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The ways in which people communicate are changing rapidly.
No longer is the conventional voice call over a wired network the
only reasonable and reliable method of transmitting information.
Instead, the options are many and diverse, ranging from voice calls
over wireless networks, to video calls over the conventional wired
network, ISDN video, FAX, e-mail, voice mail, beeper services,
data services, audio teleconferencing, video teleconferencing, and
so-called scribble phone service (transmission of arbitrary hand-
written input). This revolution in communications is being fueled by
several sources, including the availability of low-cost, low-power,
computation in both DSP and RISC chips, larger and cheaper
memory chips, improved algorithms for communications (e.g.,
modems, signaling) and signal processing, and finally the creation
of world-wide standards for transmission, signal compression, and
communication protocols. The broad goal of the communications
revolution is to provide seamless and high-quality communications
between people (or groups of people), anywhere, anytime, and at
a reasonable price. Although there are many technologies that
form the bases for the communications environment of the twenty-
first century, one of the key technologies for making the vision
a reality is voice processing. In this paper we attempt to show,
by example, how voice processing has been applied to specific
problems in telecommunications, and how it will grow to become
an even more essential component of the communications systems
of the rtwenty-first century.

I. INTRODUCTION

Although voice processing has been a topic of research
for several decades, it is primarily in the past few years
that the technology has matured sufficiently to leave the
research laboratory and enter the real world for a wide
range of applications. There are several reasons why this
has occurred. These include the rapid growth in computing
capability provided by modern digital signal processing
(DSP) chips, the sharp decrease in cost of computation
and memory, and the increased emphasis on providing
high-quality communications services.

The broad goal of voice processing technology is to help
provide seamless, high-quality voice communications be-
tween people (or groups of people), anywhere, anytime, and
at a reasonable price. To attain this goal requires significant
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advances in several technologies and in several specific
application areas. Among these areas are the following:

1) wireless communications—both indoor and outdoor.
This will provide the underpinning for anywhere,
anytime communications capability.

2) audio/video teleconferencing—this will enable
groups of people to communicate with each other
in a manner so that the groups feel they are in a
common environment (e.g., the same room).

3) eyes-free, hands-free communication and con-
trol—enabling the user to freely communicate
without having to have physical contact with the
communication device either for controlling the com-
munication flow (i.e., initiating the call, transferring it
to another number, etc.), or for communicating with
the other party. This provides a seamless environment
where control and communication are handled
identically—i.e., by voice processing methods.

4) acoustic echo cancellation—providing an echo-free
communications environment so that both parties
perceive high-quality voice (and ultimately video)
communications.

5) smart microphones/loudspeakers—providing a
means of tracking individual talkers, adapting to any
acoustic environment, and giving optimum signal-
to-noise ratios while retaining spatial information
about the sound field. Such smart acoustic transducers
provide a seamless method of handling variability in
both sound sources (e.g., multiple talkers in a group
conversation), and in noise backgrounds.

6) algorithmic advances and DSP implementa-
tion—this provides a means for implementing the
required voice processing technology on reason-
able cost and reasonable power platforms while
maintaining the high performance réquired for
telecommunications applications.

Taken together, the vision of a Personal Information
Terminal (PIT), in which a broad range of communications,
computational, and signal processing capability is provided
in a portable, wireless, device, becomes a reality. Even
today the beginnings of such devices exist in the EO 440
Personal Communicator, and the Apple Newton Personal
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Terminal. Over time, the sophistication and capability of
these devices will increase, with the devices becoming
smaller in size, lower in weight, with longer life per battery
charge, while providing integrated voice, video, e-mail,
FAX, beeper, and data service over wireless channels. At
the present time, however, although our voice processing
capability falls far short of our vision, it is still extremely
impressive when one considers the range of applications,
within the telecommunications area, which have evolved.
It is the purpose of this paper to discuss the individual
areas of voice processing technology, to review the current
status of the technology, and to show the extent to which
applications have successfully been developed.

II. AREAS OF VOICE PROCESSING

The broad area of voice processing can be broken down
into several individual areas, according to both applications
and technology. These include:

1) speech coding—the process of compressing the in-
formation in a speech signal so as to either transmit
it (or store it) economically over a channel whose
bandwidth is significantly smaller than that of the
uncompressed signal.

2) speech synthesis—the process of creating a synthetic
replica of a speech signal so as to transmit a message
from a machine to a person, with the purpose of
conveying the information in the message.

3) speech recognition—the process of extracting the
message information in a speech signal so as to
control the actions of a machine in response to spoken
commands.

4) speaker recognition—the process of either iden-
tifying or verifying a speaker for the purpose of
restricting access to information (e.g., personal or pri-
vate records), networks (computer, PBX), or physical
premises.

5) spoken language translation—the process of recog-
nizing the speech of a person talking in one language,
translating the message content to a second language,
and synthesizing an appropriate message in the sec-
ond language, for the purpose of providing two-way
communication between people who do not speak the
same language.

6) spoken language identification—the process of
identifying the language a person is speaking in,
from the speech of that person.

In addition to each of these technology areas, work in the
areas of speech analysis, hearing, and electroacoustics often
forms the basis for the methods that are used to implement
individual applications. Rather than discuss these areas of
research individually, we will generally refer to them as
they apply in individual situations.

In the remainder of this paper we discuss each area of
voice processing technology separately. We first review the
broad goals of each area, followed by a discussion of the
basic processing techniques, ending with an evaluation of
the current capability of the technology. We then discuss
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both typical and specific applications of the technology
to telecommunications with the goal of focusing on the
strengths and limitations of each technology.

ML SPEECH CODING [1]-[7]

Speech coding technology is used for both efficient
transmission and storage of speech. For transmission appli-
cations the goal is to conserve bandwidth or bit rate, while
maintaining adequate voice quality. For storage applications
the goal is to maintain a desired level of voice quality at
the lowest possible bit rate.

Speech coding plays a major role in three broad areas;
namely, the wired telephone network, the wireless network
(including cordless and cellular), and for voice security
for both privacy (low level of security) and encryption
(high level of security). Within the wired network the
requirements on speech coding are rather tight with strong
restrictions on quality, delay, and complexity. Within the
wireless network, because of the noisy environments that
are often encountered, the requirements on quality and
delay are often relaxed; however, because of limited chan-
nel capacity the requirements on bit rate are generally
tighter (i.e., lower bit rate is required) than for the wired
network. Finally, for security applications, the requirements
on quality, delay, and complexity are generally quite lax.
This is because secure speech coding is often a requirement
on low-bandwidth channels (e.g., military communications)
where the available bit rate is relatively low. Hence, lower
quality, long delay, low bit rate algorithms have generally
been used for these applications.

Although we will discuss specific applications of speech
coding later in this section, it is worth mentioning sev-
eral broad classes of applications (beyond those used in
transmission) of speech coding in the area of storage
and teleconferencing. One of the largest application areas
for speech coding is in voice messaging and voice mail,
whereby a voice message is sent to a voice mailbox (either
individually owned, or as part of a network), stored in coded
form, and delivered to the intended recipient(s) when he or
she is ready to receive it. Another important and growing
application is the area of voice response systems whereby,
usually in response to touch-tone input from a telephone
(or ultimately in response to voice input commands), the
system speaks out a coded message and thereby maintains
a dialog with the user. Such voice response systems are
being used as front-end processors for telephone queries
to most major corporations and businesses. The field of
digital coding of wideband speech signals is an emerging
area of coding—especially for applications such as digital
audio broadcasting (DAB) of compact disk (CD) audio
over frequency modulation (FM) channels, and for surround
sound for high-definition television (HDTV). Another inter-
esting application is digital telephone answering machines
where the usual tape recorder for storing of messages has
been replaced by solid-state memory, thereby eliminating
the problems associated with mechanical parts. Finally,
the area of teleconferencing of coded wideband speech (in
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Fig. 1. Typical speech waveforms: upper panel: voiced speech;
middle panel: unvoiced speech; lower panel: section of speech with
both voiced and unvoiced sounds.

concert with coded video) is rapidly becoming used within
businesses and should appear in the home and in wireless
systems within the next few years.

A. Basic Principles of Speech Coding (3]

Figure 1 shows typical examples of speech waveforms.
The top trace in Fig. 1 shows a voiced speech section (e.g., a
vowel-like sound) waveform produced by modulating puffs
of air (created by the vibrating vocal cords) by the vocal
tract shape corresponding to the sounds being spoken. For
such voiced waveforms, we see a quasiperiodicity of the
signal (over periods of 10 ms) as well as a slowly changing
waveform character. The middle trace in Fig. 1 shows the
waveform of an unvoiced speech section (e.g., a sibilant
sound like “s” or “sh”) that has a noiselike character with no
periodicity (the vocal cords are not vibrating) and no slowly
changing temporal characteristics. Finally, the bottom trace
in Fig. 1 shows a section of a speech utterance waveform
that consists of both voiced and unvoiced sounds.

The fundamental process of speech coding is conversion
of a speech signal to a digital representation (a sequence
of binary digits), as shown in Fig. 2. The simplest way
of obtaining such a digital representation is by applying
the sampling theorem directly. This means that we must
sample the speech waveform at a rate of twice the highest
frequency present in the signal, and then digitize the
resulting samples to some desired degree of accuracy.
For telephone bandwidth speech signals (4-kHz bandwidth
nominally), we need a sampling rate of at least 8000
samples/s and an encoding rate of 16 b/sample to maintain
very-high signal-to-noise ratio in the digital representation.
Hence, a total of 128 000 b/s is required for a high-quality
digital representation of telephone bandwidth speech.

One of the goals of speech coding is to provide high
quality at bit rates significantly below those implied by the
sampling theorem. To achieve this goal we must exploit one
or more of the special properties of speech signals to reduce
the bit rate. Figure 3 illustrates a couple of the properties
of speech waveforms that can be exploited; namely, the
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Fig. 2. Conversion of analog speech signal to a digital represen-
tation via a coder and back to analog via a decoder.
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Fig. 4. Tlustration of how the use of perceptual criteria (masking)
can convert an audible white noise signal into an inaudible shaped
noise signal with the same noise power.

use of adaptive quantizers, whose characteristics vary over
time, to match the dynamic range variations of the speech
signal (contrast regions .S and A in Fig. 3), and the use of
time-varying filters to exploit both the short-time (within
a single period) and long-time (across multiple periods)
correlations of the signal. Figure 4 illustrates yet another
important property of speech coding based on the fact
that the decoded speech waveform is being perceived by a
human listener [6]. The coding method can take advantage
of well-understood properties of human hearing; namely,
that noise (in this case quantization noise of the coding
procedure) can be masked (perceptually hidden) by the
speech signal if the spectral level of the noise is below the
spectral level of the speech. As shown in the left side of Fig.
4, quantization noise is typically a flat-spectrum signal (i.e.,
random and uncorrelated with the speech) whose level often
exceeds that of the speech and is therefore perceptually
audible. By appropriately shaping the noise so that its
spectrum matches that of the speech, as in the right side of
Fig. 4, its level can be made to fall below the speech level at
all frequencies of interest, thereby making it perceptually
inaudible.
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Fig. 5 Block diagram of a perceptually driven speech analy-
sis/synthesis system.

Based on the above discussion, it can be seen that a
typical speech coder consists of two modules; namely,
an analysis module (called an analyzer) which extracts,
from the speech waveform, the time-varying excitation
waveform and the time-varying filter parameters, and a
synthesis module (called a synthesizer) which recreates
the “best” (in a perceptual sense) match to the original
speech waveform. Fig. 5 shows a block diagram of such
an analysis—synthesis approach to coding. The difference
between the original speech signal and the output of the
speech synthesis filter (the so-called error signal or the
quantization noise of the coder) is perceptually weighted
and minimized by adjusting parameters of the synthesis
model, e.g., the excitation and the time-varying filters.
Figure 6 shows several synthesis models which have been
applied to speech coding, including the LPC vocoder model
[1], the multipulse model, and the stochastic model [2], [5].
The vocoder (voice coder) model, the traditional speech
synthesis model, categorically classifies the excitation sig-
nal as either voiced speech (with a quasiperiodic pulse
train excitation signal) or unvoiced speech (with a random
noise excitation signal), and feeds this switched excitation
into an LPC (linear predictive coding) all-pole filter which
models the time-varying spectral envelope of the speech
signal. The multipulse model treats the excitation strictly as
a sequence of pulses (typically 4 pulses every 5 ms) whose
positions and amplitudes are determined automatically from
the speech signal. The long delay correlation filter converts
the excitation pulse train into a quasiperiodic signal, for
voiced speech, and into a noise-like signal, for unvoiced
speech, and the short-delay correlation filter models the
spectral envelope in much the same manner as the LPC
all-pole filter of the vocoder model. Finally, the stochastic
model represents the excitation as the sequence, drawn
from a stochastic codebook of random sequences, which,
in conjunction with the long-delay correlation filter and
the short-delay correlation filter, best matches the original
speech signal (in a perceptually weighted sense).

