4 and 
8), the overall system error  rate  decreases dramatically, 
the average number of DTW  candidates  increases slightly, 
the percentage of decisions made by the  preprocessor  falls, 
and  the computational complexity rises.  This is because 
by increasing d2, the  preprocessor is deferring decisions 
(and hence potential  errors) to the  DTW  processor  at an 
increasing rate. For larger codebook sizes (16 and 32 vec- 
tors  per word), the error  rate  is much less sensitive to dl;  
hence, for smaller values of d2 ,  we can achieve very high 
performance with a very modest amount of computation. 

2) At small values of d2, for each codebook size,  the 
preprocessor made most of the  errors; at larger values of 
d2, the  preprocessor  error  rate was almost negligible and 
the DTW processor made most of the errors. For larger 
codebook sizes (e.g., 16 and 32 vectors), optimum per- 
formance was attained with reasonably small values of d2. 

3) The  introduction of VQ (via either Methods 2 or 3) 
led to  essentially .no increased  error  rate for all codebook 
sizes and for all values of d2. Hence,  the proposed quan- 
tization schemes are very good ones for use with this sys- 
tem. 

To see how the  performance of the resulting recognizer 
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TABLE I11 
AVERAGE RATES  (FRACTION * 100) OF CORRECT AND INCORRECT 

DECISIONS FOR BOTH THE VQ-BASED PREPROCESSOR AND FOR THE THREE 
METHODS OF QUANTIZATIONN IN THE DTW PROCESSOR AS A FUNCTION OF 

CODEBOOK  SIZE AND VALUE OF THE DECISION  THRESHOLD d2 

bdebook 
- 

c1  

87.7 
84.5 
81.0 
77.0 
73.1 

87.9 
83.8 
79.4 
73.1 
67.8 

88.8 
83.9 
78.1 
72.6 
65.2 

87.6 
79.4 
71.7 
62.5 

r10( 

- 

El 

4.7 
4.0 
2.5 
1.9 
1.1 

3.0 
2.4 

0.5 
1.3 

0.4 

1.6 
1.1 

0.3 
0.6 

0.2 

1.0 
0.7 
0.2 
0.2 
0.0 

r10( 

- 

*loo 
C3  E2 

*loo 
0.3 7.1 
0.5 10.7 
0.8 15.0 

0.8 24.1 
0.6 19.6 

0.9 7.9 
0.7 12.6 
0.8 17.9 
0.9 24.1 
0.3 30.7 

0.7 8.4 
0.3 14.0 

0.2 25.5 
0.3 20.1 

0.2 32.8 

0.1 10.4 
0.1 18.6 
0.2 26.5 
0.0 35.8 
0.0 43.7 

- 

E3 

0.2 
0.3 
0.7 
0.9 
0.9 

0.3 
0.5 
0.6 
0.8 
0.8 

0.5 
0.7 
0.9 
1.4 
1.6 

0.9 
1.2 
1.4 
1.5 
1.6 - 

ID 1 
Overall 

Error Rate 

5.2 
4.8 
4.0 
3.4 
2.8 

4.2 
3.6 
2.7 
2.2 
1.5 

2.8 
2.1 

1.9 
1.8 

2.0 

2.0 
2.0 
1.8 
1.7 
1.6 

compares  to  that of the conventional DTW recognizer 
(with no preprocessor),  and the preprocessor alone, we 
compared error  rate, memory, and computation for these 
systems. Using a value of d2 = 0.075 and L = 16 for the 
codebook size, we get  the following comparisons. 

