On the Use of Bandpass Liftering in Speech Recognition

B. H. Juang, L. R. Rabiner, J. G. Wilpon

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract. In this paper, we extend the interpretation of distortion
measures, based upon the observation that measurements of speech
spectral envelopes (as normally obtained from analysis procedures) are
prone to statistical variations due to window position fluctuations,
excitation interference, measurement noise, etc. and may possess
spurious characteristics because of analysis model constraints. We
have found that these undesirable spectral measurement variations can
be controlled (i.e. reduced in the level of variation) through proper
cepstral processing and that a statistical model can be established to
predict the variances of the cepstral coefficient measurements. The
findings lead to the use of a bandpass “liftering” process aimed at
reducing the variability of the statistical components of spectral
measurements. We have applied this liftering process to various
speech recognition problems; in particular, vowel recognition and
isolated word recognition. With the liftering process, we have been
able to achieve an average digit error rate of 1%, which is about half
of the previously reported best results, with dynamic time warping in a
speaker-independent isolated digit test.

1. Introduction

Speech recognition tasks involve such necessary steps as analysis,
similarity calculation, time normalization and decision logic. The
analysis procedure, performed on the raw input speech waveform,
results in some representation of the signal, which characterizes the
relevant features of the spoken speech. It can be regarded as a data
reduction procedure that retains the vital characteristics of the signal
and eliminates undesirable interference from irrelevant characteristics
of the speech, thus easing the inference or decision making process in
the later stages. The automatic speech recognition task, strictly
speaking, starts from the calculation that measures the distance or
dissimilarity between the unknown and the reference patterns. The
choice of dissimilarity or distortion measure is extremely important
since the final recognition decision is based upon the calculated
distances. Accordingly, extensive comparative studies have been
conducted in order to find a good distortion measure [1-3] for best
recognition accuracy.

There exist an almost infinite number of distortion measures. An
exhaustive comparison is clearly impossible. The key question is what
makes a distortion measure at least a good, if not the best, choice.
Qualitatively, as with the analysis procedure, a good distortion measure
should be sensitive to differences in the vital characteristics between
the unknown (test) and the reference patterns, and insensitive to those
irrelevant variations among observations of the unknown or reference
patterns. In this regard, the analysis procedure and the similarity
calculation have the same objective, i.e., to provide a robust and
reliable measurement of the features in the spoken input. The problem
of defining a good distortion measure is then equivalent to finding a
good data reduction/measurement procedure, and the above objective
can be accomplished, to some extent, by either of these two steps in the
recognition algorithm.

In this paper, we propose and discuss a data reduction or
measurement procedure, to be followed by a simple distortion
calculation step in the automatic speech recognition task chain. There

are two main reasons why this is more desirable than trying to find a
good distance measure that works for a given analysis or data
reduction process. First, the analysis method that is used might not be
effective in eliminating the irrelevant signal variability, and might
actually inadvertently remove some desired speech information. This
loss of information is generally not correctable in the similarity
calculation step. Second, the required distortion measure that works
with a given analysis procedure could be very complicated to evaluate.
Since distortion calculation, which is usually embedded in the time
normalization procedure, requires most of the computing resources in a
speech recognizer, a small increase in distortion measure complexity
often corresponds to a large increase in the computational requirements
of the overall system.

2. Spectral Variability and A Statistical Model

Most speech recognition systems use some type of spectral analysis
to analyze the speech input waveform. Two main types of spectral
analysis methods are frequently employed: filter bank and linear
prediction.

One advantage of the filter bank approach, or other DFT-based
approaches, is that each bandpass channel is treated essentially
independently, i.e. there are no global spectral constraints on the filter
bank outputs. Artifacts of the speech channel, over which the speech
is transmitted, such as tone noise contamination or spectral dips in the
transfer function etc., linearly affect the filter bank spectral vectors and
are relatively easy to deal with in spectral comparisons. On the other
hand, spectral measurements from the output of filter banks, are
sensitive to excitational variations such as fundamental frequency
changes. Since these variations are inevitable in natural speech, they
become the main factor that makes spectral measurements and
comparisons unreliable, unless the bandpass filters are somehow
adapted to handle these effects.

As is well known, linear prediction analysis uses an all-pole
spectrum to model the short time speech segment. One of the main
advantages of the linear prediction analysis method is that the
resulting linear prediction polynomial coefficients are largely insensitive
to the intrinsic variabilities in the speech signal due to source variation.
For this reason we assume that we are using linear prediction analysis
as the first step in the analysis or data reduction procedure.

