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ABSTRACT. In this  paper we discuss a system for  automatically 
recognizing  fluently spoken digit  strings based on whole  word reference 
units. The system that we will describe  can use either hidden Markov 
model (HMM) technology or template-based technology. The training 
procedure  derives the digit  reference  patterns  (either  templates or 
statistical models) from connected digit  strings.  To  evaluate the 
performance of the overall connected  digit recognizer, a  set of 50 
people (25 men, 25 women),  from  the  non-technical local population, 
was each  asked to record 1200 random  connected  digit  strings over 
local  dialed-up  telephone lines. Both a  speaker  trained  and  a  multi- 
speaker  training  set was created,  and  a  full  performance  evaluation 
was made.  Results show that  the average  string  accuracy for unknown 
and known length  strings,  in  the  speaker  trained mode, was 98% and 
99% respectively; in the  multi-speaker mode the average  string 
accuracies  were 94% and 96.6% respectively. 

I. Introduction 

One of the most important  problems in speech recognition is 
connected  digit recognition. Connected  digit recognizers have 
significant  applications in the  area of telecommunications,  as well as 
for recognizing spoken credit  card  numbers, stock codes, etc. For the 
applications above, a  speaker  independent  system would generally be 
required. However there  are a wide range of applications  for  speaker 
trained  connected  digit recognizers, including specialized operator 
services, insurance  claims  entry,  quality  control,  package  handling  and 
sorting,  etc. 

Because of its vast potential  applications,  a wide variety of 
approaches  to  connected  digit recognition have been proposed and 
evaluated [1-51. One of the most interesting  aspects of the connected 
digit recognition problem is that whole word training  patterns  can be 
used as  the basic  speech recognition unit  to find the best matching 
string.  Hence  all  the technology and  research  associated with whole 
word speech recognition can  be  brought  to  bear on this problem. 

As with any pattern recognition algorithm,  a  major  factor in 
determining the performance of the algorithm is the  manner  in which 
the reference  patterns  for  the  system are derived. For connected digit 
recognition,  a  training  algorithm was developed in  which the  digit 
reference  patterns were derived from fluent connected  digit  strings 
using a  segmental  k-means  algorithm to split  the  connected  strings 
into  individual  digits 141. This  training  procedure was integrated  into 
a level building,  connected  digit recognizer and tested on 50 naive 
talkers (25 male, 25 female), who were  recruited  from  the local non- 
technical  population. Both speaker  trained  and  multi-speaker 
recognition tests were performed. 

11. The Overall Level  Building, Connected Digit Recognizer 

A block diagram of the overall level building, connected digit 
recognizer is shown in Figure 1.  There  are essentially three steps in 
the recognition algorithm, namely: 

1. 

2. 

Spectral  Analysis - The speech signal, s ( n ) ,  is converted to 
either  a  set of LPC vectors, or a  set of cepstral vectors. 

Level Building Pattern Matching - The  sequence of spectral 
vectors of the unknown speech signal is matched  against  stored 
single  digit  patterns  (either  templates or statistical models) using 

Fig. 1 Block diagram of overall connected  digit  recognizer. 
the level building algorithm. The output of this process is a  set 
of candidate  digit  strings,  generally of different  lengths (is., 
different  number of digits  per  string). 

3. Postprocessor - The  various  candidate  strings are subjected to 
further validity  tests, e.g., duration,  to  eliminate  unreasonable 
candidates. The postprocessor chooses the most likely digit  string 
from the remaining (valid) candidate  strings. 

In this work we have considered both template-based  and  statistical 
model-based (hidden Markov model, HMM) systems. The details of 
the  LPC front  end,  the level building pattern  matching,  and the 
postprocessor are given  in Ref. 141 and will  not  be repeated  here. 

111. Experimental Evaluation of Connected Digit Recognizer 

The speech database consisted of 50 talkers (25 male, 25 female) 
drawn  from  the  local,  non-technical,  population (Le., all  talkers  were 
local  New  Jersey  residents).  Each  talker recorded 1200 connected 
digit  strings in about 5 sessions, during  a 1 week period, over local 
dialed-up  telephone lines. A new line was  used for  each recording 
session. All  recordings were made in a  reasonably  quiet  environment; 
however because of line  variations  and  talker loudness variations, some 
recordings  had very bad signal-to-noise  ratios (i.e., on the order of 10- 
20 dB).  A  check was made on each recorded string  to guarantee  that 
the correct  string was spoken, and that no gross endpoint  errors were 
made. Because of the  inexperience of the 50 talkers,  a rather large 
number of the spoken strings  were  unusable  (generally  because of 
gross speaking  errors),  and  about  21% of the 60,000 recorded  strings 
(i.e., 12,600 strings) were eliminated.  The  talker with the most 
difficulty had  about 50% of his  strings (604 of 1200) eliminated; the 
talker with the least difficulty had only 47 of 1200 strings  eliminated. 
Overall  there  remained 47,336 strings in the database. We denote the 
50 talker database  as DB50 in  tables  and in the  text. 