Block diagrams of the full multipulse and stochastic
coders! (called MPLPC and CELP for multipulse linear
predictive coder and code excited linear prediction, re-
spectively) are given in Figs. 7 and 8. For the multipulse

! Although originally the stochastic coders used random codebooks,
most practical systems use codebooks derived from a training set of
excitation vectors. Hence, strictly speaking, such coders are not stochastic.
For historical reasons we will continue to refer to them as stochastic
coders.

202

Excitation

| Fine Spectral Synthetic
| | | | Structure Envelope Speech
i
L[ Voiced LPC ‘
Vocoder Unvoiced ([ All-Pole |—o v
Oj’" Switch Filter
it .
Long-Delay Short-Delay 4
Multi-Pulse %ﬁﬁﬁ—ﬁ-“,—, o—|{ Correfation [—| Correlation |—o
Filter Filter
Long-Delay Short-Detay
Stochastic hMMW ©o—| Correlation || Correlation —0
Filter Filter

Fig. 6. Hierarchy of speech synthesis models, including the
classic vocodor model, the multipulse model, and the stochastic
(code-excited) model.
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Fig. 7. Block diagram of the complete multipulse speech analy-
sis/synthesis system.

coder, the difference between the original speech s, and
the current synthetic signal §,, (called the objective error in
this figure) is perceptually weighted, squared, and averaged
over a few 10’s of milliseconds to give the perceptual error,
which is then used to derive an improved excitation signal
set of pulses for the synthesizer (i.e., the upper blocks
in Fig. 7). This process is iterated, for each 5-ms frame,
until the difference in the perceptual error from iteration to
iteration becomes negligible. Similarly, for the stochastic
coder of Fig. 8, each codebook excitation sequence is used
as input to the synthesizer. For each 5-ms frame, the coder
chooses the codebook sequence which gives the minimum
perceptual error over all codebook entries.

By way of example, Fig. 9 shows waveforms, from the
stochastic synthesis model, for the first 100 ms of a typical
speech waveform. Shown in the figure are the stochastic
excitation sequence (the top panel), the output of the long-
term correlation filter (the second panel), the decoded
speech (the output of the short-term correlation filter), and
the original speech signal for comparison purposes. The
high-quality reproduction capability of the stochastic model
is clearly seen in this figure.

B. Bandwidth of Speech and Audio Signals

A key factor in determining the number of bits per
second required to code a speech (or audio) signal is the
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Fig. 9. Typical waveforms of various input and output nodes of
the stochastic coder.

signal bandwidth. Figure 10 shows a plot of speech and
audio signal bandwidth for four conventional transmission
and/or broadcast modes; namely, conventional telephony,
AM-radio, FM-radio, and compact disc (CD). Conventional
telephone channels occupy a bandwidth from 200 to 3400
Hz; AM-radio extends the bandwidth on both ends of the
spectrum to cover the band from 50 to 7000 Hz (this is
also the bandwidth that most audio/video teleconferencing
systems use for transmission of wideband speech); FM-
radio extends the spectrum further (primarily for music) to
the range 20 to 15000 Hz; and the range for CD audio is
from 10 to 20 000 Hz. Associated with these different trans-
mission and broadcast modes are digital coding standards
which we will discuss later in this section.

C. Evaluation of Speech and Audio Coders

All (digital) speech coders can be characterized in terms
of four attributes; namely, bit rate, quality, signal delay,
and complexity. The bit rate is a measure of how much
the “speech model” has been exploited in the coder; the
lower the bit rate, the greater the reliance on the speech
production model. Quality is a measure of degradation of
the coded speech signal and can be measured in terms
of speech intelligibility and perceived speech naturalness.
Signal delay is a measure of the duration of the speech
signal used to estimate coder parameters reliably for both
the encoder and the decoder, plus any delay inherent in
the transmission channel. (Overall coder delay is the sum
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Fig. 10. Plot of speech and audio frequency bands for telephone,
AM-radio, FM-radio, and compact disc audio signals.

of the encoder delay, the decoder delay, and the delay in
the transmission channel.) Generally the longer the allowed
delay in the coder, the better the coder can estimate the
synthesis parameters. However, long delays (on the order
of 100 ms) are often perceived as quality impairments and
sometimes even as echo in a two-way communications
systems with feedback. Finally, complexity is a measure
of computation required to implement the coder in digital
signal processing (DSP) hardware.

The “ideal” speech coder has a low bit rate, high per-
ceived quality, low signal delay, and low complexity. No
ideal coder as yet exists with all these attributes. Real
coders make tradeoffs among these attributes, e.g., trading
off higher quality for increased bit rate, increased delay, or
increased complexity.

To illustrate the current status of quality of telephone
bandwidth coders, Figs. 11 and 12 show plots of speech
intelligibility (as measured in terms of diagnostic thyme test
(DRT) scores), and speech quality (as measured in terms of
mean opinion scores (MOS)) for a range of coders spanning
bit rates from 64 kb/s down to 2.4 kb/s. (Also included in
these figures are scores for uncoded telephone bandwidth
natural speech.) The coders used in these tests included:

1) p-law pulse code modulation (PCM) at 64 kb/s
2) adaptive differential pulse code modulation (AD-
PCM) at 32 kb/s

3) low delay code-excited linear prediction (LD-CELP)

at 16 kb/s

4) vector sum excitation linear prediction (VSELP) at 8

kb/s (more precisely 7.950 kb/s)

5) code excited linear prediction (CELP) at 4.8 kb/s

6) linear predictive coding (LPC10 E) at 2.4 kb/s

The PCM and ADPCM coders are simple waveform
coders with fixed or adaptive quantizers; the LD-CELP,
VSELP, and CELP coders are stochastic coders; the LPC10
E coder is a US Government standard version of a vocoder
model.

The DRT test measures intelligibility of speech in terms
of distinguishing minimally distinct pairs of rhyming words,
e.g., /bat/ and /pat/. It can be seen from Fig. 11 that the
intelligibility scores for coders with bit rates of from 64
down to 4.8 kb/s are essentially identical, and only slightly
lower than that of natural speech. At 2.4 kb/s a further slight
degradation in intelligibility is observed. However, for the
most part, all the coders maintain high DRT scores.
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Fig. 11. Speech intelligibility scores in terms of diagnostic
thyme test (DRT) of several coders as a function of bit rate
(PCM: pulse-code modulation; ADPCM: adaptive differential
PCM; CELP: code-excited linear prediction; LD-CELP: low-delay
CELP; LPCI10 E: linear prediction coding).
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Fig. 12. Speech quality mean opinion scores of several coders as
a function of bit rate.

The MOS test of speech quality uses a 5-point rating
scale, with the attributes:

1) 5, excellent quality, no noticeable impairments

2) 4, good quality, only very slight impairments

3) 3, fair quality, noticeable but acceptable impair-

ments

4) 2, poor quality, strong impairments

5) 1, bad quality, highly degraded speech
MOS scores are derived by averaging the responses of a
large number of listeners, and are highly variable from
test to test. To reduce the variability, MOS tests generally
use a high-quality speech signal (either original speech or
high-quality coded speech) as an anchor to stabilize the
judgements of quality of the coded speech signals. Typical
MOS scores for the high-quality anchor signals range from
4.0 to 4.5.

As can be seen in Fig. 12, there are significant differences
in MOS scores among the different telephone bandwidth
coders. The MOS score for the natural speech is 4.5, and
all coders with bit rates from 16 to 64 kb/s achieved
MOS scores of 4.0 or higher. Such high MOS scores
are considered both necessary and sufficient for network
applications of coders (e.g., transmission of speech) in
which very high quality is required. At 8 kb/s, the MOS
score of VSELP falls to 3.8, slightly below the level
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required for network applications, but quite useful in the
noisier cellular network. At 4.8 and 2.4 kb/s, the MOS
scores of the coders fall in the range of 2.0-3.0; such
coders are acceptable primarily for military applications
in which low bit rate is essential for secure (encrypted)
communications.

D. Applications of Telephone Bandwidth Speech
Coders in Telecommunications

There are four broad areas of applications of telephone
bandwidth speech coders (outside of direct network trans-
mission of coded speech) in telecommunications, namely:

1) voice messaging, including voice mail systems of all
types

2) voice response, including coded messages in response
to user queries via touch-tone or speech (recognition),
and various information retrieval services. Voice re-
sponse includes applications that answer as well as
originate calls, and may use audiotex.

3) digital telephone answering machines, including
coded prompts for time-of-day/date stamping of in-
coming messages, and coding of incoming messages

4) security devices, for encryption of sensitive voice
information and transmission over channels of limited
bandwidth.

In the following sections we discuss each of these areas in
more detail.

1) Voice Messaging: Voice messaging is the technology
to create, store, transmit, and deliver messages in voice
form to either a personal voice mail box, or a network mail
box for delivery at a later time. The fundamental premise
behind voice messaging is that the majority of voice calls
are fundamentally one-way information flow calls, and
therefore do not need a network connection between two
or more parties with the ensuing dialogue.

The advantages of voice messaging (over standard dialed-
up calls) are as follows:

1) Increased messaging efficiency and accuracy; since
voice messages are one-way calls, the lengths of these
calls are significantly less than standard two-way
calls—hence the amount of time it takes to “get across
the message” is less than for standard telecommunica-
tions. This often leads to reduced phone bills for the
caller and reduced load on the telecommunications
network.

2) You reach the party you want, not a secretary; this
feature gives everyone equal access to busy exec-
utives, business colleagues, etc., and provides the
opportunity to present ideas that are unfiltered by an
executive assistant or other intermediary.

3) Elimination of telephone call interruptions; all incom-
ing messages can be queued up and answered in one
session, rather than intermittently during the course
of a day.

4) Ability to send messages without regard to time; this
feature is essential to business travelers, colleagues in
different time zones, etc., since a voice message can
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be sent when the person is ready to send it, without
having to wait for when the recipient is available to
receive it.

S) Ability to forward messages; this feature enables the
recipient of the voice message to decide the right
person (or persons) to whom the voice message
should go to.

6) Ability to easily retrieve messages anywhere, any-
time; this feature provides the convenience of com-
munications whenever the recipient of the voice mes-
sage is ready to act on the message, and wherever the
person is located at the time.

7) Ability to broadcast messages; this feature allows
the recipient of the message to share its contents
with a broader audience without interpretation or
modification of the original message content.

8) Privacy; this feature provides the security that the
voice message can only be retrieved by the person to
whom the voice message was sent.

9) Ability to reach party in a single call attempt; this
eliminates the frustration of waiting for a busy line
to become free, or of being routed from one party
to another in order to try to get the attention of an
executive of some company, or of telephone tag.

10) Eliminates queues in calling; this feature is another
time-saving feature since the call is handled by the
voice messaging center which has far more lines
(hence less waiting) than most ordinary businesses
provide.

Overall, these very significant advantages of voice messag-
ing have enabled voice mail to replace the written memo in
many instances of daily communications in the workplace.

Types of voice messaging systems: Voice  messaging
systems all fundamentally perform the same func-
tion—namely, preserving a voice message in digitally
coded format for non-real-time access at the convenience
of the party to whom the voice message is addressed. Voice
messaging systems differ in several aspects, including the
physical location of the messaging system, the type of
coding used to store the messages, the location of the voice
mailboxes, and the degree of networking that the system
is capable of addressing.

A simple classification scheme for voice messaging sys-
tems is in terms of where the processing for coding, storing,
transmission, and decoding of messages takes place. There
are four broad classes of systems, based on these criteria,
including:

1) stand-alone systems. This type of system is inde-
pendent of the network used for transmission of
the messages and usually consists of hardware and
software for coding, storing, and decoding messages
located on customer premises. Such systems generally
provide a range of voice messaging services such as
the ability to broadcast voice messages to specified
groups of people at specified times, dates, etc. Typical
vendors of these systems include Octel, VMX, and
Centigram.
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2) PBX-based systems. This type of system is attached
to and slave of a PBX. Hence the system is physically
located on the premises of the network provider
of the transmission and switching equipment. Full
functionality of voice messaging services is usually
available with these systems including essentially
unlimited mailbox capability, mailbox searching for
individual stored messages, message cataloging and
archiving, variable rate playback of messages, mul-
tiple mailbox per user capability, etc. By the end of
1992, it was shown that about 50% of new PBX sales
included voice-mail capability. Typical providers of
PBX-based voice messaging systems include AT&T
(Audix), Northern Telecom, and ROLM.