The linear prediction method has its own drawbacks, however. The
all-pole constraint, although leads to an effective resolution of the
source-tract interaction, creates other spurious spectral components
that are not very desirable in speech recognition applications. The fact
that a distortion measure consistent with the linear prediction analysis,
i.e. the likelihood ratio measure, exists does not remedy this problem.
These spurious spectral components can best be modelled and their
effects described in the quefrency domain.

2.1 A Statistical Analysis

Let S(w) be the Fourier transform of the speech signal, s(n),
which we consider to be a stationary process, and F(w) = log S (w).
Then the complex cepstrum coefficients are
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If the expected value of F{w) is a constant 4, then the expected value
of the complex cepstrum is zero except for & = 0, where it is the value
A. The second moment of ¢ is
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where ¢ = w;—w, and E{F (w)) F* (w,)} is assumed to be a function of
@] — wy, denoted by G (w—wy) = G(¢).

Obviously, if G(¢) = B6(¢), where 6 is the Kronecker delta, and B
is a constant, the second moment is B/2x. This is the case when the
spectral components of the signal at frequencies w; and w, are
uncorrelated. A more realistic model of the correlation function for
the spectral components, G, is of the periodic form of G (¢) = e~Blel,
—7 < ¢ < w, which leads to
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For k # 0, these second moment terms become the variances of the
cepstral quefrency components since the expected value of each
component is zero for k£ # 0.

Although the above analysis is for a general, unconstrained
spectrum, it, in fact, applies to the case of all-pole model spectra
obtained from linear prediction analysis. Denoting the predictor
polynomial by A4(z) = 1 + a;z”! + - + 4,2, we have the well-known
recursion formula for the LPC cepstral coefficients [4]

k=1
—kcg — kag = 3, (k—n)cg—na, for k >0 @)
n=1
The measured variance of each of the first 8 LPC cepstral coefficients
from a collection of more than 10,000 frames of speech signals is found
to be well approximated by the above statistical analysis model for an
appropriate value of 8 [5].

2.2 Variability of LPC Cepstrum Components

The above analysis provides a means of investigating the variability
of different components of the LPC cepstrum. Clearly, less correlation
between log spectral components results in higher variances at high
quefrencies. When the spectral components are totally uncorrelated,
the variances become a constant. It has been observed that the
cepstral coefficients computed from the LPC spectrum have relatively
large variances at high quefrencies.

To verify the above analysis, a Gaussian i.id. noise signal was
used as the excitation for a fixed 8th order all-pole filter with reflection
coefficients typical of those of vowel sound, i.e. [—0.3301, 0.2251,
—0.3992, 0.2806, 0.3038, 0.6082, —0.1013, 0.1799]. The output signal
was then analyzed using an 8th order linear prediction analysis with a
160-point Hamming window applied. The analysis results were then
converted to the cepstrum using the recursion formula (4). It is found,
as shown in Fig. 1, that the variances for the higher quefrency terms
are relatively large compared to those predicted from the general
statistical model of the previous section. Since the signal was
generated from a fixed 8th order all-pole filter, one would expect high
correlation between spectral components if the spectral measurements
were made with an 8th order analysis model. This suggests that
higher quefrency terms are the inherent artifact of the LPC spectrum
and may not be desirable in the spectral similarity comparisons.

Low quefrency cepstral terms do not have high discrimination
power either. The variability of these low quefrency terms is primarily
due to type of transmission, speaker characteristics, and vocal efforts,
etc. These variabilities diminish the discriminating capability of the
corresponding cepstral terms.
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Fig. !  Variances of the first 16 LPC cepstral coefficients measured
from a signal, obtained by driving an 8th order fixed all-pole
filter with a Gaussian i.i.d. sequence.

Another undesirable component of spectral variability, particularly
associated with LPC analysis, occurs when the signal spectrum has
spectral notches or zeros. These spectral zeros may be the result of
transmission, filtering or even improper pre-emphasis. When spectral
notches or zeroes are present, the analysis results vary significantly for
different signals, particularly around the regions of spectral zeros, due
to the overall, fixed order, all-pole model constraints. This type of
variation often results in excessively high variability in low quefrency
cepstral terms.

The above discussion points to the necessity of applying some type
of cepstral liftering window to remove or suppress those undesirable
variations present in the LPC cepstral coefficients.

3. Liftering Procedure for Speech Recognition

The liftering procedure we propose here is very straightforward. It
is simply windowing in the cepstral {(quefrency) domain. Fig. 2 depicts
the procedure, in the form of a modified front-end processor for the
recognizer. The speech signal is first analyzed with the linear
prediction method. The predictor coefficients are transformed into the
cepstral coefficients, using the recursion formula (4), up to the desired
number of terms. A window w (k) is then multiplicatively applied to
the cepstral vector. The resultant windowed cepstral vector is used in
the recognizer, with a simple Euclidean distance as the distortion or
dissimilarity measure.
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Fig. 2 A liftering procedure.