Overall 
Error  Rate 

( % I  Memory ( k )  Computation ( k )  

DTW  Alone 2.1  44  76.8 
Method 1 2.1  45.3 8.5 
Method  2 2 .2  45.3  6.4 
Preprocessor  Alone 5.2 - 6.4 

The results show a 9-to-1 reduction in computation with 
no loss in accuracy or gain in memory for Method 1 over 
DTW alone; similarly, we get  a 12 -to -1 reduction in com- 
putation with no loss in accuracy or  gain in memory for 
Method 2 over DTW alone. When we use  the  preprocessor 

- 
Tw1 
- 

*lOO 
c 3  

10.0 
6.6 

13.9 
18.0 
22.2 

7.7 
12.3 

23.4 
17.3 

30.0 

13.9 
8.2 

25.5 
20.0 

32.9 

10.3 

26.7 
18.8 

36.0 

- 

43.9 

6 

5 

4 

I 
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[L 
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1 
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5.0 

0.5 4.4 
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1.2 3.3 
1.5 2.9 
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0.8 2.2 
0.7 3.0 

1.4 1.9 
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alone  as  a complete recognizer (i.e., by setting dl  = 03, THRESHOLD d, 
d2 = so a sing1e candidate is each time), the Fig. 8. Plots Of total  error  rate  versus  preprocessor  decision  threshold d2 
error  rate  increases by 3.1 percent over DTW alone. Thus, for  several  codebook  sizes for the  digits  vocabulary. 
without the  temporal information provided by the  DTW 
processor, the  performance of the word recognizer is 
greatly degraded. 

B. Results on the KLS Digits  Database 

more difficult test of the recognizer since the  error  rate 
using the  DTW recognizer alone was somewhat higher DTW Alone 2.8 76.8 
than for the  REFERENCE  digits  set. Based on varying Mkthod 1 ( L  = 16) 3 .1  18 
codebook sizes and values of d2, the following results were Method (L = 16) 3.5 8 
obtained with this  database. 

Overall 
The KLS digits  database was selected as a somewhat Error  Rate 

Recognition  Method (%) Computation ( k )  

Preprocessor  Alone (L = 32)  10.9  12.8 
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Fig. 9. Plots of average  fraction of candidates  sent  to  the  postprocessor 0 
versus  preprocessor  decision  threshold d2 for  several  codebook  sizes  for 
the  digits  vocabulary. 
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Fig. 10. Plots of average  fraction of decisions  made by the  preprocessor y 
versus  preprocessor  decision  threshold d2 for  several  codebook  sizes  for 
the  digits  vocabulary. 

These results again show that the  preprocessor alone gave 
very bad performance, whereas the overall system of Fig. 
2 gave performance  that was only slightly degraded from 
that of the DTW processor alone, with reductions in com- 
putation of 4.3 to 1 for Method 1  and 9.6 to 1 for Method 
2, as  compared  to  the conventional DTW processor. 

C. Results on the AIRLINE Database 
The  tests using the  AIRLINE  database were intended 

to check  the extensibility of the overall recognizer to 
larger, more complex vocabularies than the digits.  This 
vocabulary, with 129 words, is rich in similarly sounding 
words (e.g., MAY, MAKE, MANY, etc.) and would  have 
a tendency to make the  preprocessor less useful as  a total 
recognizer. For this test,  there was no experimentation 
with system variables; a codebook size of 16 vectors was 
used for each word and only two values of d2 were consid- 
ered.  A comparison on  the best results on the various re- 
cognizers for this vocabulary is  as follows. 

28000 NUMBER OF VECTORS t PER CODEBOOK : 

e 8  
0 16 
0 3 2  

e 8  
0 16 

01 I I I 
0 0.05 0.1 0.1 5 

THRESHOLD d2 

Fig. 11. Plots of computational  complexity of the  overall  recognizer  versus 
preprocessor  decision  threshold d2 for  several  codebook  sizes  for  the  dig- 
its  vocabulary. 