3) PC-based systems. This type of system is geared
to an individual user and provides the key feature
of integration of electronic mail (e-mail) with voice
mail, so that all storage, coding, and decoding of the
voice mail is performed on the local PC. Hence the
cost of these individual voice messaging systems is
low. A typical PC provider of voice mail is NOVELL.

4) Service bureau messaging. This last type of voice
messaging system is a reselling of systems by third
party organizations. Instead of having to purchase
their own voice messaging system, companies essen-
tially “rent” voice mail boxes and associated services
from the service bureau. Hence individual users can
select the services they need, and easily change
capability over time as the demand for such services
changes with growth (or slow down) of business. The
major service bureau for messaging is TIGON with
on the order of 100000 users by the end of 1992; the
RBOC’s are also beginning to provide this service.

2) Voice Response Systems: Voice response systems con-
sist primarily of prerecorded and digitally coded announce-
ments, and words and phrases, which are used to pro-
vide voice responses to customers from queries made
via telephone connections to either companies or specific
customer-accessible databases. There are two broad classes
of voice response system; namely, automated attendants and
interactive voice response (IVR) systems.

Automated attendants provide either voice routing of
calls (via either touch-tone or spoken queries), or voice
routing of voice messages (again via either touch-tone or
spoken queries). Hence the typical automated attendant, in
response to a customer dialing into a corporation, provides a
voice response prompt asking the customer to enter a code
for the type of service (or for an individual) requested.
Based on the entered code, either a live attendant is
provided, or additional voice prompts are used to guide
the customer.

Interactive voice response systems are used either to
dispense specific repetitive information (e.g., weather in
different cities, traffic conditions on highways, airplane
arrival and departure times, etc.), or to provide user-
requested information as retrieved from a dynamic database
(e.g., stock price quotations, airline fares, availability of
tickets to specific theater shows, etc.).
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Fig. 13. Plot of the growth in sales of voice processing equipment
from 1989 to 1993.

IVR systems have grown rapidly in the past few years
and have been installed in virtually every call center across
the United States. The reason for the growth in the use and
popularity of IVR systems is that (as estimated by Travelers
Insurance) about 60% of all calls to major corporations do
not require simultaneous conversation (i.e., need to access
a live attendant).

The benefits of interactive voice response systems include
the following:

1) The desired information can be obtained more rapidly
and significantly less expensively since the systems
do not require live attendants to be available for most
queries.

2) Services can be available 24 h a day; hence the user
can avail himself (or herself) of the service whenever
he (or she) desires.

3) The call can be kept private since live attendants are
not required.

4) The information provided can be easily kept up-to-
date and consistent across a wide range of services.

5) Allows live attendants to concentrate on calls requir-
ing personal attention.

6) Provides the capability of multilingual systems so that
the information and voice prompts can be provided
in the language of choice of the user.

To illustrate the ubiquity of voice response applications,
consider the following generic applications that currently
use voice response to interact with customers:

1) call screening. For this application the system asks
the customer to provide specific information (e.g.,
credit card number, type of interaction, etc.) so as
to give the live attendant enough information to help
the customer more rapidly.

2) call scheduling. For this application the system acts
as a reminder service to help the customer wake up
at specified times, remember appointments, birthdays,
anniversaries, or even to schedule work tasks such as
servicing or repairing equipment at specified times or
as needed.

3) call processing. For this application the system pro-
vides either call forwarding (if the customers wants
to speak to a particular individual), or routing to an
alternative party when the callee is unavailable.
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4) order tracking. For this application either the cus-
tomer, or the salesperson, can determine the status of
individual orders by interactively accessing service
order records.

5) business locator service. For this application the
system provides the address and telephone number
of the nearest location of a specified business (e.g.,
car dealer, department store, Pizza Hut, etc.) to the
customer.

6) catalog services. For this application the system
provides access for ordering from a range of cata-
logs—either user-specified, or based on a profile of
the caller’s interests.

Some specific industries which use IVR systems as part
of their everyday business include:

1) banking: for access to accounts, loan information;

2) education: for student registration, grade reports, ac-
count balances, tuition payments;

3) cable TV: for ordering of pay-per-view programs;

4) airlines: for flight status, routing and scheduling of
flight plans, preflight check-in;

5) insurance: for routing of calls, updates on checks;

6) utilities: for service and billing information, handling
of work orders;

7) transportation: for status of shipments;

8) medical: to verify training and employment history
of job applicants;

9) retail: for automation of help desk services;

10) financial: to provide stock prices, information on

trades, and for alerting services;
11) shipping: to provide status of shipments.

3) Markets for Voice Messaging and Voice Response: To
illustrate the growth in the markets for voice messaging
and voice response systems, Fig. 13 shows a graph of the
sales of such systems in the US from 1989 through 1993
(estimated for 1993). It can be seen that the market for
voice messaging systems has risen from about $290 M in
1989 to about $500 M in 1993 (estimated), whereas the
voice response market sales has risen from about $630 M
in 1989 to almost $1.1 B in 1993 (estimated).

A breakdown of the US market for Voice Messaging
market for 1991 is shown in Fig. 14. The market leader
that year was Octel with 23% of sales, followed by AT&T
with 16% of sales, then Northern Telecom (11%), ROLM
(9%), VMX (7%), Centigram (7%), and others providing
the remaining 27% of the business. It is seen that no single
company dominates the Voice Messaging market.
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Similarly, Fig. 15 shows a breakdown of the US market
for Voice Response market for 1991. Here the market
leader was AT&T (Conversant Systems) with 14% of sales,
followed by Syntellect (10%), Intervoice (8%), Periphonics
(8%), Perception (6%), Brite (5%), with 49% of sales going
to other providers. It is again seen that no single company
dominates the Voice Response market.

E. Telephone Answering Machines

Another evolving class of applications of speech coders
is in digital telephone answering machines. With the advent
of large, inexpensive, solid-state memories (e.g., 4 and 16
Mb), and with appropriate low rate speech coders (e.g.,
6.6- to 13.0-kb/s range) on the order of 5 min of coded
speech can be stored on a single 4-Mb chip, and on the
order of 20 min of coded speech can be stored on a 16-
Mb chip. Hence the usual 30-min tape drive (with all the
problems associated with mechanical drives, tape dropouts,
tape capstans, etc.) can be effectively replaced by a speech
coding/decoding chip (usually a low-cost DSP chip) and
one or more memory chips to store both the voice prompts
and the incoming messages.

By way of example, Fig. 16 shows a picture of the
AT&T 1343 Digital Telephone Answering Machine. This
machine has multiple voice prompts, and storage for both
announcements (using LPC10 E coding at 2.4 kb/s) and 28
min of incoming messages [using RPE-LTP (Regular Pulse
Excitation with Long Term Prediction) coding at 13.0 kb/s].

F. Telephone Security Devices

One last general area of applications of voice coding in
telecommunications is the area of security. Such systems
both encode the telephone speech digitally and encrypt the
resulting bit stream using some data encryption standard
such as DES (data encryption standard). Because of the
requirements (as established by the usage of such devices
by government and military agencies) that such security
devices be capable of communicating over virtually any
military channel, the maximum allowable speech data rates
are in the 2.4-4.8-kb/s range. Two generations of these
security devices have evolved, the first resulting in a
dual-mode system capable of transmission at both 2.4
and 4.8 kb/s (the so-called Secure Telephone Unit (STU
1II) device), and the second (called the Secure Telephone
Device 3600) running just at a 4.8-kb/s rate. The STU-III
uses LPC10 E coding at 2.4 kb/s and CELP coding at 4.8
Kkb/s. The STD 3600 uses RCELP coding at 4.8 kb/s. Fig. 17
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Fig. 16. Photograph of the AT&T 1343 digital Telephone An-
swering Machine.

Fig. 17. Photographs of two telephone security devices. the
AT&T STU-III terminal , and the AT&T TSD-3600.

shows photographs of both the STU-III and the TSD-3600
devices, as produced by AT&T.

G. Standards for Telephone Bandwidth Speech Coding

A key driving force in the widespread use of speech
coding in telecommunications is the standardization of
speech coding algorithms for interoperability in various
transmission systems. Standards have been created for
network applications, for mobile radio/cellular applications,
and for secure voice applications. Figure 18 shows a plot
which illustrates the standards which have been created
in each of these areas. In the area of coding for network
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Fig. 18. The range of bit rates and MOS scores for voice coding
standards for network, cellular, and security applications.

applications, the original p-law PCM standard (G.711) at
64 kb/s was created by the CCITT (now renamed Inter-
national Telecommunications Union—Telecommunications
Standardization Sector or ITU-TS) in 1972, followed by
the ADPCM standard (G.721) at 32 kb/s in 1984, and most
recently, the LD-CELP standard (G.728) at 16 kb/s in 1991.
In the cellular arena, the European digital standard (GSM)
was created in 1988 with a 13.0-kb/s rate, and the VSELP
Northern American digital standard (IS-54) at 8 kb/s was
created in 1989. (There is also a Japanese standard (JDC),
based on VSELP, which operates at 6.7 kb/s which is not
shown in Fig. 18.) Currently, there is renewed activity for
a new 8-kb/s standard as well as activity to create so-
called half-rate digital standards in both Europe and North
America but these standards have not yet been approved.

Finally, the National Security Agency (NSA), has created
secure voice coding standards at both 2.4 kb/s (LPC10 E
or FS-1015) in 1975, and at 4.8 kb/s (FS-1016) based on
CELP in 1989. Although improved coding is used in newer
security devices (e.g., RCELP, relaxed excitation CELP, in
the TSD-3600), there are no standards, as yet, for these
new algorithms.

H. Wideband Speech Coding

Until this point, we have been primarily discussing meth-
ods for coding telephone bandwidth speech. For many
important applications a wider bandwidth is appropriate and
necessary. These applications include:

1) Audio and video teleconferencing where broadened
bandwidth (50-7000 Hz) provides improved sound
quality, more presence of the speaker, and a more
realistic rendering of the actual sound in a room.

2) Digital AM radio broadcasting where the 50-7000-
Hz band is currently used for high-quality voice
transmission.

3) High-fidelity telephony where broadcast-quality voice
is transmitted over cables, fiber-optic networks, or
even the local loop (after modification to eliminate
the current bandlimiting networks).

4) Dual-language programming in audio and au-
dio/video broadcasts of news, TV programs, closed-
circuit lectures, etc.

Based on the growing needs of wideband speech in
telecommunications, standard CELP methods have been
applied and have been shown capable of providing high-
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Fig. 19. Block diagram of PAC (Perceptual Audio Coder).

quality speech (MOS scores of 4.0 or higher) in the
32-64-kb/s range. Current research is focusing on lowering
the bit rate to 16 kb/s while maintaining high quality so as to
provide audio/video teleconferencing at 128 kb/s with 112
kb/s provided for video coding, and 16 kb/s for high-quality
audio coding.

1. CD Audio Coding [4]

With the advent of mass marketed devices for digital
coding and storage of high-fidelity audio, including the
Compact Disc (CD), the digital audio tape (DAT), and
most recently the minidisk (MD), and the digital compact
cassette (DCC), the area of efficient digital coding of high-
fidelity audio has become a topic of great interest and a
great deal of activity. Also driving this activity is the need
for a digital audio standard for the sound for high-definition
TV (HDTV) and for digital audio broadcasting (DAB) of
FM-channels.

To appreciate the importance of coding digital audio
efficiently and with quality which is essentially indistin-
guishable from that of an original CD, consider the bit rate
that current CD’s use to code audio. The sampling rate
of a CD is approximately 44.1 kHz and each sample (for
both channels of a stereo broadcast) is coded with 16-b
accuracy. Hence a total of 44.1 x 2 x 16 or 1.41 Mbps is
used to code digital audio on a CD. Current state-of-the-art
coding algorithms, such as the Perceptual Audio Coder or
PAC developed at AT&T Bell Labs, are capable of coding
2 channels of digital audio at a total bit rate of 128 kb/s
with essentially no loss in quality from that of the original
CD coding [4].

A block diagram of the PAC coder is shown in Fig. 19.
The stereo audio signal (left and right channels) is first
spectrally analyzed, using a high-resolution FFT analysis
of both the sum of the left and right channels, and the
difference of these channels. Next, a perceptual threshold
of noise (distortion) audibility is determined based on our
understanding of masking versus frequency, resulting in
a masking threshold curve of the type shown in Fig. 20,
where the jagged curve is the spectral level of the signal
and the staircase-like curve is the masking threshold below
which noise (distortion) is inaudible. Next, the signals (both
sum and difference) are quantized to the desired bit rate
with the goal of shaping the quantization noise so that it
falls below the masking threshold curve at all frequencies.
Finally, the resulting digital bitstream is Huffman coded
$O as to compress it optimally, at the same time removing
redundancy in the quantizer bit stream.
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Fig. 20. Plot of the spectral energy density of a masked sound
along with the perceptual masking threshold appropriate to this
sound.