The effect of this liftering process can be visualized by inverse
transforming the windowed cepstral vector back to the log spectrum.
Fig. 3 shows a series of liftered log spectra, with their original LPC
all-pole spectrum plotted at the bottom. The window used in liftering
is of the form wi(k) =1+ & sin(rk/L) where % = L/2, for
k=1.2,...,L and w(k) = 0 for other k. We varied L from 8 (the
top curve) to 16 (the curve above the LPC log spectrum). As is
clearly shown, the sharp spectral peaks in the LPC log spectrum are
smoothed. The shape of these peaks is characteristic of the LPC log
spectrum. While these peaks essentially represent the “formants” of
the signal and are important in characterizing the sound, their shapes
create unnecessary sensitivity in the spectral comparison. The liftering
process tends to reduce the unnecessary sensitivity by smoothing these
peaks without distorting the fundamental formant structure.
Furthermore, the LPC log spectral tilt of approximately 8dB/octave, as
shown in the figure, is effectively removed. This is, of course, a result
of the deempbhasis of the low quefrency cepstral terms.

The effects of the liftering process, on recognition, are
demonstrated through a sequence of spectral plots. Fig. 4a is a hidden
line plot of a series of 30 consecutive LPC log spectra, corresponding
to a vowel-like sound. The randomness of the spectral components and
the sharp spectral peaks that lead to excessive distortion sensitivity are
clearly seen. A liftering window of the form w (k) = 1 + 6sin{x k/12)
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Fig. 3  Effects of liftering on LPC log spectra.
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Fig. 4 a) A consecutive sequence of log LPC spectra; b) the result
of applying a liftering window to the LPC spectral sequernce;
¢) the corresponding spectral sequence obtained by direct
cepstral smoothing on the signal without the intermediate
LPC modelling stage.

for k = 1,2, ...,12 and w(k) = O otherwise, is then applied, and the
corresponding smoothed spectral sequence is plotted in Fig. 4b. It is
seen that the undesirable (noiselike) components of the LPC spectral
measurements are reduced or removed and the essential characteristics
of the “formants” are retained. Applying liftering to the LPC spectra
is certainly different from direct cepstral smoothing on the signal. To
show how the two may differ, the corresponding segment of signal is
cepstrally smoothed with the same window and the result is plotted in
Fig. 4c. As can be seen, this spectral sequence is not as smooth as the
liftered LPC spectra. Although these figures do not directly indicate
the contribution of liftering to the recognition results, the goal of
obtaining reliable spectral measurements, i.e. with low variability, has
essentially been demonstrated.

4. Experimental Results

We applied the liftering process to the tasks of recognizing vowels
from single frame spectra, and isolated digits in a speaker-independent
environment. Before we performed the actual recognition tests, we
first studied the effects of various types of liftering windows.

4.1 Choice of Liftering Window

We considered only the following three types of liftering windows:
Type 1) wy(k) =1, for k =1,2,...,L, =0, otherwise; Type 2)
walk) =1+ h-(k—=1/(L-1), for k=1,2,...,L, =0, otherwise;
Type 3) ws(k) =1+ hsintkx/L), for k=1,2,...,L, =0,
otherwise. These liftering windows were used to recognize a particular
isolated digit set, consisting of a total of 1000 utterances (100
utterances for each digit). The linear prediction analysis was 8th
order.

The first window is rectangular. For L = 8 and 12, the number of
misrecognized digits was 38 and 35, respectively out of 1000 trials.
The second window is triangular. Two window lengths were studied,
namely L =10 and 12. For each fixed length window, we also
examined the effects of the height, &, upon the recognition accuracy.
The results, in terms of number of errors, in 1000 recognition trials,
are summarized in Table 1. It can be seen that although the L =12,
h = 10 window gave the fewest digit errors (11), the sensitivity of the
results to different values of L and & was small. The third window,
ws(k), is a raised sine. Two cases, L = 12 and 14, with varying
height, were studied. Table II summarizes the recognition results, also
in terms of number of recognition errors in 1000 trials. As can be seen
from the table, the best result occurred when the height was
approximately half of the window length. We then investigated this
particular form of liftering window: w(k) =1+ 0.5 Lsin(xk/L),
1 <k <L. We varied L from 8 (the original LPC order) to 16.
The number of recognition errors for this case is given in Table IIIL
As shown, the recognition accuracy essentially increases with the
liftering window length. Beyond L = 12, however, the number of digit
errors stays the same up to the tested maximum of 14. These results

h 6 8 10|12 |14 ] 16

L=10 |13 | 15|14 [ 15 | — | —

L=12 |13 |14 |11 [12]13]15

TABLE I. Total number of recognition errors (out of 1000 trials)
with the triangular lifter

h 2 3 4 5 6 7 8 |10
L=12113| ~|14|~110} - [12]11
L=14 |~ (11|10 |11 {10]10 ] — ] —