To  get  an idea of the  average rate  at which the digit  strings were 
spoken, Figure  2 shows a plot of the  average  speaking rate (words per 
minute, wpm) versus the  number of digits  per  string,  for DBSO with 
data from 7 other  talkers included. The average rate for  isolated  digits 
was about 137 wpm; the  rate gradually rises to  about 170 wpm and 
remains  there for strings of length 4-7 digits. By contrast we have also 
plotted the wpm curve  for the TI database of connected  digit 
strings 161 (only adult male  and  female  talkers were  used for the TI 
curve). It can be seen that  the talking rates of the TI talkers were 
somewhat slower (about 10 wpm) than those of the 57 talkers used 
here).  This  difference  in rate could be accounted  for by the fact that 
sometimes  there were internal  pauses (silence regions) in the TI 
database and  these were not compensated in the rate calculations. 

The database, DB50, was split (at random)  into  a  training  set  and 
a  testing  set,  each  consisting of roughly half the utterances  for  each 
talker  in the database. The training  set was  used to derive  reference 
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Curves of the average  speaking  rates (in  words per 
minute) as a function of the number of digits in the 
string. 

patterns  either^ an HMM or a  set c-? reference  templates); the 
independent test  set was  used to evaluate the system  performance. For 
the speaker  trained system, the segmental  k-means  algorithm was 
always  bootstrapped from  a  speaker independent set of templates or 
models.  For the multispeaker system, the segmental  k-means 
algorithm was  bootstrapped either  from  speaker  trained  HMM's,  or 
from  a uniform state segmentation on the isolated digits within the 
database. Both HMM"s  and  templates were created in all cases and 
evaluated on the independent  test sets. 

3.1 Speaker  Dependent  Results - DB50 

In the case of the speaker  trained HMM recognizer, an N = 5 
state, M = 3 mixture, D = 8 dimensional (cepstral vector  without the 
zeroth  order  term) model  was  used for DB50 evaluations. None of the 
3  model parameters (N, M ,  D )  was  varied  since, as will  be  shown, the 
recognition performance was  exceptionally  good and  it would have 
been  difficult to assess whether  changing  a  particular model parameter 
actually improved  performance. 

For each  talker in DB50 a  segmental  k-means loop  was run 
10 times on each  training  set. At  the end of each  iteration  an HMM 
was obtained  and used to evaluate overall  recognition performance. 
Similarly at  the end of each  training loop, a  clustering  procedure was 
used to cluster  all the training tokens  for each  digit into a 3-cluster 
solution (i.e., 3 templates), for  the template-based  recognizer. The 
resulting HMM,  at each  iteration, for each  talker, was run on  both the 
training  and testing strings,  and the results of these evaluations are 
given  in Table I. This table has  3 parts. In part a,  the string error 
rates (%) for Unknown Length (UL), Known Length  (KL),  and for 
strings in  which No  Match  (NM) among any of the candidates was 
found, for both training  and testing strings are given. Part b of the 
table shows string  error  rates  for UL strings as a function of the best 
candidate position  in the ordered list of strings at  the output of the 
recognizer. Thus  the  string error rate  at best candidate position  3 is 
the percentage of strings which  were  not  in the top  3 candidates. 
Finally, part c of the table shows string  error rate, for UL and  KL 
strings, as a function of the  k-means iteration.  This part of the table 
is somewhat deceptive  since  some talkers converged  very  rapidly (Le., 
1-3  iterations), while others converged  more  slowly. After 
convergence, the performance scores  tended to vary by about 11/2%, 
due  to  the tendency to capture  details in the training  set which  did  not 
occur in the testing set. 

The overall results on DB50 show the following: 

String Length 

1 

Average 

Training 

0.11 0.19 0.95 0.03 0.03 0.14 

N M  KL UL  NM K L  UL 

Testing 

0.43 0.09 0.03 0.85 

0.71  1.52 2.30 0.22  0.44 0.84 
0.34 1.05 2.79 0.19 0.41 1.41 
0.45 1.03 2.38 0.21 0.70 1.37 
0.35 0.89 2.07 0.24 0.54 0.77 
0.15 0.68 1.65 0.12 0.42 0.83 
0.09 0.28 

0.81 0.36 0.14 1.83 0.79 0.31 

(a) String  Error  Rates (%) for UL,  KL, N M  Strings  for DB50 
(Best iteration for each  talker) 