Although the exact details of the PAC coder differ
somewhat from the description above, in essence PAC tries
to code the audio signal so as to maximally exploit the
perceptual masking of noise by strong audio signals in
adjacent frequency bands. The success with which PAC (as
well as an earlier AT&T coder called ASPEC, and a Philips
coder called MUSICAM) can code digital audio at 128 kb/s
is shown in Fig. 21, which shows MOS scores for these
coders at total bit rates of 256, 192, and 128 kb/s. It can be
seen that MOS scores of 4.0 or higher are obtained for both
ASPEC and MUSICAM at the higher rates (256 and 192
kb/s); however, at 128 kb/s both these coders have MOS
scores which are significantly below that of the original CD
recording (typically around 4.5). Based on informal internal
tests at AT&T, it can be seen that the PAC coder obtains an
MOS of 4.5 at 128 kb/s. Since the MOS scores of ASPEC
and MUSICAM were obtained in earlier tests, these coders
may also have improved and obtained higher MOS scores
at these rates.

J. Computational Requirements of Coders

A key requirement for most speech coders is that their
computational requirements fall well within the range of
modern digital signal processing (DSP) chips so that the
coders can be implemented both inexpensively and effi-
ciently. Table 1 shows a list of the computational require-
ments, as measured in direct implementations at AT&T
Bell Laboratories (in terms of millions of instructions
per second, or MIPS) for telephone bandwidth coders,
wideband speech coders, and audio coders. Included in the
list of coders are both standard coders (i.e., coders for which
standards are in place) and more recent coders (such as the
time—frequency interpolation coder (TFI) [7]) for which no
standards exist.

For telephone bandwidth coders, it can be seen that as the
compression ratio increases, the MIPS requirements gen-
erally also increase, sometimes disproportionately. Coders
like the TFI coder often require far more computational
capability than can be provided by even the most advanced
DSP chip today. Hence a research goal is to reduce the
MIPS requirements of algorithms while sacrificing as little
quality of the coding as possible.
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Fig. 21. Plot of MOS scores for several audio coders at 256-,
192-, and 128-kb/s total rates.

For both wideband speech, and audio coders, it can
again be seen that the computational requirements of the
algorithms are quite large, thereby severely limiting the
utility of these coding algorithms to broad classes of
applications. As capability of DSP chips increases, and as
understanding of coding algorithms improves, the computa-
tional requirements of these advanced coders generally fall
into the range for mass deployment.

IV. SPEECH SYNTHESIS [8]-[17]

The goal of speech synthesis is to provide a broad
range of capability for having a machine speak information
(respond) to a user. A simple communications model of
a system for voice access to information (e.g., databases)
is shown in Fig. 22. It is assumed that a user wants to
get information into or out of an existing database (e.g.,
pay bills, check account balances, etc.), and that the user
has access to a touch-tone receiver (TTR) or an equivalent
keyboard. (If this is not the case the user can enter requests
for information using voice commands. We will discuss this
alternative further in the next section of this paper.) The
user enters requests for information, via the TTR Keypad,
to a communications interface that transmits the request to a
database manager. The requested information is sent back
to the user (again through the communications interface)
in the form of voice output (synthesized speech) as this
is the only output modality supported on a standard TTR.
Thus the key issue is how to convert the text equivalent of
the database information efficiently to speech for different
applications.

There are three factors affecting the way in which a
synthesis system is implemented for different tasks; namely,
the required quality of the synthetic speech, the range
of speaking vocabulary, and the cost (complexity) of the
synthesis software and hardware. Included in the cost factor
is the storage costs for speech units (dyads, words, phrases),
rules, and dictionaries, as well as the cost of the speech
generation hardware.

A. Typical Applications of Speech Synthesis [11]

There are two broad classes of synthesis applications:
those that require little or no user interaction and those
that are highly user interactive. In the first class are a
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Table 1 Computation Requirements for Speech and Audio Coders

Telephone Bandwidth Speech Coding (3.2-kHz Bandwidth)

Algorithm Rate (kb/s) Compression MIPS Application
PCM 128 1 0 network
Mu-Law 64 2 0 network
ADPCM 32 4 1 network
LD-CELP 16 8 50 network
LC-CELP 16 8 10 voice messaging coder
RPE-LTP 13.0 9.7 10 digital cellular
VSELP 8 16 24 digital cellular
CELP+ 6.8 18.8 30 videophone/digital cellular
RCELP 4.8 26.7 16 Telephone Security Device
CELP 4.8 26.7 30 security
TFI 4 32 150 digital cellular
LPCI0E 24 533 15 security
TFI 2.4 533 120 security
Wideband Speech Coding (7-kHz Bandwidth)
Algorithm Rate (kb/s) Compression MIPS Application
Uncompressed 256 1 0 teleconferencing
Subband Coder 64 4 10 teleconferencing
LD-CELP 32 8 100 teleconferencing
LD-CELP 16 16 400 teleconferencing
Audio Coding (20-kHz Bandwidth Two-Channel Stereo)
Algorithm Rate (kb/s) Compression MIPS Application
Uncompressed 1410 1 0 digital audio
ASPEC-Encoder 256 55 150 digital audio
-Decoder 25 digital audio

PAC-Encoder 128 11.0 230 digital audio

-Decoder 20 digital audio

broad range of telecommunications applications such as the
Automatic Intercept System (AIS), in which a telephone
call dialed to an inactive (or out-of-service) number is
intercepted and an appropriate message with details about
the problem is spoken back to the user; the class of “talking
announcements” such as the local time or weather; and the
class of entertainment and communications services such as
dial-a-joke, dial-a-prayer, daily horoscope, etc. In almost
all cases these noninteractive services are provided using
the Interactive Voice Response (IVR) capability discussed
in the previous section. In some cases, however, it is
both convenient and more practical to use some type
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of text-to-speech (TTS) capability to provide the mes-
sages—especially when they change often in the course
of a day.

Included in the second class of user interactive applica-
tions of speech synthesis are voice servers for reading e-
mail and FAX messages over phone lines; standard database
access services such as voice banking, stock price quo-
tations, sports scores, flight information, etc.; and finally,
services that require the ability to speak unlimited, uncon-
strained text as found in medical textbooks, legal volumes,
and encyclopedias. In almost all cases these user interactive
applications generally require full TTS capability.
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B. Factors Affecting Speech Synthesis

There are three key factors which influence the use of
speech synthesis systems for different applications; namely,
the quality (measured in terms of intelligibility and nat-
uralness) of the synthesized speech, the fluency of the
spoken output (i.e., the ability to create messages with
different vocabularies, emphasis, intonation, speed, etc.),
and the complexity (as measured in terms of both storage
and computation) of the synthesis hardware. To illustrate
the interaction of these three factors for a range of systems,
Fig. 23 shows a plot of where several current systems would
fall in this three-dimensional space. The “ideal” synthesis
system would provide high quality (the resulting speech is
both highly intelligible and natural), high fluency (virtually
any text message could be produced at the desired speaking
rate and with the desired emphasis), and would be low
cost (so that it would be cheap enough to integrate into
any desired application). This ideal system is shown as
the dotted point labeled “Desired Performance” in Fig.
23. Unfortunately, in the real world, there is no practical
system with a performance that even comes close to the
ideal. Instead, as shown in Fig. 23, there are three actual
classes of systems: announcement machines (IVR systems),
as might be used in the AIS application or for Voice Storage
Services (VCS); parametric systems (as exemplified by the
Speak-n-Spell toy introduced by Texas Instruments); and
full TTS systems (such as those by Prose, DEC, Infovox,
and AT&T Network Systems and Conversant Systems).
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Fig. 24. Block diagram of simple voice response system (D/A:
digital-to-analog).

The announcement machine systems provide high-quality
synthesis (since they use prerecorded and digitized speech
messages), but have low fluency (since they can only
speak the prerecorded messages or trivial combinations of
them), and low complexity. The parametric systems provide
low-quality speech (highly synthetic sound), with medium
fluency (they can speak a reasonable range of text), with
low-to-medium complexity. Full TTS systems currently
provide low to medium quality, with high fluency (they
can speak any ASCII text), at relatively high complexity
(primarily for units and dictionaries).

C. Speech Synthesis Technology

Speech synthesis systems can be realized as either simple
concatenation systems, as shown in Fig. 24, or as full TTS
systems, as shown in Fig. 25. The concatenation system
has a stored vocabulary of prerecorded and digitally coded
words and phrases. Based on user actions (e.g., dialing a
disconnected telephone number), a request for a specified
sequence of words and phrases is generated and sent to a
concatenation device that retrieves from the digital store the
coded versions of each of the required vocabulary items,
concatenates the vocabulary items for the message, and
sends the final result to a decoder that produces the analog
speech heard by the user. Thus for the intercept message,
“The number you have dialed, 555-1234, has been discon-
nected,” the concatenation system retrieves, in sequence,
the phrase “The number you have dialed,” followed by
each of the digits in the telephone number, followed by the
phrase “has been disconnected.” For naturalness, usually
several versions of each digit are stored so that a digit at the
beginning of the telephone number has a different duration
and emphasis than the same digit in the middle or at the
end of the telephone number.

For the full TTS system of Fig. 25, the desired message
text is an arbitrary ASCII string (usually, but not always,
with appropriate punctuation), so the first task of the system
is to convert the text string to a sequence of phonetic
symbols (indicative of the sounds to be spoken), along with
a set of prosody markers (indicating the speed of the speech,
the intonation, and the emphasis on certain words). This
“text-to-sound/prosody” conversion involves a combination
of linguistic analyses including dictionary lookup of word
pronunciation and rules for exceptions and unusual cases,
algorithms for generating appropriate word durations, and

211



Dictionary Store Of
And Sound
Rules Units
Assemble [
Message Letter-To- .
Units And 1
Text ] Sound [— c Y D/A 7
(ASCI) Conversion Prosody e
Alphabeti Ph : c Speech
Characters Symbols, Parameters Waveform
Prosody

Markers

Fig. 25. Block diagram of full text-to-speech synthesis system.

algorithms for generating an appropriate pitch and loudness
contour for the speech. Once the appropriate phonetic
symbols and prosody markers have been determined, the
next step in the TTS process is to assemble the appropriate
speech units and compute the pitch and duration contours
for the speech. To do this a store of elemental sound units is
required. Creation of an appropriate set of these synthesis
units is both time-consuming and difficult, as these units
must be robust to different phonetic environments, yet must
be rich enough to disambiguate sound combinations that are
different in minimal ways. Experience with several AT&T
TTS systems shows that sound inventories of from 2000 to
4000 dyad/polyad units (dyads are spectral representations
of time slices from 2-phone sequences, polyads are spectral
representations of time slices from sequences of 3 or
more phones) are required for good-quality synthesis [15].
Other systems (e.g., Dectalk, Prose, Infovox) use formant
synthesis methods, rather than storing dyad inventories [8],
[9], [13], [14], [16]. The final steps in the TTS process
are synthesis from spectral parameters appropriate to the
sequence of synthesis units, and digital-to-analog (D/A)
conversion of the resulting speech to render it useful for
transmission back to the user.

D. TTS Text Analysis

In order to create the correct phonetic symbols for words
from text, several text analysis procedures must be used so
as to resolve ambiguity of several types. To illustrate these
problems, consider the following sentences:

1) Dr. Jonasz lives on Bourban St. in St. Louis

2) The nine lives of Felix the cat of Segamore Dr.

3) The prject is giong well—at least until BCSys and

NCR get their acts together.

Consider the ASCII text /Dr./ which is pronounced as
/Doctor/ in Sentence 1 and as /drive/ in Sentence 2;
or the text /St./ which is pronounced as /Street/ at the
first occurrence in Sentence 1, and /Saint/ at the second
occurrence. Other issues include words like /lives/ which
are pronounced as “livz” when it is a verb in Sentence 1,
and “laivz” when it is a noun in Sentence 2; acronyms like
/BCSys/ and /NCR/ in Sentence 3 which are essentially
undefined as to how they should be pronounced; typos
like /prject/ and /giong/ in Sentence 3; foreign names
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Fig. 26. Flow diagram of linguistic analyses of text used in the
TTS system of Fig. 25.

like /Jonasz/; and finally unusual punctuation which often
signals a pause or other durational cues.