Overall 
Error  Rate 

Recognition  Model (%) Computation (k )  

DTW Alone 
Method  2 
Preprocessor  Alone 

10.2 990 
12.8 107.3 
35.8 82.5 

The results given above again show that, when forced to 
make a unique decision,  the  preprocessor alone performs 
very poorly; however, when used in conjunction with the 
DTW processor, the  error  rate  increases only by 2.6 per- 
cent over that of the  DTW  processor alone with a reduc- 
tion in computation of close to 9.2 to 1. This tradeoff in 
accuracy for computation is  one which is probably quite 
acceptable in many proposed applications of this vocabu- 
lary, especially ones with tasks which can be used to cor- 
rect recognition errors via syntax  and/or  semantics of the 
proposed application [ 151. 

For the AIRLINE vocabulary, one other comparison was 
made, namely,  we measured the  performance of the DTW 
system alone with a word-independent VQ used on all  ref- 
erence  patterns.  The  VQ codebook that we used had 128 
vectors. The resulting error  rate of the  system was 14.5 
percent  and  the computation was about  that required 
for the  DTW system without VQ. Thus,  the combined rec- 
ognizer  (Method 2 above) outperformed  the VQ based 
DTW implementation by almost  2 percent in  error  rate 
and required about half the computational effort. 
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VI. DISCUSSION 
The results presented in the previous two sections have 

shown the following. 
1) The proposed speaker-independent, isolated word 

recognition structure consisting of a word-based VQ pre- 
processor  and  a  DTW  postprocessor is indeed a viable 
structure for recognition. Its  performance, measured in 
terms of  word error  rate, was comparable to or  better than 
that of a conventional DTW recognizer. However, it re- 
quired significantly less computation than the DTW rec- 
ognizer. 

2) VQ methods can be incorporated into  the DTW pro- 
cessor with little or no loss in performance (word error 
rate) and with greatly reduced computation. 

3) Temporal information is indeed necessary for a high- 
performance word recognizer, even for a vocabulary as 
simple as the  ten  digits. 

The philosophy of the proposed recognizer is simple, 
namely, that since the  DTW  processor performs so well, 
it is not acceptable to use any preprocessor which seri- 
ously degrades the overall performance of the system. 
Hence,  the  job of the  preprocessor is to reliably eliminate 
word candidates which are highly unlikely matches to the 
spoken word. It  is not required,  or desirable, for the  pre- 
processor to make fine recognition distinctions;  the DTW 
does this  job  quite well. The remarkable result is that for 
simple vocabularies, such as  the  digits, the preprocessor 
can make a final decision (i.e., it eliminates all word can- 
didates but  one) about 80 percent of the  time, and even 
when it cannot make a unique choice, it usually only passes 
about two word candidates to the  DTW processor. For the 
more complex vocabulary of airline words, a final decision 
was made much less often; however, again only about 20 
percent of the words were passed on to the DTW proces- 
sor. Thus, the gain in performance of the proposed system 
is mainly in computation effort, which  is reduced some- 
where between 2-20 times,  at  the expense of little or no 
increase  in word error  rate. 

Before giving some general  comments, it is worthwhile 
reviewing the major results presented in the previous sec- 
tion on each of the  three datasets that were studied. 

A .  Summary of Results on REFERENCE Digits Set 

The results on the  REFERENCE digits set showed the 
following. 

1) The best error  rate achieved was  1.4 percent (versus 
2.1 percent for the DTW processing alone), using Method 
2 for VQ  of the  reference  patterns, with an L = 32 code- 
book for each word and with d2 = 0.15.  For this systen;, 
the values of  (1 - y) and /3 were 0.453 and 0.28, respec- 
tively, and  a 5.3-to-1 reduction in computation and a 1.5- 
to-1 reduction in storage (over the conventional DTW pro- 
cessor) was obtained. 

2) For maintaining the same  error  rate as the DTW pro- 
cessor alone (i.e., 2.1 percent),  the system variables were 
L = 8 codebooks, Method 2 reference  patterns, d2 = 0.15. 
This implementation gave values of (1 - y) and /3 of 0.32 

and 0.25, respectively, and led to an 18-to-1 reduction in 
computation and a 4.8-to-1 reduction in memory. 

