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A Modified  K-Means  Clustering A Algorithm  for  Use in 
Isolated Work’ Recognition 

\_I 

Abstract-Studies of isolated  word  recognition  systems have shown 
that  a  set of carefully  chosen  templates  can be  used to bring  the  per- 
formance of speaker-independent  systems  up to that of systems  trained 
to  the  individual  speaker.  The  earliest  work  in  this  area  used  a  sophis- 
ticated  set of pattern recognition  algorithms  in  a  human-interactive 
mode  to  create  the  set of templates  (multiple  patterns)  for  each  word 
in  the  vocabulary. Not only was this  procedure  time  consuming  but 
was  impossible to  reproduce exactly because  it was highly dependent on 
decisions  made by the  experimenter.  Subsequent  work led to  an  auto- 
matic  clustering  procedure which,  given  only a set of clustering  param- 
eters,  clustered  patterns  with  the  same  performance  as  the previously 
developed supervised  algorithms.  The  one  drawback of the  automatic 
procedure was that  the specification of the  input  parameter  set was 
found  to be  somewhat dependent on the  vocabulary  type  and size of 
population  to  be  clustered.  Since a naive user of such  a  statistical  clus- 
tering  algorithm  could  not be  expected,  in  general, to know how to 
choose  the  word  clustering  parameters, even this  automatic  clustering 
algorithm was not appropriate for a completely general  word  recogni- 
tion  system. It  is  the  purpose of this  paper  to  present  a  clustering al- 
gorithm  based on a  standard K-means approach which requires no user 
parameter specification.  Experimental  data show that  this new algo- 
rithm  performs  as well or better  than  the  previously used  clustering 
techniques  when  tested  as  part of a speaker-independent  isolated  word 
recognition  system. 

P 
I. INTRODUCTION 

ATTERN recognition techniques have been widely 
used in  all  aspects of speech recognition. However, 

the  area which has depended most on pattern recognition 
techniques  is  that of pattern  clustering  to derive a  set of 
speaker-independent templates for isolated word recogni- 
tion. The problem here  is  straightforward. We are given a 
set of N word patterns, where each  pattern  is  a single ut- 
terance of one  particular word in  the vocabulary, spoken 
(in general) by N different talkers, and our task is to  clus- 
ter the N patterns  into A4 clusters such that within each 
cluster  the word patterns are highly similar. In this man- 
ner we can  represent  the  N-pattern  training set by M tem- 
plates, where each  template is derived from the  patterns 
within each cluster. Typically, for N = 100 patterns of a 
word, about M = 10-12 clusters  are needed for high rec- 
ognition accuracy [ 11. 

The earliest  pattern  clustering algorithms for isolated 
words were semiautomatic [ 11, [2]. They used some fairly 
sophisticated  pattern recognition techniques  (e.g., 
ISODATA, chainmap, K-means), but relied on manual in- 
tervention to guide  the  clustering. This procedure,  al- 
though quite successful in  clustering  the  data, was unac- 
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ceptable for widespread use because of its lack of 
repeatability of the results and  because of the  inordinate 
time required to  cluster data (primarily  due  to the deci- 
sions made by the human observer). 

The next step was to develop an automatic clustering 
procedure which needed no manual intervention  and which 
could cluster  the word patterns with the  same perfor- 
mance  as achieved by the semiautomatic procedures.  The 
result was the UWA (unsupervised without averaging) al- 
gorithm [3]. The philosophy here was a simple one, 
namely, home  in on the  largest  cluster (via an iterative 
procedure), find all word patterns  “close”  to  the  center of 
this  cluster,  eliminate  them  from  the  training set, and re- 
cluster  the remaining patterns. 

The UWA algorithm created  template  sets  that were 
shown to yield recognition accuracies  as high as those ob- 
tained through manual clustering  techniques on several 
word vocabularies [3]-[5].  However, there were still some 
inherent problems with implementing the UWA algorithm. 
First,  a  distance threshold had to  be provided by the  user 
so as  to define closeness.  The way in which this  distance 
threshold Gas chosen was  not  well defined. Different words 
generally had different thresholds. Different populations 
of talkers  also  often had different thresholds for the same 
word. To this  end,  a set of convergence criteria was de- 
veloped  whereby the  clustering algorithm itself would de- 
termine whether its given threshold was too high or too 
low (accordis to  the  cluster occupancy statistics) and 
would modify the threshold appropriately. The  rules  that 
were implemented involved introducing several extra pa- 
rameters  dealing with the number of clusters and cluster 
sizes. After using the  clustering algorithms on different 
data sets over a long period of time,  a  better  understanding 
was developed of which parameter values worked well and 
which ones did not.  These  procedures led to  the develop- 
ment of a  set of convergence criteria  (and  all  associated 
thresholds) for the UWA clustering  algorithm. However, it 
was found that when changes were made  in population 
size and vocabulary type, some of these  criteria were not 
always correct.  Further study was done for several differ- 
ent  data  sets  to refine the convergence criteria. However, 
we have not been able to adequately define a convergence 
criterion  that would  work  well in all  situations. 