In order to properly handle the text problems discussed
above requires a series of linguistic analyses of the text, as
outlined in Fig. 26. First the incoming ASCII text is nor-
malized so as to expand common abbreviations like /Dr./
and /St./, and to expand punctuation, number sequences,
dollar amounts, etc. The text normalization module also
finds and marks acronyms for later analysis by the word
pronouncing module. The normalized text is then fed into
a syntactic parser which determines both the grammatical
structure of the text and the part of speech (POS) for
each word in order to resolve verb/noun or adjective/noun
ambiguities, among others. A semantic analysis is also
made to provide a representation of the meaning of the
text to aid in word pronunciation. Next a series of phonetic,
phonological, and morphological analyses of words is made
to derive the appropriate set of word pronunciations based
on both a large word dictionary and a set of letter-to-sound
rules for cases where the dictionary derivation fails (e.g.,
proper nouns, foreign words). The current AT&T English
word dictionary stores 57000 different word pronuncia-
tions. Based on a prefix, root, and suffix analysis, the
dictionary was compressed to 30000 roots, which, when
expanded, provided accurate coverage (in terms of word
pronunciation) of 166000 words. In addition to the root
dictionary, a second dictionary of common names is used
to aid in the pronunciation of proper names. This, along
with appropriate letter-to-sound rules, provides good name
pronunciation accuracy for a large percentage of common
surnames in the United States.

To understand how difficult a problem accurate pronun-
ciation of proper names can be, consider the following
statistics from the RH Donnelly list of the 1.5 million
most common surnames in the US. The 5000 most common
names cover 59.1% of the 1.5 million list; the 50 000 most
common names cover 83.2% of the list; the 200000 most
common names cover 93.0% of the list. Hence a small name
dictionary, along with appropriate letter-to-sound rules, is a
good compromise for accurate proper name pronunciation.

The final linguistic analysis that is performed in the TTS
system is a discourse analysis to quantify relationships
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among sentences and ideas (in a paragraph). This type of
analysis identifies places where pauses should be inserted,
as well as places where emphasis should be placed or
removed so as to clarify ideas within a broad context. Hence
the discourse analysis aids in assigning prosodic features to
words and phrases, and in choosing the most appropriate
intonation and duration contours for the speech.

1) TTS System Performance [17]: The only proper way
to judge TTS performance is to listen to one or more
paragraphs of speech produced by the system. Without this
capability, the next best way of describing TTS perfor-
mance is in terms of intelligibility scores and MOS scores of
quality. The best TTS systems achieve word intelligibility
scores of close to 97% (natural speech achieves 99%
scores); hence the intelligibility of the best TTS systems
approaches that of natural speech. MOS scores for the best
TTS systems are in the 3.0-3.5 range, indicating that the
current quality is judged to be in the fair-to-good range.
The computation necessary to support full TTS systems
is modest by today’s standards (2 MIPS processing), with
somewhere between 2 and 6 Mbytes (MB) of memory
required for units, dictionaries, rules, and program code.

2) Requirements for Improved TTS [10], [12]: In order to
improve the quality (naturalness) of current TTS systems,
three areas must be addressed. These include:

1) Improved model of source-filter interactions: The
current model, which assumes independence between
the vocal tract source excitation, and the vocal tract
filter, is grossly inadequate—especially when trying
to model female speech. A more realistic model,
possibly incorporating nonplane wave propagation
in the vocal tract, is required, along with improved
understanding of how the source rate of periodicity
influences the vocal tract shapes, for female talkers,
$0 as to transmit the most sound energy through the
vocal tract.

2) Improved prosody rules: Experiments have shown
that when natural duration and pitch are “copied” onto
a TTS utterance, while preserving the sound units that
the TTS system generates from the text, the quality of
the resulting synthetic speech improves dramatically.
Hence it is mandatory to develop better rules for
generating duration and pitch contours for utterances.

3) Improved linguistic analyses: Although current
linguistic analyses have provided significant
improvements in naturalness of TTS systems, they
still have a long way to go before the system sounds
like it “knows what it is talking about.” Until such
understanding of what it is saying is achieved,
TTS systems will sound choppy and “unsure of
themselves” over time.

E. TTS Applications

In spite of the synthetic quality of current TTS systems,
a number of interesting and important applications of TTS
have evolved and are currently in use. These include the
following:
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1)

2)

3

4)

5)

6)

7)

8)

9)

10)

1D

Network voice server which provides access to either
e-mail or FAX via synthetic speech. Clearly, this
service is invaluable to people “on the go” who
have no direct access to alternative communications
services, e.g., terminals, FAX machines.
Voice previewer for draft material which provides an
alternative medium (to reading) to spot errors in text,
determine improper constructions, and, in general, to
get a feeling for the message contained in the written
material.
Information about course availability which provides
students with an opportunity to “hear” more about
potential courses than can be included in a standard
catalog, or to provide “up-to-date” course informa-
tion.
Feedback on installation and repair of telecommuni-
cations equipment which provides service people with
direct feedback on special requirements, checks out
the equipment, and provides straightforward verifica-
tion that the servicing was done correctly.
Wakeup/reminder call services for hotels which pro-
vide individualized messages for travelers to remind
them of appointments, schedules, or just to get them
out of bed in the morning.
Automated order inquiry and status which enables
both salespeople and customers to track orders from
inception to delivery. This service is especially sensi-
tive to proper name pronunciation as it is personalized
to individual salespeople and customers, as well as to
products which often have distinctive names associ-
ated with them.
Course registration which enables students at univer-
sities to compete for available courses on a fair basis
(i.e., without waiting in endless registration lines) and
to modify schedules easily in response to unavailable
courses and conflicts in schedules.
Directory assistance (including addresses) which en-
ables customers to access directories of names and
addresses directly without going through the delay
or expense associated with an attendant. Again this
application is especially sensitive to accurate pronun-
ciation of both proper names and street addresses.
Business locator service which enables customers to
find the nearest location of a business or service
without the help of an attendant and without the need
to call the business directly. This application could
also be coupled with a direction finder to enable the
customer to determine the “best” way to travel to the
location provided by the service.
Reverse directory assistance providing the customer
with the name and address associated with a spec-
ified telephone number so as to allow customers to
screen incoming calls in order to decide which ones
to answer directly, and which ones to defer to some
type of messaging service.
Banking services providing the customer with access
to and control of bank accounts including account
status, check status, and bill paying options.
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12) HELP service lines for medical and legal services,
documentation on equipment, and for help in getting
repairs done, either by the service person or for the
home hobbyist.

13) Dual party relay service which is a federally man-
dated service to help speech and/or hearing impaired
customers avail themselves of telecommunications
services. We discuss this particular application of
TTS more thoroughly in the next section.

1) Dual Party Relay Service: A key application area for
TTS is the dual party relay (DPR) service which is an
800 service and provides a means for speech and/or hear-
ing impaired customers to “hold a conversation” with a
nonimpaired customer using a device called a Telecom-
munications Device for the Deaf (TDD). The TDD is a
keyboard which allows the impaired user to generate text
sequences which are transmitted to an attendant who speaks
the text to the nonimpaired user. Similarly the attendant
“translates” the speech from the nonimpaired user to a text
sequence which is transmitted to the impaired user. The
disadvantages of this normal DPR service include: lack of
privacy, as the attendant has direct access to both sides of
the conversation; cost, since the attendant is tied up for the
duration of the call; speed, since the attendant has to see
a sufficient amount of the text to speak it, and a sufficient
amount of the speech to convert it to text properly; and,
potentially, accuracy as the attendant must follow both the
text and the speech without often understanding the context
of the conversation.

The way in which TTS is utilized is to provide a direct
link between the impaired user and the hearing party by
translating the TDD text directly to speech. In this manner
there is potentially great cost savings as an attendant is
not needed for the majority of time of the call (only
for translating from speech to text), and greatly improved
privacy since no single attendant “hears” more than a small
fraction of any call.

The major problems associated with DPR using TTS
are related with the freely generated TDD texts, whereby
customers use constructions that are specialized to the
application, along with nongrammatical inputs, a lack of
punctuation, and a high frequency of improperly spelled
words. Hence a typical TDD sentence might be:

“When Do I Will Call Back U Q Ga”

where the “U” is short for “you”, the “Q” is a question
indication, and the “Ga” is the command to “Go ahead”,
i.e., respond to the text. The TTS system must not only
handle these unusual, ungrammatical, constructions, it must
do so in near real time. Hence it cannot process the entire
TDD text sequence to detect and correct errors but must
do so in an almost serial manner as the text is received.
Further, it must determine syntactic breaks sequentially,
without knowledge of what text follows. These issues are
difficult to handle with clear text; with DPR text they are
even more difficult to get right.

By way of example, the following paragraph illustrates
the problems associated with linguistic analysis of DPR
text:
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“we are real very enjoying with the CRS thats what they
are very good service and very good impression to us as
they are very manner to do good for us and they always
accept us for call for us as good respectful what we want to
tell something and important and many things as we need
to have”

The ability to parse such text and provide appropriate, and
correct, pauses is crucial for this application.

V. SPEECH RECOGNITION [18]-{26]

The goal of speech recognition is to provide enhanced
access to machines via voice commands. The idea of
“enhanced” access is a key one since, for most applications,
there are viable alternatives to voice control, including key-
boards, touch panels, mice, etc. Thus for voice technology
to be of value means that the voice interface to the machine
has to be a natural one in which voice input is a reasonable
way of requesting information, and the interface performs
reliably (with high accuracy) and robustly for all users and
in all environments. Figure 27 shows a block diagram of
a communications model of voice access to and control of
a machine. In order to access a database of information,
the user is assumed to speak commands in the form of
either an isolated word sequence or as a sequence of words
drawn from a small vocabulary (e.g., digits). We refer
to this second form of spoken input as connected word
sequences. Recognition of the spoken input is based on
whole-word patterns; hence, the output of the recognizer
is either the appropriate command word, or a recognized
sequence of words. A communications interface is used to
access the database for the appropriate information, which
is transmitted back to the user using TTS messages.

There are a wide range of factors that influence per-
formance of speech recognition systems, including the
following:

1) Speaking format: There are three standard modes
of speaking to a machine; namely, isolated word
(phrase) mode, connected word mode, and continuous
speech mode. Isolated word (phrase) recognition is
primarily used for so-called “command and control”
tasks where the machine responds appropriately to
each spoken command. Connected word recognition
uses fluent speech with highly constrained vocab-
ularies and is used for tasks such as order entry,
credit card validation, and digit dialing, where se-
quences of words (e.g., digits) specify the information
being sought by the machine in order to enable
completion of some transaction. Finally, continuous
speech recognition is used for dialog sessions with
the machine in order to perform tasks such as data-
base management and access, voice dictation, and
language translation.

2) Degree of speaker dependence: This factor de-
scribes whether the recognition system needs to be
trained to the speech patterns of individual users (so-
called speaker-dependent [SD] systems), or can work
reliably with users who have never (or seldom) seen
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Fig. 27. Communications model of database retrieval system using speech recognition to transmit

database requests for information.

or used the system (so-called speaker independent
[SI] systems).

3) Vocabulary size and complexity: This factor de-
scribes the range of vocabulary words and phrases
which the system understands. There are many useful
and interesting tasks requiring small to moderate size
vocabularies (e.g., digit strings, simple commands
from menus); however, ultimately systems must be
able to reliably recognize upwards of 50000 words
for tasks such as voice dictation of letters, natural
language access to databases, etc.

4) Task constraints: As the recognition vocabulary size
grows, the number of possible combinations of words
to be recognized can grow exponentially. Hence,
some form of task constraint, in the form of formal
syntax (defining which words can follow other words
in different contexts) and formal semantics (defining
which sentences make sense for the current status of
the task transaction) is required to make the recogni-
tion task more manageable, by reducing the number
of possible word candidates at any point in the
utterance, and thereby providing higher recognition
task accuracy.

5) Cost, method of implementation: Speech recog-
nition by machine is often computationally quite
expensive (upwards of 1 gigaflop/s is required for
real-time operation for some problems). Hence, a lim-
iting factor is often what can be done with reasonable,
but limited, computational resources.

A. General Applications of Speech Recognition

Applications of speech recognition technology fall into
two broad areas; namely, telecommunications and busi-
ness applications. In the telecommunications area, some
representative applications include:

1) Expanded use of rotary phone for menu-based
(IVR) services: Such services currently are unavail-
able without a touch-tone phone. In addition, even
for users with access to touch-tone phones, a voice
recognition interface can be more attractive than
the standard button-pushing alternative because the
service names are spoken rather than having to push
buttons associated with the service. Thus for access to
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2)

3)

different parts of a department store, it is more natural
to speak the words “hardware” or “furniture” rather
than to remember to push Button 3 for “hardware” or
Button 5 for “furniture.”