It is interesting  to  note  that for system implementations 
with error  rates lower than that of the DTW processor, the 
preprocessor actually eliminated some DTW  errors by not 
passing these  candidates  to the postprocessor. 

B. Summary of Results on KLS Digits Set 
The results on the KLS digit set showed the following. 
1) The DTW  stage with either form of VQ (e.g., Meth- 

ods 2  or 3)  had a somewhat higher error  rate than the DTW 
stage without VQ (Method 1). 

2) For maintaining the same error  rate  as  the conven- 
tional DTW recognizer, the system implernentation re- 
quired L = 32 codebooks, d2 = 0.2, with Method 1 DTW 
processing. This system yielded a 2.8 percent error  rate, 
and required 2.4 times less computation than the DTW 
implementation. 'Values  of (1 - y) and f l  of 0.76 and 0.34 
resulted  from this choice of system variables. 

3) If a slight degradation in performance were allowed 
(i.e., an  error  rate of 3.4 percent), then Method 2 VQ 
representations of the  reference  templates could be used 
and a 4.5-to-1 reduction in computation and a 1.7-to-1 re- 
duction in memory could be achieved. 

When the performance of the overall system is com- 
pared to that of a conventional DTW system with a word- 
independent VQ (with 128 codebook vectors), the perfor- 
mance of the proposed system was always (for all code- 
book sizes, methods of implementation of the reference 
quantization,  etc.) comparable to or  better than the DTW/ 
VQ system, and the computation was less by a factor of 
two. 

C.  Summary of Results on AIRLINE Test Set 
The results on the  AIRLINE  test set showed the follow- 

ing. 
1) Compared to the standard DTW implementation, the 

proposed system has a 2.4 percent increase in error rate 
(from 10.2 percent for DTW to 12.6 percent for the pro- 
posed system), but achieved about a 9-to-1 reduction in 
computation and almost a 3-to-1 reduction in memory. 

2) Compared to the  DTW/VQ, using a 128-word code- 
book for the  reference  patterns,  the  error  rate of the pro- 
posed system was 2 percent lower than that of the  DTW/ 
VQ system,  and  the computation was about half the 
amount. 

D. General Comments 
The experimental results have indicated that the overall 

recognizer proposed in this paper is certainly a very at- 
tractive method for speaker-independent isolated word 
recognition. We have seen that the  strength of the overall 
recognizer lies not only in its reduced computational re- 
quirement, but also in its ability to achieve a high recog- 
nition accuracy. For the  digits vocabulary, the overall rec- 
ognizer was  always able to achieve a reduction in compu- 
tational complexity over the conventional DTW processor 
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and still maintain a comparable (or even lower) error  rate. computational  cost of the preprocessor. The binary search 
For a recognition system with a large vocabulary, it  is clear algorithm is suboptimal and has been found to give slightly 
that  some form of preprocessing is  essential  to  eliminate degraded  performance  in  speech recognition [7]. Shikano 
unlikely candidates so that  the DTW phase of the recog- [7] has proposed  an  alternative  search method that can 
nition system would be used only on reasonably close word lead to almost optimal (full search) performance, but that 
candidates. In this manner, with a given amount of com- only requires, on the average, the  computational cost of 
putational power, a  larger vocabulary can be handled than the binary search algorithm.  It should be  noted  that both 
without such a preprocessor. the binary search algorithm and  the  Shikano method are 