A second problem with the UWA clustering  procedure 
was that coverage of the  entire  training  set was not guar- 
anteed.  Hence,  depending on the  distance threshold for 
clustering,  the set of M clusters  often covered only 85-90 
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percent of the  training  patterns for the  case of 100 training 
patterns, when M was large (i.e., 12) [2], and signifi- 
cantly fewer patterns when M was small (i.e., 6 or less) 
[1]. The  training  patterns not included in  the  clustering 
coverage were the so-called “outlier”  patterns whose 
minimum distance to a  cluster  center exceeded the  dis- 
tance  threshold. Such outlier  patterns generally do contain 
useful speech information which was totally lost in the 
UWA procedure. 

As a result of these drawbacks in  the UWA procedure, 
a  clustering algorithm based on the conventional K-means 
iteration has been developed [6]. We call this clustering 
procedure  the modified K-means (MKM) algorithm. The 
philosophy of the MKM algorithm is essentially that used 
in  standard vector quantization (VQ) codebook designs 
[7]-[ 101 based on an idea originally due to Lloyd [ 111. As 
such,  the  general ideas behind the  clustering  procedure 
are well known and it is only the  details of using the K- 
means loop on entire word patterns, each consisting of a 
temporal sequence of vectors rather than single vectors, 
which distinguishes the MKM algorithm from more tra- 
ditional K-means procedures. The idea of quantizing short 
sequences of LPC vectors (e.g., 5-10 vectors per  se- 
quence) has  been used recently in  the totally different con- 
text of low  bit rate coding [12]-[13]. However, there  are 
significant differences between these proposals and the 
present  method.  These  differences, which will be  dis- 
cussed in more detail  later in this paper, include the 
method of computing a  cluster  center  (i.e., using a mini- 
max  or pseudoaverage instead of a  generalized  centroid) 
and  the splitting procedure used to initialize  the K-means 
iteration. 

The rationale for developing the MKM algorithm was as 
follows. Recent work on using the K-means iteration to 
cluster  LPC vectors for designing VQ codebooks [7] has 
led to high  performance systems for speech coding and 
recognition [8]-[ 101, [ 141, [ 151. The philosophy of itera- 
tively refining clusters  and  cluster  centers such that all 
training  patterns  are included in some cluster is appealing 
since it eliminates  the need for using artificial distance 
thresholds, etc., to decide whether or not to include  a 
training  pattern in a given cluster. Thus, based on its suc- 
cess  in VQ codebook design,  and on its desirable property 
of including all  patterns  in some cluster,  the K-means it- 
eration  appeared to be a  natural  for use in a word cluster- 
ing procedure. 

The MKM algorithm is intended for clustering single 
word patterns  from  a wide variety of talkers with different 
ways of saying words (i.e., different accents, pronuncia- 
tions,  etc.).  Hence, it is  intended for use as a speaker- 
independent word clustering  procedure. Technically, it 
could equally well be applied to speaker-dependent rec- 
ognition systems,  but,  in  general,  there has not been the 
need for sophisticated  clustering procedures in this case 
since a single talker is generally highly consistent in his 
pronunciation of single words (this is, in  fact,  the basis for 
the statistical pattern recognition paradigm). 

The organization of this paper is  as follows. In Section 

11-A, a review of the UWA clustering algorithm is given. 
In Section 11-B, the MKM algorithm is defined. Section 
11-C describes two alternative methods for computing 
cluster  centers.  In Section 11-D, the concept of creating 
an average cluster  center  is reviewed. In Section 111, rec- 
ognition results are presented comparing the UWA and 
MKM algorithms. Finally in Section IV a discussion of 
the results is given. 

11. UNSUPERVISED ALGORITHMS FOR 
CLUSTERING WORD DATA 

Following the development in Levinson et al. [2], we 
assume  that we are given a finite set $2 of N observations 

= (x1, x2, - - - 9 X N )  (1) 
where each observation xi is  a  pattern representing a rep- 
lication of one specific spoken word. Each pattern has an 
inherent  duration  (e.g., xi is ni frames  long), and each 
frame of the  pattern  is  some measured set of features. For 
the recognition system we use,  the  feature set is the set of 
( p  + 1) autocorrelation coefficients ( p  = 8) [ 161, [ 171. 