Repertory dialing: Voice dialing of telephone num-
bers and names provides the opportunity for hands-
free, eyes-free control and use of a telephone. This is
especially important for mobile telephony when the
eyes and hands are usually tied up with the process
of driving and controlling an automobile.

Catalog ordering: Most catalogs consist of letter and
number codes attributed to each item in the catalog,
often with a great deal of redundancy built into the
codes. Hence, ordering items from a catalog, by voice,
is a natural way of interacting with the database of
items associated with the catalog.

In the business area, some representative applications
include:

1)

2)

3)

4)

Data entry for filling out forms: Such applications
are highly repetitive and generally are performed
by a small staff of people who can afford to train
the system to recognize individual word patterns.
Typically, vocabularies for this application are small
to moderate in size (e.g., from 10 to 200 words).
Keyboard replacement or expansion: Here the
recognition task is to replace sequences of keystrokes
with a single voice command (a voice macro) or to
replace the keyboard entirely using spoken input.
Database access: The recognition task is to query a
database to determine specific information contained
within the database. Hence, an airline’s reservation
system could be queried to determine available flights
between specified cities, flight costs, type of aircraft,
etc.

Test, inspection, and process control in manu-
facturing: Here the recognition task provides eyes-
free, hands-free, access to monitoring any step in
the manufacturing process so as to detect defects,
production problems etc.,

B. Speech Recognition Technology [22], [24], [25]

Before reviewing some basic techniques for speech
recognition by machine, it is worthwhile discussing the
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word recognition.

question as to why speech recognition is so difficult.
Although there is no simple answer here, perhaps the
most important factor which limits performance of various
systems is variability. This variability comes in different
forms including:

1) variability of sounds (e.g. words, phrases, subword
units) both within a single speaker and across speak-
ers;

2) transducer/channel variability including differences in
signal characteristics due to the use of carbon button
and electret microphones, speakerphones, and cellular
phones;

3) background noise variability from extraneous speech
(e.g., TV, radio, side conversations) or from transient
acoustic events such as road noise, door slams, etc.;

4) speech production variability including mouth clicks,
breath noise, hesitations in speaking, and extraneous
speech.

A key factor is that the sources of variability cannot
generally be eliminated; hence they must be modeled
directly in the speech recognition technology.

Based on the above, there are three things a speech

recognizer must handle properly, and these include:

1) Speech detection, i.e., the separation of speech from
the background so that recognition is performed only
on speech input provided by the user.

2) Recognition of the spoken input, based on pattern
recognition technology (including both determinis-
tic and statistical methods), or on acoustic—phonetic
methods, or on neural network methods.

3) Human factors, properly accounting for the presence
of extraneous speech, associated “uhm’s” and “ahs,”
and cases where the user backed up and started over.

Although several approaches to speech recognition have
been proposed, the most popular (and successful) approach
has been one based on standard pattern recognition tech-
nology, as illustrated in Fig. 28. Basically, the system uses
a set of word and/or phrase patterns created using a pattern
training program. These patterns can be typical spectral
patterns of words, averages of spectral patterns of words
across different talkers, or sophisticated statistical models
that include spectral mean and spectral variance statistics
derived over the time duration of the word.

The way in which isolated word recognition is carried

out once the vocabulary patterns have been created and
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Fig. 29. Statistical pattern recognition model applied to speech
recognition.

stored is to record the input speech features (called the
unknown spectral pattern) and to compare them against
each of the stored vocabulary patterns. The pattern that
best matches the input speech features is determined, and,
if the match is close enough, the decision box provides a
response consistent with the recognized word. If the match
is not sufficiently close, no decision is made and the user
either can repeat the word or choose an alternative way of
making the request to the system.

The pattern recognition system of Fig. 28 handles only
the problem of recognizing spoken input. We will see later
on how to handle speech detection and human factors within
the framework of the pattern recognition approach.

1) The Statistical Pattern Recognition Model: Figure 29
shows a more detailed block diagram of the statistical
pattern recognition model for speech recognition. The
speech signal s(n) is first analyzed into a set of short-time
parameters which characterize the time-varying nature of
the signal. These parameters could be spectral parameters,
such as the output signals from a filter bank, a DFT, or an
LPC analysis, or they could be temporal parameters, such
as the locations of various zero or level crossings times
in the speech signal.

The pattern training block creates either templates (aver-
age characterizations of the speech parameters for a given
word or phrase) or statistical models (characterizations
of both the mean and variance of the speech parame-
ters—usually according to a particular statistical model).
The pattern training algorithm for templates is generally
a clustering procedure which tries to cluster parameter
sets from multiple versions of a word or phrase into
consistent groups (clusters) so that the average intracluster
distance between word tokens is significantly smaller than
the average intercluster distance. Figure 30 illustrates this
point by showing each word token as a dot in a simple
parameter space (highly stylized). Groups of word tokens
(dots) are joined together in clusters, e.g., C1 through C5,
where each cluster ultimately is used to create an individual
word template. Also shown in Fig. 30 are so-called outlier
word tokens, O1 through O8, which are too far from any
existing cluster and therefore are discarded in the pattern
training procedure. For statistical models, a segmental K-
means variant on the clustering procedure is used to create
the models.
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The pattern classifier has the job of comparing the
speech pattern from the unknown spoken word (or phrase)
with the stored patterns (the templates or models) and
generating a dissimilarity or distance score for each such
comparison. One key problem that arises when comparing
speech patterns is that of time normalization, as illustrated
in Figs. 31 and 32. Figure 31 (the left side) shows the
log energy contour of two patterns (for the spoken word
/ seven/)-—called the reference (either template or model)
and the test (the unknown input). It can be seen that the
inherent duration of the two patterns, 30 and 35 frames
(where each frame is a 15-ms chunk of speech), is different,
and that linear alignment is grossly inadequate for aligning
events within the two patterns (compare the locations of
the vowel peaks of the two patterns). Hence a procedure,
called dynamic time warping, is used to nonlinearly align
the time scales of the reference and test patterns via
an alignment path which is optionally determined using
a dynamic programming algorithm. The results of the
dynamic time warping are shown in Fig. 32 where we
see, at the top, the linear alignment of the patterns, and,
at the bottom, the nonlinear alignment. It is clear that
the nonlinear alignment is significantly better than the
linear alignment and provides a more realistic measure of
dissimilarity or distance between the patterns.

The final block in Fig. 29 is the decision logic which finds
the closest match to the unknown pattern and decides if the
quality of the match is good enough to make a recognition
decision. If not, the user is asked to provide another token
of the word (or phrase) and the process repeats itself.

2) Hidden Markov Models [18], [19], [21]: The most
popular statistical model used in speech recognition is
the hidden Markov model (HMM). For this procedure,
training consists of estimating the parameters (means and
covariances) of a probabilistic model for each word. To
classify an unknown utterance, one computes the likelihood
that it was generated by each of the models derived during
training. The utterance is (generally) recognized as the
word whose model gives the highest likelihood score.

Figure 33 shows the structure of a standard left-to-
right HMM where the word is represented using a 5-

RABINER: APPLICATIONS OF VOICE PROCESSING TO TELECOMMUNICATIONS

o
S

o
(=}

:
E w B ") ,
i ! z H ,* ]'ALIGNMENT
B VI - g Y PATH
2 . ! . Sy
% 1 1 W B ] . |
4 \ ' e 2 4 ]
[+ ' ' w w A
Z . [ ] g
w I ) w W | 1
R - .
— L] 1 N
: e | |
LY [ . " 1
.} REFEREncE 30 58 ENERGY (dB) % 954 TEST FRAME 35
! |
g g
> >
2 4
W w
z F4
w w
50 50 J
1 TesT FRaME 3% TEST FRAME 39
Fig. 31. The problem of time aligning a pair of word utter-

ances. The left side of the illustration shows energy contours of
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Fig. 32. Results of time aligning two versions of the word
“seven,” showing linear alignment of the two utterances (top
panel); optimal time-alignment path (middle panel); and nonlin-
early aligned patterns (lower panel).

state model. Within each state of the model, the speech
parameters are characterized by several density functions
which are generally some type of mixture of Gaussian
densities. Hence a set of spectral parameters would be
characterized by a set of means, covariances, and weights
of M Gaussian mixtures in an observation density b(O),
whereas log energy would be characterized by a separate
density, as would state duration. Transitions between states
of the model are again statistically characterized by a state
transition matrix whose parameters are estimated as part of
the training procedure.

3) Connected Word Recognition [20], [23]: Tt is rela-
tively simple and straightforward to extend the word
recognition model of Fig. 29 to handle word sequences.
The basic idea is illustrated in Fig. 34 which shows an
unknown word sequence and a group of word reference
patterns which constitute the vocabulary for the recognizer.
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Fig. 34. Illustration of the problem of matching a connected word
string, spoken fluently, using whole word patterns concatenated
together to provide the best match.

The basic idea is that we would like to concatenate
word reference patterns in every possible combination
of 1,2,3,---,L patterns, match these concatenated
sequences to the unknown word sequence, and choose the
concatenated sequence that best matches the spoken word
string. Although such an exhaustive algorithm appears to
grow in computation exponentially with the number of
words in the string, algorithms have been devised which
limit the growth in computation to be linear with the length
of the word string. Hence, with some modification, the
basic speech recognition algorithm of Fig. 29 can be used
to handle connected word sequences.

One could also introduce the concept of a word grammar
into the recognizer, where the grammar serves to restrict the
possible word sequences that are possible for recognition.
For example, a digits grammar could restrict the search
to only 7- or 10-digit strings for telephone numbers, or
to beginning with a known prefix code for credit card
numbers. It is relatively straightforward to integrate such
grammars (when represented as finite-state networks) into
the recognition procedure.

Using the concept of a word grammar with the connected
word recognizer, the problem of segmenting a signal into
regions of speech and background noise becomes one of
recognizing the entire recording interval as a sequence of
“background”—connected words—"background,” which is
readily handled by the system. Thus the only change re-
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quired is to create a reference pattern for the “background,”
and then treat it the same as any other vocabulary pattern,
within the grammatical constraints of the system.

4) Continuous Speech Recognition [18], [19], [26]: The ul-
timate goal of speech recognition is to be able to recognize
fluent (continuous) speech with a vocabulary that is essen-
tially unlimited. Although we have not yet succeeded in
reaching this goal, systems for continuous speech recogni-
tion with vocabularies on the order of 1000-20000 words
currently do exist and work reasonably well in the research
laboratory.

A block diagram of a typical continuous speech recog-
nition system is shown in Fig. 35. The first two blocks of
the system; namely, feature analysis and unit matching, are
essentially the same ones used in word or connected word
recognition (assuming the recognition units are words). The
key difference occurs when the units become subword units,
i.e., when pieces of words, e.g., phonemes, are used instead
of whole words. This leads to the concept of representing
words in terms of a word dictionary (a lexicon), where each
word has one or more decompositions into basic subword
units, and using lexical decoding to match words in the
speech. The final two blocks, namely, syntactic analysis
based on a word grammar, and semantic analysis, based
on a task specification, are used to restrict the sequence
of words that needs to be matched against the input
speech. Since the word vocabularies are generally large,
the restrictions of the grammar and syntax are needed to
keep the matching procedure computationally feasible for
most large vocabulary tasks.

Generally, the last 4 blocks of Fig. 35, namely, unit
matching, lexical decoding, syntactic analysis, and semantic
analysis, are all integrated together into a large finite-state
network which is searched efficiently, using a beam search
procedure, to give the best sentence interpretation of the
spoken input. In this manner, modern workstations can
handle vocabularies of up to 20 000 words in near real-time.

5) Speech Recognition Issues: There are many unre-
solved issues in speech recognition that severely limit its
utility in practical applications. These include the following:

1) Handling speech that is not in the recognition

vocabulary. This problem is pervasive in that it exists
for all speech recognition modes. Hence, even for an
isolated word recognizer, users will often say “yes,
please” when asked to respond “yes” or “no” to a
question. For large vocabulary recognition, the issue
is compounded since most users will not know the
vocabulary and therefore will be unaware they are
using words that the recognizer does not understand.

2) Recognizing speech in noisy environments. This

problem is a key one in automobiles (e.g., for voice
control of cellular phones), in airplanes, train stations,
etc., where the noise level is high, and little can be
done to reduce the level. Robust recognition tech-
niques are required to handle these adverse conditions
for recognition.

3) Adaptive training. Although speech reference pat-

terns are, in theory, derived through a training pro-
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Fig. 35. Block diagram of a large vocabulary speech recognition system (bottom-up approach)

incorporating syntactic and demantic analysis modules.