TABLE IL Total number of recognition errors with
the raised sine lifter as a function of the window
height, #, and the window length, L
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TABLE III. Total number of recognition errors
with the 1 + 0.5 Lsin(xk/L) lifter

suggest that a liftering window of the form
w(k) =1+ 6sinlxrk/12) ,

is a good choice for recognition experiments.

1<k<L €]

4,2 Single Frame Vowel Recognition

The data base used for this speaker trained recognition test
consisted of all vowel frames that occurred in 10 occurrences of 10
carrier words, each one with a single characteristic vowel. Half the
vowel frames were used as a training sequence to design vector
quantization (VQ) codebooks with 1, 2, 4, and 8 vectors per vowel [6].
The other half of the vowel frames were used as an independent test
set. Seven talkers (4 male, 3 female) were used in the test.
Recognition was performed on single frames by finding the vowel
codebook whose distance to the test vector was minimum.

Five distinct types of distortion measures were used in the test
including the likelihood ratio, a weighted likelihood ratio, a cepstral
distance, a weighted cepstral distance, and a bandpass lifter of the type
given in (5). Further details of the individual distance measures are
given in Ref. [6]. The key result was that, on average, the cepstral
lifter provided the best recognition performance for all size codebooks
that were tested.

4.3 Speaker Independent Isolated Digit Recognition

The data base used for the speaker independent isolated digit
recognition test consisted of 4 sets of isolated utterances of digits.
Each set of data contained 1000 utierances, 100 for each digit, spoken
by 100 different speakers, 50 male and 50 female. Different data sets
were from different sets of speakers. This data base has been studied
previously, and a more detailed description can be found in [7].

We used the liftering window of (5) throughout the test, including
the generation of the reference templates. The recognizer was a DTW
based system using a Euclidean distance measure. Furthermore, the
energy or gain term was not included in the spectral representation and
comparison. We studied the recognition accuracy as a function of the
number of reference templates per digit. The results are summarized
in Table IV. As seen from the table, using 12 reference templates per
digit, the average error rate for speaker independent recognition of
isolated digits was only 1%, i.e. it was about one half of the error rate
under the same DTW framework but instead using a standard LPC
analysis and a log likelihood distance with energy terms incorporated.

DATA SETS Errors
# of
Templates per digit | DAT-1* | DAT-2|DAT-3|DAT-4|Total| %
1 29 30 38 50 147 |3.68
3 22 25 35 35 117 [2.93
6 7 8 31 18 64 [1.60
9 5 9 24 12 50 |1.25
12 1 7 21 11 40 {1.00

* Training Set

TABLE IV. Total number of recognition errors using the liftering
window in a DTW recognizer for speaker independent
isolated digit recognition

Even with only 6 templates per digit, the recognition accuracy was
higher than that reported in Ref. [7) with 12 templates per digit.
Finally, the effect of going from 12 templates per digit to a single
template per digit only increased the error rate by 2.68%; in fact, the
error rate for 3 templates per digit is comparable to the error rate with
12 templates per digit reported earlier [7] when energy was not used in
the recognition scheme (which is the case here). Furthermore, for the
single template per digit case, the error rate is only 1% higher than
that obtained previously with 12 templates per digit [7], and the
computation rate is reduced by a factor of 12.

The improved performance of the isolated digit DTW recognizer is
primarily due to the increased reliability of the spectral measurements
via the described liftering procedure. The small degradation in going
from 12 templates per digit to a single template per digit gives strong
evidence of this result. Since the liftering process simply filters out
undesirable variability, and transforms the original measurement to a
more reliable one, it can be used in other recognition schemes, such as
the hidden Markov model [7] as well. Further improvements may still
be possible when other parameters such as the energy term or a
durational model [7] are incorporated into the scheme.

5. Summary

We have presented a discussion of how highly variable spectral
measurement components can be identified and suppressed using a
liftering procedure. It has been shown that the liftering procedure
enhances the reliability of the transformed spectral measurements,
making the spectral comparison more appropriate for the recognition
task.
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