Since it is  intended  that  the  clustering of the N obser- 
vations be based entirely on distance (similarity) data (as 
is done in the actual recognition system), a distance 8(xi,xj) 
between patterns xi and xj is defined as . ni 

where the local frame  distance d(k,w(k),i, j) is the log 
likelihood distance proposed by Itakura [17] between the 
kth  frame of xi and  the w(k)th frame of .xj, i.e., 

where ui is the vector of LPC coefficients of the kth frame 
of pattern i ,  Rh is the  matrix of autocorrelation coefficients 
of the kth frame of pattern i, and  denotes vector trans- 
pose. The function w(k) is  the warping function obtained 
from a dynamic time warp match (DTW) of pattern j to 
pattern i which minimizes dii over a  constrained set of pos- 
sible w(k) 121, [18],  [19]. 

From the initial set of N patterns  an N X N distance 
matrix  can  be defined with entry &xi,xj) defined as 

a(xi,xj) + G(xj7xi) 
2 8 ( X i , X j )  = (4) 

Equation (4) yields a  symmetric  distance  matrix requiring 
storage for only N ( N -  1)/2 terms (since S(xi,xi) = o all i). 
Since we are generally using very large N (from 100- 
1000), the  storage saved by symmetrizing  the  distance  is 
not insignificant. Also, since there  are no distinguished 
tokens, an  asymmetric  distance  (as is the case for the  Itak- 
ura  distance measure) is unreasonable. 

The purpose of the  clustering  is  to represent the set $2 
as the union of M disjoint clusters (hi, i = 1, 2, a ,  M }  
such that 

M 
n = u hi. (5 )  

i = l  
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Fig. 1.  Flow diagram of the UWA clustering procedure. 

The  total number of clusters M need not be known or 
specified a priori. We denote  the  center  or prototype of 
cluster wi as c(X,) and we note that c(Xi) need not be  a 
member of wi. 

A. Unsupervised  Clustering Without Averaging' (UWA) 
A flow diagram of the UWA clustering algorithm is 

given in Fig. 1. The notation we use is as follows. We 
assume  that  the raw data xi, 1 I i I N is to be clustered 
into  clusters, X j ,  1 5 j I M .  The partial coverage set Q,, 
which includes  all  patterns in the firstj clusters,  is defined 
as 

j 
Q .  = u hi = Q j - l  + hj J 

i = l  

and  the partial (remaining) observation set Qj:l is defined 
as  the observations (patterns) not included In the first j 
clusters,  i.e., 

J 

Qj+, = Q - u Xi = Q - 0. = Q! - hj (7a) 
i= 1 

J J  

where xi is an element of and q ( j )  is the number of 
patterns  that remain to be  clustered after the first j clus- 
ters have been formed. (Bv definition. d o )  = N . )  

We denote  the  cluster index byj, and the  iteration index 
as k .  We define a?) as the  set of patterns  in clusterj at  the 
kth iteration,  and c(S) is the minimax center of the  set S ,  
t.e., 

c(S) = xi* E S such that max &*,xm) 
m 

I min max &,xm), (8) 

i.e.,  the minimax center of the  set S is  the  pattern  in S 
whose maximum distance  to any other  pattern  in S is min- 
imum. 

With the above definitions,  the UWA clustering algo- 
rithm works as follows. 

1) Initializationj = 0, k = 0, Q; = Q,  w$-')  = Q. Com- 
pute  matrix of distances D = 8(xi,  x,), 1 I i ,  m I N .  

2) Determine c(w$yl)), the minimax center of wjty '). 
Since  all  distances of any pair of patterns  in 0 are pre- 
computed and stored in D,  minimax computations are es- 
pecially simple to implement. 

~m 

3) Determine elements of the  cluster  set wFl as 

w w  = u x!  I such that 8 (c(wjtjl)), x:) I T, 
'+I lEQ;+l 

i.e., all  patterns in Qj+l, that are within a  distance T of 

4) Determine c(wj(k!,), the new minimax center of clus- 
ter w$,. 

5) Check if I +  1 = w$:'), i.e., the  cluster  is unchanged 
since the  last  iteration. If this  is  the  case, convergence is 
obtained and X,+ = j is incremented,  and  the new 
partial observation  set  is  generated as 

C(W$j"). 