Table 2 Word Error Rates for a Range of Speech Recognition Systems

Technology Task Syntax Mode Vocabulary Word Error Rate
(%)
Isolated none none SD 10 digits 0
Words 39 alphadigits 4.5
1109 basic English 43
SI 10 digits 0.1
39 alphadigits 7.0
129 airline words 2.9
Connected digit strings known-length SD 10 digits 0.1
Words string SI 11 digits 0.2
airline finite state SD 129 airline words 0.1
reservations grammar
(perplexity = 4)
Fluent Naval Resource finite state SI 991 words 45
Speech Management grammar
(perplexity = 60)
ATIS finite state SI 1800 words 4.0
grammar
(perplexity = 12)
Wall Street finite state SI 20 000 words 13.0
Journal grammar

(perplexity = 200)

cedure and thereafter unmodified, in practice the
performance of the recognizer will degrade if the
conditions in which it is used differ significantly
from the conditions in which it is trained. Adaptive
training is capable of modifying and updating the ref-
erence patterns to track such differences, and thereby
improve recognizer performance.

C. Speech Recognition Performance

A summary of the performance of speech recognizers,
based on laboratory evaluations, for the three technology
areas (isolated words, connected words, fluent speech), and
for different task applications, is shown in Table 2. (The
reader should note that real world performance of most
recognition systems is significantly worse than that of the
laboratory evaluations shown in Table 2.) The measure of
recognizer performance is the word error rate (in percent)
for a given vocabulary, task, and syntax (grammar).

For isolated word recognition, the results are given with-
out any task or syntax constraint—i.e., every word in the
vocabulary is assumed equally likely. For a digits vocabu-
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lary the word error rates are quite low both in SD (speaker
dependent) mode (0%) and in SI (speaker independent)
mode (0.1%). For an alphadigits vocabulary, consisting of
the spoken letters of the alphabet, the digits, and three
command words, all spoken over dialed-up telephone lines,
word error rates are 4.5% for SD mode and 7.0% for
S1 mode. Considering the confusability among spoken
letters (e.g., B, C, D, E, G, P, T, V, Z), these results are
actually quite impressive for telephone-bandwidth speech.
For more distinctive vocabularies, word error rates are quite
reasonable at 2.9% for 129 airline words (SI), and 4.3% for
1109 basic English words (SD).

For connected word recognition, word error rates for
known length digit strings are again quite low at 0.1% (SD)
and 0.2% (SI). Similarly, for an airline reservations task,
with a grammar whose perplexity (average word branching
factor) is low (4), the word error rate in SD mode is 0.1%.
For fluent speech recognition, results are based on DARPA
funded research on 3 tasks; namely, a ships database
task (Naval Resource Management), an airline travel task
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Fig. 36. Model of a task-specific voice control and dialog system.

(ATIS), and speech read from the Wall Street Journal. The
vocabulary sizes and grammar perplexities of these 3 tasks
are 991 words (perplexity 60), 1800 words (perplexity
12), and 20000 words (perplexity 200), with laboratory
evaluation word error rates of 4.5%, 4.0%, and 13.0%,
respectively. Although these word error rates are quite im-
pressive, it should be stressed that sentence error rates, for
these tasks, are significantly higher. Hence this technology
is not yet suitable for use in real-world applications.

D. Speech Recognition Applications

If one considers speech recognition applications in the
broad concept of a task, as shown in Fig. 36, we see that
the recognizer is only a part of the overall transaction. Thus
the entire process consists of speech recognition, which
converts the spoken input into grammatically correct text,
language analysis, which extracts the meaning from the text,
an expert system, which selects the desired action, issues
commands to the system which is under voice control,
receives data from the system, and constructs a reply in text
form, and finally a text-to-speech synthesizer, which con-
verts the text reply into machine-generated speech which
is sent to the user. Hence the overall system is both a
dialog system (as far as the user is concerned), and a control
system which carries out the action requested via the voice
command.

Based on the task-specific model, there is a broad range
of applications of speech recognition both within telecom-
munications and in the business arena. To understand how
speech recognition can be applied effectively to different
problems, we must first understand the requirements that
the proposed task must satisfy. These include the following:

1) actual benefit to a user: The use of voice recognition
for control should be natural and of value to the
user. It cannot be a novelty to attract attention or
to temporarily increase sales.

user friendly: The recognizer should be easy to use
and the commands should be mnemonic. The system
should be robust to the ways in which users interact
with the system.

2)
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3) accurate: The system must achieve a specified level
of performance (e.g., word accuracy greater than
95%), so that the user is motivated to continue using
the system.

real-time response: It is mandatory that users be
provided a discernable system response in a timely
manner, much as they see characters echoed back on
a terminal when they type, or hear audible ringing
after dialing a sequence of telephone digits. Such
feedback is mandatory so that users feel in control
of the actions of the system.

4)

Even with the above restrictions, there are several other
characteristics that the task must possess for the use of voice
recognition to be successful. These include:

1) fail soft application: Speech recognizers are er-
ror prone devices — they are guaranteed to make
mistakes some percentage of the time. Fail soft ap-
plications are those that can tolerate errors, no matter
what type — i.e. those where the cost of a recognition
error is low. An example of this type of system
is a menu-based system where an error leads to
an incorrect menu item. Just as with a mouse type
system,when a menu error is made, the user can
cancel the menu and start over, or, if possible, back up
to the preceding menu and then correct the mistake.
self-detection/correction of errors: An alternative
to making errors is to provide mechanisms in the
recognition task to reduce the error rate through the
use of check digits (for credit cards), list syntax
(for name directories), and multiple candidate strings
(where a more detailed search can be made among
the candidate strings).
verification before proceeding: By using informa-
tion provided by the recognizer (e.g., distance scores,
scores for multiple candidates), the system can au-
tomatically detect potential errors and ask the user
to confirm the recognition before carrying out the
command. In this manner, whenever the recognizer
is not confident of its decision, the user is asked to
aid in the error detection and correction process.

2)

3)
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Fig. 37. A plot of the hardware sales within the total US speech
recognition market, segmented into five general areas, for the years
1987-1992.

4) rejection/pass on to attendant: As opposed to the
preceding procedure, the task can automatically reject
some percentage of the input speech, and pass on
the spoken input (generally recorded digitally and
saved temporarily) to an attendant who listens to the
speech and either confirms or corrects the recognizer
decision.

Finally, there are a set of technology requirements for
speech recognition that provide the basis for a range of
successful applications. These include:

1) word spotting capability, namely the ability to recog-
nize either a command word or a command sequence
within fluent speech;

2) barge-in, namely the ability of the user to speak over
the voice prompt (thereby canceling the prompt) and
be recognized correctly: this feature is invaluable for
experienced users who do not need to listen to the
voice prompt to know what to say to the system;

3) robustness, namely the ability to maintain a consistent
level of performance for different users, backgrounds,
handsets, and communications channels;

4) rapid deployment, namely the ability to create new
services without the need for extensive vocabulary
training.

1) Speech Recognition Markets: Figure 37 shows a plot
of sales of speech recognition hardware in the US from
1987 to 1992, broken down into five market segments.
Although the manufacturing segment started at a high level
of sales in 1987 (relative to the other segments), by 1992 the
exponential growth in sales in the telecommunications area
overtook manufacturing, and is currently the largest market
segment in speech recognition. Although this figure shows
hardware sales, it is interesting to note that the service rev-
enue associated with speech recognition technology is often
one or two orders of magnitude larger than the hardware
revenue. Hence the total impact of speech recognition, in
the marketplace, is significantly larger than what is implied
by the numbers in Fig. 37.

2) Speech Recognition Applications to Telecommunica-
tions: There are two broad categories of speech recognition
applications in telecommunications; namely, those which
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provide cost reduction, and those which generate revenue.
Cost reduction applications are primarily those which re-
place human attendants by speech recognition devices. For
these applications the accuracy and the efficiency of the
recognizer is of paramount concern, since the tasks being
performed by machine were previously performed by live
attendants. The benefit of these applications is that large
cost savings can be achieved. The limitation is that since
the cost savings go to the service provider, the customers
may not be cooperative or forgiving of the technology
limitations. Their perception could be that the technology
has degraded, rather than improved, the service received.
Hence it is critical that such cost reduction applications be
carefully chosen.

The second broad category is those applications that
generate revenue. In general, such applications provide a
service or a capability that was previously not available
(often because it would have been too expensive to provide
the service using human attendants). Hence, in this case,
since the benefit is to provide user access to services or
information that was previously not possible, the customers
are generally cooperative, and quite forgiving of technology
limitations.

3) Cost Reduction Applications: Examples of telecom-
munications services which provide cost reductions include
the following:

1) automation of operator services, including the AT&T
VRCP (Voice Recognition Call Processing) Service
for automation of 0+ calls, and the Bell Northern
AABS (Automated Alternative Billing Service) for
automation of the response to accepting charges for
collect calls;

2) automation of directory assistance, including front
end processors for determining the city name by
Nynex and Bell Northern, and full directory listing
retrieval based on either spelled or spoken names;

3) voice dialing services, either by name (the so-called
alias dialing), or by number (direct dialing).

By way of example, consider the VRCP system intro-
duced by AT&T in 1992. VRCP is a menu-based service
for automating many types of billing functions in operator
assisted (0+) calls. This application required a vocabulary
of only five words, namely, “collect,” “person-to-person,”
“third number,” “calling card,” and “operator,” correspond-
ing to the five types of calls that can be placed. The a
priori statistics on usage show that about 50% of operator-
assisted calls are collect calls, 12% are billing to a third
number, 1% are person-to-person, 10% are calling card
(with operator entry of card number), and 27% are inquiries
for various types of assistance. The system is inherently a
speaker-independent system with telephone input.

Preliminary experience with the system indicated that
word spotting was essential for this service, as about 20% of
the calls used commands of the form “collect call please,”
“I"d like to place a calling card call,” “Person-to-person
from Tom to Alice.” In addition, since there were so many
repeat users of the service, barge-in was found to be a
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necessary feature for these experienced users who were
accustomed to interrupting the voice prompt with touch-
tone signals, and wanted to do the same with voice. Finally,
it was found that effective voice prompts were essential to
enable users to effectively use the service the first time. We
will return to issues related to “ease of use” later in this
section.

To realize the impact of this voice recognition service,
consider the usage statistics. In 1992 AT&T averaged about
145000 000 calls per day on the 0+ network. About 92%
of these calls were calling card calls placed automatically
by users keying in both the called number and the calling
card number using the touch-tone receiver. The remaining
8%, or about 11.6 million calls, were handled by operators.
In full depolyment, VRCP will handle about 4.2 billion
calls a year, at a cost savings on the order of $300 M
annually. The cost savings on this one simple application
are an order of magnitude larger than the total hardware
sales for telecommunications-based speech recognizers.

Another interesting cost reduction application is vali-
dation of credit card sales for companies like American
Express or VISA. This service is used by merchants who
do not use the modem dialers to validate credit card
sales, but instead manually dial into an 800 number and
normally speak to an attendant. Instead of the attendant,
a voice recognition system prompts the merchant to enter
a 10-digit merchant ID number, a 15-digit credit card
number, and the dollar value of the transaction. Both the
merchant ID number and the credit card number are highly
constrained sequences; hence accurate recognition is not
a major problem, even over dialed-up telephone lines.
However, accurate recognition of the transaction dollar
amount is problematic, since there is no “standard” way of
speaking this amount. For example, a transaction of $116.33
could be spoken in a number of ways, including:

“one sixteen and thirty three”

“one hundred sixteen point thirty three”

“one one six dot three three”

“one sixteen dollars thirty three cents”
Such sequences are called natural number sequences and are
much more difficult to recognize accurately than connected
digit strings because of the lack of regularity, the confus-
ability between words like /six/, /sixteen/, and /sixty/,
and the difficulty of deciding which part is the dollar
amount, and which part is the cents of the transaction.

4) Revenue Generation Applications: Examples of
telecommunications services which generate revenue
and provide new capabilities include:

1) voice banking services, such as the NTT ANSER
system;

2) voice prompter service, consisting of touch tone re-
placement by voice recognition, as introduced by
AT&T in its Intelligent Network;

3) information access systems, such as the Northern
Telecom stock price quotation system;

4) directory assistance call completion, whereby the
system actually dials the call based on recognizing the
spoken response provided by the directory services
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provider: such services are available from NYNEX
and AT&T;

5) reverse directory assistance, whereby a customer can
retrieve a name and address associated with a given
telephone number: this service is available from
NYNEX, Bellcore, and Ameritech.

6) information services, such as sports scores, traffic
reports, weather reports, theatre bookings, etc.

Consider the NTT ANSER system for voice banking.