There  are several areas  in which the overall recognizer more effective for large  VQ codebooks and  can only be 
can still be improved further. In the implementation of the used in the overall recognizer using Method 1 (unquan- 
overall recognizer, the computational cost of the prepro- tized test  and  reference  patterns for the  DTW algorithm) 
cessor, although significantly lower than the computa- or using vector quantized patterns for both test  and  ref- 
tional cost of the DTW stage, increases linearly with the erence. 
number of words in the vocabulary. With Y words in the It should also be pointed out that the savings in com- 
recognition vocabulary and L vectors in each word-based putational complexity which  we  have found in  the overall 
VQ codebook, there  are  a total of LV codebook vectors in recognizer is an average overall recognition trials for each 
the  system.  One would expect a certain number of these of the  databases  used. The amount of computation re- 
LV codebook vectors to overlap each other since every quired to recognize each utterance is not fixed. However, 
codebook was designed separately. In research on vector if this is a problem for any application, it can easily be 
quantization for speech coding, it has been found that 1024 solved by requiring the preprocessor  to pass a fixed per- 
or 512 LPC vectors are sufficient to encode all speech [ll], centage of candidates  to  the  DTW  stage for all  test  utter- 
[12]. Hence, one method to reduce the computational re- ances.  In this way, the response time of the overall recog- 
quirement of the overall recognizer, when a  large vocab- nizer can be set to a fixed value. 
ulary is  used,  is  to  start with a  general word-independent One of the main weaknesses in  the  preprocessor is the 
codebook with 512 or 1024 vectors. From this word-in- loss of temporal information in  the recognition process.  It 
dependent codebook, 16 or 32 vectors can then be selected appears that some form of time alignment of the  test and 
to form the word-based codebook for each word. In this reference  patterns  is  essential  to  eliminate this class of 
way, regardless of the number of words in the vocabulary, errors. If some temporal information can be brought back, 
the maximum number of codebook vectors in the recog- even in very crude forms as suggested by Buzo [18] and 
nition system is 512 or 1024, as opposed to LY. Although investigated by Burton et al. [lo], the  performance of the 
the word-based codebooks generated  in this way are ex- word-based VQ  approach can be significantly improved 
pected to be suboptimal, it is not clear if the accuracy of when  it is used either  as  a complete word recognizer or as 
the overall recognizer will degrade. a  preprocessor of an overall recognizer. 

computational cost of the  preprocessor is to  generate  the VII. SUMMARY 
optimal word-based VQ codebooks individually and then We have proposed a  structure for isolated word recog- 
remove some Of the vectors that are very Close to each nition in which a word-based VQ preprocessor is used to 
other in the L p c  space. In other Words, all vectors from screen  out bad matches to an unknown test word and dim- 
the  optimal word-based codebooks are reclustered  and  the inate  them  from  further  consideration. In many cases,  es- 
centroid of each  cluster is used to replace the vectors pecially with a  small, noncomplex vocabulary such as  the 
within that cluster. The total number of codebook vectors digits,  the  screening  process  eliminates  all words except 
can thus be  reduced. One Problem that might be caused one. In such cases, no further processing is needed for 
by the above approaches is that  the reduced number of recognition. Otherwise,  a conventional DTW  processor is 
COdebook vectors in the system may not provide a  fine used to resolve any fine acoustical distinctions between 
enough spectral resolution for dynamic time waving with words  which were passed by the preprocessor. An evalu- 
vector quantization.  A possible solution to this problem is ation of this new recognition system showed that imple- 
to Use a slightly different Structure for the  preprocessor in mentations could be achieved for which the performance 
which the optimal word-based codebooks for the likely degradation  (i.e. , word error rate) was small or negligible, 
candidates selected by the PreProcessor are used to re- and for which the reduction in computation was as large 
quantize the  test Word- In  this Way, the  DTW/VQ Proces- as 20 to 1 in some cases.  The major weakness in the pre- 
SOT will still have the same fine  spectral resolution pro- processor was the lack of temporal  information for doing 
vided by the  optimal word-based codebooks. the  screening. We are currently considering several alter- 

Another method to reduce the computational cost in the natives for including such temporal information in the  pre- 
vector quantizer is to use a different search algorithm. In processor, 
this  research, we  have used a full search algorithm in 
which each test vector is compared to every codebook vec- REFERENCES 
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