Qj+l = Qj - X j .  

This  set  is checked to guarantee  that it is not an empty 
set. If not, and i f j  < M ,  the algorithm sets k = 0, ajyi) = 
Qj+l, and goes back  to step 2. Otherwise, i f j  2 M ,  or if 
Q/+l = 4,  the  clustering is over. 

If no local convergence is obtained, k is  incremented 
and checked against  the maximum iteration  count. If this 
count  is  exceeded, k is decremented  and  the algorithm 
proceeds as if convergence was obtained. If not,  the al- 
gorithm continues at step 3. 

It can be shown that  prominent,  distinct  clusters will be 
readily found by this  procedure since the  cluster sets at 
consecutive iterations will be identical. However, for 
highly overlapping data, as  the  cluster  center  changes, so 
does the  cluster composition, causing the need for several 
iterations.  These  iterations are reminiscent of the merge 
and split phase's of ISODATA [20]. Theoretically, the UWA 
algorithm can lead to geometrically overlapping clusters; 
practically this is irrelevant since each training  pattern is 
assigned to  a  unique cluster. 

The user-supplied inputs to  the UWA method are  the 
lower half-matrix of distances D ,  the number of observa- 
tions N ,  the  distance threshold T, and  the maximum iter- 
ation count Kmax. Initial values of T are chosen based on 
theoretical estimates of LPC  distances r171. r211. however \ ,  , , .. 
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Fig. 2. Flow diagram of the MKM clustering procedure 

the algorithm itself, based on a  user supplied set of param- 
eters, can modify T to increase (lower T )  or  decrease 
(raise T )  the  total number of clusters required to represent 
the observation set. Typically, a maximum iteration count 
of 10 is used. For most clusters only 2 or 3 iterations are 
required to obtain a stable result. 

B. The  Modijied K-Means Algorithm (MKM) 
A flow diagram of the MKM algorithm is given in Fig. 

2. We denote  the ith cluster of a j cluster solution, at the 
kth iteration, as (oj)"', where i = 1, 2, * - , j ,  and k = 0, 

Values o f j  go from 1 (single cluster) to Jmax (a maximum 
cluster  count).  The MKM clustering proceeds as follows. 

1) Initialization j = 1, k = 1, i = 1. Compute  matrix 
of distances D = 8(xl, xm) ,  1 I I, m 4 N .  

2) Compute  cluster  center c(Q) of Q ,  the  entire  training 
set.  The  cluster  center may be computed as either  a min- 
imax  center,  or  a pseudoaverage center (see Section 11-C 
for a discussion of these  computations). 

3) Set (of)"' = Q, C [ ( U ~ ) ' ~ ~ I  = c (Q) .  
4) Classify each pattern, x/ of Q, as belonging to  one of 

the  clusters (Q;)'k', i = 1, 2, e ,  j by choosing the  cluster 
which has minimum distance from the  pattern xI to the 
cluster  center ~[(oj)'~)], i. e.,  

xl E (ujlck) iff @xl, c[(~j)'~'l) I $(xl, ~ [ ( w ~ ) ' ~ ' ] )  

1, * . .  , K,,, (where K,,, is a maximum iteration  count). 

for all Z + i. 

5 )  For each resulting cluster (o;)'~', i = 1, 2, * * ,  j ,  
compute  a  cluster  center ~ [ ( w f : ) ' ~ ' ] ,  again using either  a 
minimax or  a pseudoaverage center. 

6) A convergence check is made to  see if any cluster 
has changed from the previous iteration  (Le., if (w$@' = 
(u;)(~-'), i = 1, 2, -, j ) .  If any cluster has changed,  the 
iteration  counter k is incremented and checked against a 
maximum value. If the  iteration count does not exceed the 
maximum allowed value, the K-means iteration (steps 4-5) 
is  repeated. 

7) Compute Di, the average intracluster  distance, for 
all  clusters, as 

where I(oj)I is  the number of patterns of Q included in 
cluster (oj) at  the  end of the K-means iteration. 

8) When convergence is obtained (i.e., all  clusters re- 
main unchanged from  the previous iteration,  or  the max- 
imum iteration  count is exceeded),  the  clusters (co~)'~) are 
saved as  the bestj  cluster  solution,  the  cluster count index 
j is incremented and checked against the maximum cluster 
size .Imax. If the count is exceeded, then the  procedure is 
terminated and final cluster  centers  are  created for all 
clusters (i.e., j = 1, 2, * * - , J,,,, i = 1, 2, + , j ) .  