Evaluation  Best Candidate Position 

Training 

0.31 0.34 0.39 0.66 1.83 Testing 

0.14 0.14 0.15 0.23 0.81 

(b) String Error  Rates (%o) for UL Strings as a Function 
of Best Candidate Position for DB50 

Evaluation I Iteration 

Set ' 1 ~ 2 ~ 3 ~ 4 ~ 5 , 6 ' 1 ~ 8 , 9 ~ 1 0  

Training-UL  2.04  1.34  1.20  1.14  1.13  1.06  1.08  1.03  0.99  1.00 
Training-KL  0.90 0.6.2  0.56  0.55  0.53  0.49 0.50 0.48  0.45  0.45 
Testing-UL  3.09  2.52  2.24 2.18 2.21  2.23  2.24  2.21  2.19  2.10 
Testing-KL  1.58  1.18  1.11  1.04  1.06  1.01  1.01  1.01  1.01  0.98 

(c) String Error Rate (%) for UL  and Kk Strings  as a 
Function of Iteration for DB50 

TABLE I 
1. The  string  error  rates  for both UL and KL strings,  for both 

training  and  testing, are very  low, and  represent the best 
performance obtained to  date on any connected digit recognizer. 

2. There is a  small,  but consistent,  difference  in performance 
between training  and  testing sets. 

3. The error rate for  best candidate position 2, for UL strings, is 
essentially  negligible, indicating that in  cases  when the 
recognizer made  an  error, the correct  string was  almost  always 
the second  choice. 

4. A sharp improvement  in performance is obtained  from iteration 1 
to iteration 2  in the segmental  k-means  training loop; a 
somewhat  smaller improvement  is obtained on the third  iteration. 
Beyond this point, on average, the algorithm converged and the 
differences  in performance were  essentially statistical in nature. 

The performance of the (3 teqplate per digit)  template-based 
recognizer  was  slightly  worse than  that of the  HMM-based system 
(3.0%  for UL strings, 1.6% for KL strings) but  still was  very  good. 

The results of the performance evaluation  on DB50, in the multi- 
speaker mode,  using the  HMM-based recognizer are given  in Table 11. 
The way  in  which the multi-speaker HMM's were  derived is as 
follows. Some  preliminary  experimentation was  performed to 
determine good  choices for  the number of states in the model, N, the 
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number of mixtures  per  state, M ,  and the parameter  set  for  the 
mixtures. It was found that models with N - 8 states performed 
somewhat  better  than models with N = 5 states. To demonstrate  the 
effects of mixture  parameters on performance,  Figure 3 shows a  set of 
curves of the  average  string  error rate as  a  function of the  number of 
mixtures  per state for UL strings (part  a) and  KL  strings (part b),  for 
three parameter  representations, namely: 

1. 8 unweighted cepstral coefficients with diagonal  covariance 
matrices (UCC/DC) 

2. 8 unweighted  cepstral coefficients with full  covariance  matrixes 
(UCC/FC) 

3. 12 weighted  cepstral coefficients with diagonal  covariance 

(The case of 12 weighted cepstral  coefficients with full  covariance 
matrices was also  tried  but  the  performance scores were significantly 
worse than those shown  in Figure 3. The poor performance scores 
were due to two  factors.  First, the weighting tends  to  decorrelate the 
cepstral coefficients; hence the off diagonal  terms are very  noisy. 
Second, the  number of coefficients per mixture that needed to be 
estimated was large (144) and there was not sufficient data for good 
estimates of all  these coefficients). 

matrices (WCC/DC) 

The curves in Figure 3 show the following: 

1. For  a  large  number of mixtures per state (6-9) the best 
performance  came when using the  set of 12 weighted cepstral 
coefficients with a  diagonal  covariance  representation.  The  set of 

t 
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Fig. 3 Plots of average  string  error rate  as a  function  of  the 
number of mixtures per state. 

8 unweighted cepstral coefficients with a  diagonal  covariance was 
the next best parameter  set, with the full covariance 
representation of the 8 unweighted cepstral coefficients giving the 
worst performance.  This  result is undoubltedly  due to  the 
difficulty of reliably  estimating the off diagonal  terms of the 
covariance  matrices, when the  number of mixtures is large (Le. 
with a  small  amount of data per mixture). 

2.  For a  small  number of mixtures per state (1-2) the best 
performance  came from using the set of 8 unweighted cepstral 
coefficients with a full covariance  representation. Here  the off 
diagonal  terms have enough training data to give fairly  reliable 
estimates of their  correct values. 

Based on the results shown in Figure 3, we used a  value of M - 9 
mixtures  per state with the 12 weighted cepstral coefficients as  the best 
representation  for  connected  digit recognition. 