9) If another  stage of the MKM is to be run, the algo- 
rithm first finds the  cluster ($J with the largest intra- 
cluster  cluster  distance, i.e., 

DiC I Di i # i f .  

This  largest  cluster  is split into two by finding the indexes 
I , ,  Z2 of the pair of patterns in (A;:' such that the distance 
between these  patterns is maximized, i.e., 

$(xl , ,  I 8(x13, x,) for all z3, z4 E $L,. 
The new initial cluster  center for the ith cluster is set to 
the  pattern x/,, and the new initial cluster  center for the 
jth cluster (i.e.,  the new one added at this iteration) is the 
pattern  xh. All other initial cluster  centers C [ ( W ~ ) ' ~ ) ]  are 
chosen as the  cluster  centers C [ ( O ~ - ~ ) ]  at the end of the 
previous K-means iteration.  The  iteration  counter is reset 
to k = 1. 

10) The K-means iteration proceeds as before (steps 

A final template set is then created by either using the 
center points of the computed  clusters,  or by averaging 
(after  time  alignment)  all  patterns within a  cluster as de- 
fined in Section 11-D. One  feature of the MKM algorithm 
is that it computes an optimal clustering, with 100 percent 
coverage, for all clustering sizes from one cluster per word 
to J,,, clusters per word. In this manner a  reference set 
for isolated word recognition can easily be  created with a 
different number of templates for each word  in the vocab- 
ulary. This may be of practical value for problems where 
some vocabulary words exhibit a lot of variability and, 
therefore, need many templates to characterize  them, and 

- 

4-5). 
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where other vocabulary words are not so variable and can 
be well represented by a small number of templates. 

C. Computation of a Cluster  Center 
Two different techniques were used to  compute  the 

cluster  centers needed by the  MKM algorithm. The first 
one was to  compute  a minimax center  point.  That is, 
choose as cluster  center,  that point for which the maxi- 
mum distance to  all  other points in the  cluster  is minimum 
over all points in  the  clusters.  If we denote  the set w with 
J patterns  as w = (x1, x2, - - * , xJ> then the minimax 
center  is  the  pattern xl. such that 

max 8(xl*,xl) I min max 8(xm,xl). (9) 

The minimax center has the property that it is a  pattern 
of the  training  set.  Hence,  the  distance from all  training 
set patterns  to any such minimax center  is easily com- 
puted by looking up its value in the  distance  matrix D. 

The second technique used to  compute  a  cluster  center 
is  based  on finding the  pattern within the  cluster which 
has the  largest  population of patterns whose distance falls 
within some  designated  threshold.  This  is  done in the fol- 
lowing way. For each cluster w we first compute  the av- 
erage  distance d and standard deviation' c d  between all 
points as 

lslcJ lcrnsi 1 5 1 d  

J J  

r .  J J -I 112 

ad = 1- 1 82(xl,xm) - . (lob) 
J(J-1) I = ]  m = l  

m # l  

A  count cl for the Ith pattern  is obtained by computing the 
number of patterns in w whose distance  to  pattern x1 is 
less than the empirically chosen threshold 

T = 2 + 0 . 5 ~ ~ .  

The  pattern x1 with the  largest  count  is chosen as  the clus- 
ter pseudocenter. If a  tie existed between two patterns then 
the  pattern chosen as the  cluster  center was the  one with 
the smallest average distance  to all points in  the cluster. 
The resulting cluster  center, using this  technique, is called 
the pseudoaverage center. Again it can be seen that the 
pseudoaverage center  is  an actual pattern of Q; hence 
computation of distances in the K-means iteration again 
involves table lookups. 

D. Averaging Techniques Used to Obtain 
Cluster  Centers 

For both algorithms of Section 11, a final cluster  center 
(obtained after convergence) was obtained via  a true time- 
alignment, averaging technique.  One important consid- 
eration  in obtaining these final cluster  centers was the 
manner  in which this averaging was carried out [3]. To 
facilitate  this discussion we consider two patterns x and y 
in the  observation  set Q. Token x is assumed to consist of 

N, frames of LPC features, and pattern y consists of Ny 
frames of features,  where  each  frame is a  set of p + 1 
( p  = 8 in  our system) residual normalized autocorrelation 
coefficients. If we denote  the ith frame of x (or y )  as x(i) 
[or y( i ) ] ,  then  we  can  represent x and y as  the  set of vectors 

x = ( x ( l ) ,   ~ ( 2 ) ;  . -, x(i), * * e ,  x(N,)), (17a) 

Y = (Y( l ) ,   Y (2 ) ,  * - - 9  Y G ) ,  - - * ?  Y W y N  (17b) 

x(i) = (xo(i), Xl(i), * - 7 x,(i)) (18)  

where 

and similarly for y( i ) .  
In  order  to average patterns x and y we must have a 

correspondence between frames of x and frames of y .  For 
simplicity, we assume  pattern y is being mapped to  pattern 
x. As such a dynamic time warping procedure  is used to 
give the mapping 

4 0  -+ Y ( 4  = Y ( W G ) )  ( 19a> 
or 

k = w(i), i = 1 ,  2, - - -, N,, ( 19b) 

i.e., the ith frame of pattern x corresponds to the k = 
w(i)th frame of pattern y .  As such when we average pat- 
terns x and y we  produce  pattern z 

z = ( Z U ) ,  2(2), * - -, Z W J )  (20) 
where 

The addition of time  aligned  patterns of (21) is a vector 
addition, i.e., each component of the vector is  added in- 
dependently. When we average Q patterns of Q, we suc- 
cessively warp each of the  patterns  to  the  estimated  center 
of the  cluster  and then average the  time  registered  patterns 
(of course we normalize by l /Q in this case). 

E. Computational  Complexity 
The computational complexity of the MKM algorithm 

is readily determined by examining each of the  steps in 
the  procedure of Section II-B.  The  initialization  (step 1 )  
in which the  distance  matrix D = 8(xl,xm), 1 I 1 ,  m I N 
is computed,  requires N 2  DTW computations, where each 
DTW requires about L 2 / 3  distance computations (where 
L is  the average number of frames in a  word), and a  dis- 
tance computation for the likelihood ratio  distance  re- 
quires ( p  + 1) = 9 multiplications and  additions.  Thus, 
the total computation for obtaining the  distance  matrix D, 
is 

This computation needs to  be performed  once for any 
clustering  procedure,  and must be considered as fixed 
overhead. The cost of symmetrizing D is insignificant. 

The  computation involved in step 2, for determining the 
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cluster  center of the  entire  set,  is essentially N 2  distance 
table lookups and  distance  comparisons for the minimax 
center, and approximately N 2  multiplications and addi- 
tions for the  pseudocenter  approach.  Since  this computa- 
tion is only performed once (on the entire  set), the com- 
putation here is not significant, even for N on the  order of 
1000. The computation involved in  the initialization of the 
clusters  and  cluster  centers of step  3 is insignificant. The 
heart of the computation of the MKM algorithm is in  step 
4 (the classification step), and step 5 (the recalculation of 
cluster  centers). For classification of the N training  pat- 
terns to one of J clusters,  a total of NJ distance lookups 
and NJ distance comparisons is required.  This computa- 
tion is insignificant, even for large values of N and J .  For 
determining new cluster  centers via the minimax proce- 
dure, only table lookups and distance comparisons are re- 
quired. Again the computation is insignificant. For deter- 
mining cluster  centers via the pseudoaveraging procedure, 
on average about (N2/.J) multiplications and additions are 
required.  Thus, the computation for the MKM iteration is 

C,, = ( N 2 / J )  table lookups  and comparisons (23a) 

C,, = ( N 2 / J )  multiplications and additions (23b) 

where C,, is the minimax center  computation,  and C,, 
is the pseudoaverage center  computation.  Since  the K- 
means loop is iterated (until convergence), the computa- 
tion (CMM or C,,) is multiplied by the number of iterations 
to convergence. The computation for the convergence 
check (step 6 )  is insignificant. 

The computation for steps 7-10,  in  which the average 
intracluster  distances are computed (step 7), an overall 
termination check is made (step 8), the largest cluster is 
split (step 9), and the K-means loop continues (step 10) 
essentially involves  only  table lookups and comparisons 
of distances.  Hence,  the computation here is again 
negligible. 

The creation of the final reference  set, from the clus- 
tering of the N training  patterns  into J clusters, involves 
N DTW’s. Although this computation is not negligible, it 
again is done only once. 

To illustrate  the speed of the MKM procedure for clus- 
tering  a  set of N = 100 training  patterns  into J = 12 clus- 
ters, on a  Data  General MV8000 computer (0.5 MIPS ma- 
chine), the computation of distances required about l h, 
the K-means iterations for solutions with 1 - 12 clusters re- 
quired about 2  min, and the computation of the final ref- 
erence  set  (the  centroids of each cluster) took 30 s. Thus, 
the fixed overhead in computing the distance  matrix  to- 
tally dominated the computation of the MKM procedure. 