To  bootstrap the models, we initially used the  isolated  digit 
sequences from  all 50 talkers in the  training  set.  Each  digit was 
initially  linearly  segmented  into  states,  and  the  segmental k-means 
training loop was run  to convergence. A performance  evaluation was 
run on an  independent  testing  set  consisting of 3500 random  strings 
(10 strings of each of 1-7 digits  for  each of the 50 talkers, derived 
from  the  independent  testing  sets),  and  this  result is  shown as  the 
“Isolated  Digits”  training condition in Table 11. It can be seen that 
for  this condition the string error  rates  are quite high (26.1% for UL 
strings, 18.5% for KL strings).  This  result is  not unexpected since we 
have shown the  inadequacy of isolated  digit  training previously. 

The second step in building digit  HMM’s is to  run the segmental 
k-means training loop using the isolated digit model as the  initial 
model estimate. Because of the  large  size of the training  set, only 1 of 
each 4 strings,  for  each  talker, was actually  used.  This  gave  about 
6000  training  strings with about 24000 digits.  The  results  for the full 
training  set, using a  single HMM per  digit, are shown as the second 
line in Table 11. String error  rates improve by about 10% for both UL 
and  KL strings. 

The  third  and  last step in building digit  HMM’s is to cluster  the 
segmented  digit tokens and  to build a  separate HMM for each  cluster 
and  for  each  digit. In this  manner  it is possible to build any  number 
of HMMs for  each  digit.  Figure 4 shows the behavior of the average 
string error rate  as a  function of the  number of models per  digit  (as 
obtained from the clustering  analysis)  for both UL and KL strings. 
(These  results were obtained using the 8 UCC/DC representation). It 
can be seen that substantial  performance improvements are obtained as 
the  number of models per  digit  increases from 1  to 5; an increase  to 10 
models per digit  leads  to  a  smaller  performance improvement. Further 

String Error Rate (%) 

Training  Condition 

Isolated  Digits 

Full  Training 
- No Clustering 
- 1 ModeVDigit 

2.1 9.0 16.1 

Full  Training 
- Clustering - 10 ModeldDigit 

0.5 3.4 6.0 

TABLE I1 

String Error Rates for DB50 for 
Multi-Speaker  Training Using HMM Models 

3.10.3 
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Plots of average  string  error rate versus the number of 
models  per digit. 

increases  in the number of models  per digit  (to 15 and 20)  led to worse 
performance as  the amount of training data per  model  is substantially 
reduced, leading to  pooer estimation of model  coefficients. The results 
in Table I1 are given  for the case of using  10 HMM’s per digit  when a 
final stage of Baum-Welch reestimation of all model parameters is 
used. The average  string error rate falls to 6.0%  for UL strings, and 
to 3.4%  for KL strings.  Furthermore the percentage of strings for 
each no match is found  falls to 0.5%, an  acceptably  small  number. 

Although the error  rates  for the multispeaker case are considerably 
larger  than  for the speaker  trained  case, they are substantially  better 
than those obtained from earlier  training methods.  For  example we 
tried  a true speaker independent set of digit  HMM’s derived  from 
embedded training methods, and measured UL string  error  rates of 
48.7%. 

Figure  5 shows a  cumulative plot of the error  rates for the different 
talkers, based on using the 10 HMM/digit set. It  can be seen that 
only 1 of the 50 talkers  had  a string error rate greater  than 20%. The 
median  string error rate (UL) of 4.3%,  is perhaps  a  better  measure of 
how  well the multi-speaker  recognition  system  is  working. 

Using a  similar  clustering of the digit tokens of the training  set,  a 
36  template-per-digit set was created to evaluate the performance of 
the template-based recognizer  in the multi-speaker  mode. For this 
system the  string error rate for UL strings was  18.8%, and  for KL 
strings  it was  14.5%. These  results are significantly  poorer than those 
of the  HMM based  recognizer. 
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Fig. 5  Cumulative plot of the percentage of talkers with error 
rates above a threshold. 

IV. Summary 

We began this  paper by talking  about the importance of being able 
to implement a high performance connected digit recognizer. We have 
shown that in the case of speaker  trained systems,  we can achieve  this 
goal,  for  essentially any  talker, if an  adequate  amount of training is 
provided. Hence for  50  inexperienced,  non-technical users of the 
recognizer, we were able  to achieve greater  than 98% string  accuracy 
for  unknown length  strings,  and greater  than 99% accuracy for  known 
length strings,  over  local dialed-up telephone  lines. Although the 
amount of training used to achieve  this performance is moderate 
(about 20 minutes of connected digit  strings), it is  not unreasonable  for 
applications  in  which the system  will be used for substantial periods on 
a  daily basis, e.g., specialized  operators,  travel agents,  insurance  forms 
entry,  etc. Also, in Reference  4 we showed that  the amount of training 
could be reduced substantially (is., to about  2-3  minutes) with  only a 
small  increase in string error rate. 
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