111. ISOLATED WORD RECOGNITION USING THE 
MKM ALGORITHM 

The evaluation of the MKM algorithm involved cluster- 
ing a set of speech data consisting of 4786 isolated pat- 
terns from a digits vocabulary. The training  patterns (and 
a subsequent set of 6883 independent testing  patterns) 
were recorded in  a field trial at a regional telephone 

TABLE I 
NUMBER OF TOKENS FOR EACH DIGIT U S E D  IN THE TRAINING AND TESTING 

PHASES FOR EVALUATING THE MKM ALGORITHM 

Training Set Testing Set 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 -  

27 1 

615 
259 

606 
580 
489 
592 
443 
454 
414 _ _ _ _  

216 
314 

1013 
808 
813 

91 1 
788 

62 1 
730 
549 

TOTAL 4786  6883 

TABLE I1 
RECOGNITION RESULTS FOR TELEPHONE DIGITS DATABASE USING  SEVERAL 

DIFFERENT SETS OF TEMPLATES 

Cluster 
Accuracy (%I Accuracy (%) Rule Averaging Center 
Recognition Recognition KNN Autocorrelation 

MKM UWA 

Minimax 81.1 81.5 1 YCS 
2 
3 

83.7 
82.1  83.9 
82.5 

Pseudo- I 81.9  81.7 YeS 
83.6 
83.2 

Minimax No 1 76.9  74.9 
2 
3 

81.5 79.8 
81.9  80.5 

Pseudo- No I 78.1 
2 

75.8 

3 
81.6 79.6 
81.8  80.1 

Average 2 83.9 
3 84.2 

Average 

switching office. About 1660 talkers provided the  training 
and  testing  data,  and,  in  general,  there was essentially no 
overlap in talkers between the  training set and the testing 
set. All training  and  test recordings were made under 
identical telephone recording conditions which included 
highly variable background, highly variable transmission, 
and highly variable signal levels. For more information 
about the  details of the recording conditions, the reader is 
referred  to  [22]. 

Table I shows the distribution of the  training and testing 
patterns amongst the 10 digits.  Clustering was performed 
using the UWA and the MKM algorithms. The two pro- 
cedures of Section 11-C were used to determine  the  cluster 
centers. Templates were created both with and without 
the final averaging technique. In all  cases  a  30  template 
per word reference set was created.  The recognition sys- 
tem used was the LPC-based isolated word recognition 
system developed in our laboratory 111, [6]. 

The results of a  set of recognition runs in  which the 
6883  test  digits were recognized using different sets of 
templates  are given in Table I1 which shows error  rate for 
each of the different training conditions. Given in this ta- 
ble are results for several values of the K-nearest neighbor 
decision rule in which the recognition is based on the best 
K distances for each word (rather than the best single dis- 
tance as is conventionally the case for a nearest neighbor 
recognizer). Experience has shown that values of K of 2 
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Fig. 3. Plot showing average distortion measure as  a function of the num- 
ber of clusters used per word for the minimax center (dotted-line) and 
the pseudoaverage center (solid line). 

or  3  provide real performance  improvements when using 
10 or more  templates for each  vocabulary word [ 11. 

The results of  Table I1 show the following. 
1 )  The MKM recognition accuracy was  always greater 

than or equal to  the UWA recognition accuracy. (The im- 
provement in accuracy  ranged  from  a low  of 0.2 percent 
to a  high of  2.3 percent across different training condi- 
tions.  With  about 7000 test  digits,  a difference of 0.8 per- 
cent is significant at the 95 percent confidence level; 
hence,  the  improvement of 1 percent for the best training 
condition is marginally significant.) 

2) The pseudoaverage  cluster  center was  always mar- 
ginally better than the  minimax  cluster  center in terms of 
recognition performance. As a  further  check  on  the utility 
of the pseudoaverage (as opposed  to the minimax aver- 
age), the average  intracluster distance was computed for 
all cluster sets ranging  from 1 to 50 clusters using both 
the  minimax  and  pseudoaveraged  cluster  centers.  The re- 
sults, plotted in Fig. 3, show that, for all cluster sizes, the 
average  intracluster distortion from the pseudoaverage 
cluster  center simulations was slightly smaller than that 
computed using a  minimax  cluster center. This result in- 
dicates that the  pseudoaverage  cluster  center led to slightly 
tighter  clusters than those obtained from the minimax 
center. 

3) The final clusters obtained via autocorrelation aver- 
aging (after time-alignment  to  the  minimax  center) always 
form  a  template  set  with significantly higher  performance 
(as much as 6.3 percent) than when the final clusters  were 
obtained as  the  minimax center. For single vector cluster- 
ing problems, i.e.,  the VQ  codebook design problem, this 
is exactly the way in which cluster  centroids  are  found [9] ; 
hence,  there is a  good theoretical basis for averaging pat- 
terns within a  cluster  to  determine  a  cluster center. 

On the basis of the results given above, a  second exper- 
iment was conducted  on  a smaller set of digits.  In this case 
100 talkers (50 male, 50 female) each  spoke  each digit two 
times over  a  local, dialed-up telephone line.  One  pattern 
of each digit, for each talker, was used  to give a 100 pat- 
tern  training  set;  the  other  pattern was  used to give a 1000 
pattern  independent test  set.  The UWA clustering was 
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Fig. 4. Average digit error rate versus the number of templates per word 
for a laboratory database of 1000 digits with clusters  generated by both 
the UWA and MKM clustering procedures. 

used to give a  set of 12 templates  per  digit; similarly the 
MKM  was used  to give optimal clustering with  from 1 to 
12 clusters  per  digit,  i.e., the one  cluster per digit set used 
all 100 training  patterns,  as did the  two  cluster set,  etc. 

A recognition test was performed on the  independent 
1000 digit test  set  and recognition error  rates  were  mea- 
sured, using both  template  sets,  with  the  number of tem- 
plates varying  from 1 to 12. (Of course, for the UWA tem- 
plates, the smaller template sets are always subsets of the 
entire  training  set.)  The results of the recognition tests  are 
shown plotted in Fig. 4. Since the data were laboratory 
data, the average error  rates  were considerably lower than 
for the field telephone recordings discussed previously. 

It  can  be  seen  from Fig. 4 that for one  template per 
word, the full  coverage MKM template yielded a 10 per- 
cent lower error  rate than the partial coverage UWA tem- 
plate. Even for larger  template  sets,  the MKM templates 
provided  about 2 percent reduction in error  rate over that 
obtained using the UWA templates.  Such  an  improvement 
in performance  is highly significant at the 99 percent con- 
fidence level. 

IV. DISCUSSION 
The  main  purpose of this paper was to develop a fully 

automatic, “idiot proof, ” word clustering procedure based 
on the highly successful K-means iteration used in VQ 
codebook  design  and  other related areas. Such  a  proce- 
dure was developed in this paper. On  the  surface  the  re- 
sulting algorithm appears  to  be  a  trivial application of 
known technology. However, the successful adaptation of 
the K-means  iteration  to word clustering required solving 
some small but important practical problems such  as how 
to obtain cluster  centers (centroids) at  each  stage of the 
iteration so that computation would not be prohibitive, how 
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to split clusters to advance from one size solution to the 
next, and finally how to create  the final cluster represen- 
tations, i.e., the word templates from patterns within the 
cluster. 

The success of our algorithm has been demonstrated via 
simulation on two sets of isolated digit data. On one  set 
(highly divergent data samples for both training  and  test- 
ing) we showed that  the MKM clustering led to  a recog- 
nition system whose performance exceeded that of a  pre- 
vious clustering by a small amount. For this data set  the 
diversity of background signal and noise levels, the vari- 
ability of transmission conditions,  and  the diversity of 
talkers  mediated  against any possibility of large improve- 
ments in system performance. However, for a  better be- 
haved database of laboratory  recordings, the superiority 
of the MKM clustering over previous clustering proce- 
dures was clearly shown. 

The  importance of the results lies  primarily in the sim- 
plicity of the resulting MKM clustering  procedure, and 
the resulting recognition performance.  The  fact  that the 
MKM has a  strong theoretical foundation in  the K-means 
iterative  procedure  also makes this  clustering  procedure 
an  attractive  one. 

V. SUMMARY 
The purpose of this investigation was to develop an au- 

tomatic clustering  algorithm, which could be implemented 
by any user with a minimal amount of knowledge about 
clustering  procedures  and provide template sets as accu- 
rate  as  those  created by other  clustering algorithms. This 
goal led to the development of the modified K-means 
(MKM) clustering  algorithm. Recognition results were 
presented indicating that  the  MKM algorithm performed 
as well as,  or better  than,  the well-established UWA clus- 
tering  algorithm.  The results also  indicate that a  pseu- 
doaverage cluster  center provides slightly better  perfor- 
mance than a minimax center. Finally, we  have again 
shown the advantages of averaging the autocorrelation 
vectors within a given cluster  to obtain a final template. 
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