This service is a menu-based system for providing banking
information and services to customers. (Previously there
was no way for customers in Japan to access this infor-
mation.) In particular, customers could query the system to
determine account balances, to make bill payment queries,
and to obtain credit information. The system is speaker-
independent, isolated word, with telephone input, and a
vocabulary of 16 words consisting of the digits plus 6
command words. A typical transaction is of the form:

Customer System

(Calls Center) “Hello, this is the NTT
bank telephone service
center. What is your

service number?”’

“one, one” “You are asking for your
account balance. What is
your branch number?”

“one, two, ...” “What is your account
number?”

“three, four, ...” “What is your secret

number?”

“Your current balance is
153 000 yen. If you would
like to have your balance
repeated, please say “Once
More”. If not, say ‘OK’.”

“five, six, ...”

“OK” “Thank you very much”

At the end of 1992 the ANSER system was handling 360
M calls per year, and providing about $30 M in revenue
per year. Another good example of a revenue generation
system is the Voice Prompter Service for call distribution
via voice commands—i.e., replacing the touch tone queries
with voice queries. Typical usage of this service would be
transportation, e.g., AMTRAK, where the user could choose
among “Departures (1),” “Arrivals (2),” “Reservations (3),”
and “Special Services—e.g., Metroliner (4),” by either
speaking the commands, or the numbers associated with
the commands. For hotels, the user could choose among
“Guest Rooms (1),” “Reservations (2),” “Hotel Operator
(3),” etc.

Figure 38 illustrates an information service built by
Telefonica in Spain based on the Voice Prompter Service in

PROCEEDINGS OF THE IEEE, VOL. 82, NO. 2, FEBRUARY 1994



Tres”
res Trains o

e o] @
o Erverminment M2 piays | g
HEE Concons ] (=
e ¥
LT Weather M2 Regional | 3150
e et oY

Fig. 38. Illustration of the use of a Voice Prompter Service for
accessing information databases using Spanish commands.

Spanish, using the Spanish digits “uno,” “dos,” and “tres.”
Based on this menu system, the user could get information
on any of nine topics with just two voice commands.

A final example of a revenue generation service is the
Voice Interactive Phone (VIP) service introduced by AT&T.
The service allows customers to access a wide range of
telecommunications services by voice, with the goal of
eliminating the need for a customer to learn the different
access codes for existing or new features. In addition,
the service provided voice confirmation that the service
requested was being turned on or off.

The procedure for using VIP is for the customer to dial
an abbreviated access code (e.g., 3 digits), an then hear a
prompt of the form:

“Please say, the name of the feature you want, or say
‘HELP" for a list of the services you subscribe to, now.”

The user then speaks the name of the service and receives
confirmation of connection to that service. The services
available through VIP, and the associated voice commands
are as follows:

Service Voice Command

Call Forwarding Call Forwarding

Continuous Redial Redial
Last Call Return Return Call

Call Rejection Call Rejection

Caller ID Blocking Block ID

Access to Messaging
Services

Messages

Temporary Deactivation
of Call Waiting

Cancel Call Waiting

Based on a series of customer trials, the following results
were obtained:
1) 84% of the users preferred VIP over their present
method.
2) 96% of the users were comfortable with the idea of
speaking to a machine.
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3) Most users felt that the primary benefit of VIP was
not having to remember multiple codes or procedures.

4) 75% of users tried different services with VIP more
often, or were willing to try services they had never
tried before.

In addition to the applications to telecommunications,
there are several interesting speech recognition applications
in the other segments of the market. One such application
is a voice repertory dialer which acts as a hands-free,
eyes-free, adjunct for a cellular phone, and provides the
capability of calling a preassigned number via a voice alias,
e.g., “call home,” or “call the office.” An arbitrary number
could also be voice dialed but this requires a full connected
digit recognition capability, which generally has not been
available within cellular recognizers.

E. Ease of Use Issues

A key aspect in the success of voice recognition appli-
cations is how well the human—machine interface has been
designed so that the recognition system is truly easy to
use. The goal of the human factors design is to delight the
customer with the ease of use and the apparent simplicity
of the task. The human factor enters through the judicious
design and use of prompts and reprompts, as well as in
the mode (auditory, visual, tactile), timing, and content of
feedback to the user. By way of example, consider the
canonic prompt for a voice service for the XYZ company:

Ideal Prompt: “Welcome to XYZ service. How may I
help you?

Ultimately this ideal prompt will become reality; at the
current time it would give the user far too much opportunity
to say things that the recognizer cannot handle. Hence a
more realistic prompt might be:

Realistic Prompt: “Welcome to XYZ service. Please say
A, B, C, or D now.”

Experience has shown that an improved prompt would be:
Improved Prompt: “Welcome to XYZ service. What

type of service would you like to access? (Pause) Please

say A, B, C, or D now.”

The benefits of the improved prompt are the following:

1) Experienced users will barge-in at the pause, thereby
improving system throughput.

2) Novice users listen to the entire message, getting a
better picture of the way in which the transaction is
carried out.

3) All users find the question helpful in understanding
the transaction with the result that there are fewer
“no response” cases.

4) Customers complete the transaction faster.

5) The recognition system is rated higher by customers.

For reprompting, either after a failed recognition, or in

response to improper input, a standard reprompt command
might be:

Standard Reprompt: “Your response was not under-

stood. Please say ... now.”

An improved reprompt is:
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Fig. 39. Block diagram of a speaker verification system.

Improved Reprompt: “Sorry, please repeat. (Pause)
Please say ... now.”

The benefits of the improved reprompt include:
1) much faster performance,
2) better customer acceptance,
3) more barge-in (both early, and at the pause),
4) better conversational style and pace,
5) less customer frustration with repeats.

Good human factor leads to getting the best performance
from a speech recognition application.

VI. SPEAKER VERIFICATION [27]-[29]

The basic problem of speaker verification is to decide
whether or not an unknown speech sample was spoken by
the individual whose identity was claimed. The problem
is similar to that of speech recognition in which the
problem is to normalize out, in some sense, the individual
speaker and extract the message content of the speech.
Here, the problem is to normalize out, in some sense,
the message content and extract information about the
individual speaker. Because of the similarities of these two
problems, the processing for speaker verification is similar
(with some small differences) to that of speech recognition.

Figure 39 shows a canonic speaker verification system.
The customer, wishing to be verified, provides a claimed
identity (which enables the system to retrieve the voice
pattern corresponding to the identity claim), and a voice
sample. The speech features of the customer’s sample are
compared, using a time-alignment procedure similar to
the one used for speech recognition, to the voice pattern
corresponding to the claimed identity, and, if a suitable
match is obtained, the identity claim is verified.

A. Generic Applications of Speaker Verification

The major area of application for speaker verification is
in access control to information, credit, banking, machines,
computer networks, private branch exchanges (PBX'’s),
and even premises. Thus the concept of a “voice lock”
that prevents access until the appropriate speech by the
authorized individual(s) is “heard” is made a reality by
speaker-verification technology.

B. Speaker Verification Technology [27]

Figure 40 shows a block diagram of an integrated speaker
verification system in which the customer wishing to be
verified provides a claimed identity (in order to access
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Fig. 40. Block digram of an integrated speaker verification sys-
tem using computer speech answer-back to provide user feedback.

the appropriate stored voice pattern), the spoken phrase
suitable to the verification system, and the transaction
requested. A comparison of the spoken phrases (suitably
time-aligned) with the appropriate stored voice pattern
provides a comparison score. Depending on the transaction
requested, the decision to accept or reject the identity claim
is made and sent back to the customer via a computer
speech answer-back system. Thus for banking transactions,
a much lower degree of match would be required to check
an account balance than would be required to withdraw
funds.

A speaker verification system can make two types of
errors; it can reject a true customer (Type I error) or it
can accept an imposter (Type II error). The goal of most
verification systems is to try to bound Type I errors (e.g.,
<0.5%) while minimizing Type II errors (e.g., at 10%).
Often, in laboratory testing, performance scores are given
for equal rates of Type I and Type II errors.

The performance of a speaker verification system is a
very sensitive function of several factors, including:

1) the microphone used in the recording, especially
when both carbon button and electret microphones
are intermixed in training and testing;

2) the transmission channel;

3) the background noise;

4) the speaker condition (e.g., colds);

5) the usage condition, i.e., speakerphone, cordless
phone, cellular phone.

Various technical solutions have been proposed for these
problems; however, there is no perfect solution which
provides a robust system with high performance in the field.

C. Performance of Speaker Verification Systems

Table 3 provides a summary of the performance achieved
in laboratory evaluations of a speaker verification system.
The particular system that gave the results shown in Table
3 used digit sequences for both training and testing (in
particular, 7-digit test utterances were used). The perfor-
mance scores shown in the table are equal error rate scores
(in percent), which means that these are the scores for a
decision threshold set (experimentally, based on measured
errors for each talker) so that the true customer is rejected
the same percentage of the time an average imposter gets
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Table 3 Performance of a Speaker verification System Using
Connected Digit Sequences as Input Strings

Adaptation Text
Independent Dependent
Without 3.0% 0.8%
With 2.2% 0.3%

accepted. Shown are results for both text-independent trials
(those in which the customer can speak any arbitrary 7-
digit sequence and the machine does not know the digits),
and for rext-dependent trials in which the machine instructs
the customer as to the exact digit sequence to speak. Also
shown are results without and with adaptation, over time,
of the reference pattern to the changes in speaking patterns
of the user. Clearly, the performance in the text-dependent
mode is far superior to that of the text-independent mode
because the machine can exploit the known dynamics and
spectral content of the speech utterance precisely in making
its decision.

Also shown in the table are results without and with
adaptation to the changing talker characteristics (individual
speaker voice patterns) over time. The best performance
of 0.3% equal error rate is achieved with text-dependent
mode and with adaptation; the loss in performance without
adaptation (to 0.8% equal error rate) is significantly smaller
than the loss in performance in the text-independent mode
(to 2.2% equal error rate), or to 3.0% equal error rate
when adaptation is not used. Hence, the extra information
obtained from foreknowledge of the spoken digit string is
significantly greater than that obtained from adaptation to
the changes in the talker’s speech patterns.

D. Telecommunications Applications of Speaker Verification

Although the technology for speaker verification has
been around, and well understood, for a number of years,
there has been essentially no commercialization of the
technology until recently. This is because security is a
feature that most customers are unwilling to pay for—until
a break-in occurs. With the opening up of computers,
networks, and other telecommunications systems, the need
for security has grown to the point where speaker verifica-
tion is now an attractive alternative to electronic security
for:

1) ATM (Automated Teller Machines), using smart cards
to store voice patterns using on the order of 20000
bits of storage, as announced by NCR.

2) PBX Services, to provide protection against improper
use of PBX for calls made from outside of the office
environment.

3) Network services, where speaker verification provides
access to a range of telecommunications services
such as name dialing using voice aliases, teletravel
information, FAX services, etc.

4) Computer systems, as an adjunct to electronic security
as provided by passwords.
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It is anticipated that speaker verification will appear in
applications in each of the above areas over the next few
years.

VII. SPOKEN LANGUAGE TRANSLATION [30]

An obvious extension to research in speech synthesis and
speech recognition, is spoken language translation which
holds the promise of providing the capability of having a
dialog between 2 (or more) speakers neither of whom speak
the same (or a common) language.

Programs in language translation go back as early as
the 1960’s when the US Government funded a program
for natural language translation of text. The results of
this program were mixed, at best, with poor quality of
translation and with no clear path to success emerging.
The next major milestone began in the 1980’s when NEC
and ATR in Japan began long-range programs on So-
called interpreting telephony, i.e., speech-based language
translation. The key to these efforts was an understanding
of the role of syntax and semantics in both the recognition
and language translation algorithms, leading to the creation
of low-perplexity systems which achieved reasonably good
success on highly limited tasks. In the 1990’s, AT&T began
a program in spoken language translation (in conjunction
with Telefonica of Spain), leading to the VEST (Voice
English—Spanish Translator) system, a limited task domain,
medium-perplexity system.

Spoken language translation is an ongoing area of re-
search throughout the world. There are four requirements
which are necessary (and often sufficient) for a spoken
language translation program to succeed, and these are:

1) a limited task domain: The task domain for the
VEST system is banking and currency exchange. This
feature is necessary to keep the task perplexity low
and to provide the capability of high accuracy in the
speech recognition part of the program.

2) a common language model for both recognition and
parsing of text: This requirement is necessary in order
to create an accurate model of language, and to keep
the language model for translation in synchrony with
the language model for recognition.

3) expertise in speech recognition and synthesis: This
requirement is necessary to make the spoken language
translation problem viable.

4) high speed processing capability: This requirement is
necessary to insure real-time transactions so that the
system can actually be used, tuned, and developed.

Based on these requirements, AT&T and Telefonica

jointly built the VEST system, which is described in more
detail in the next section.

A. Spoken Language Translation Technology [30]

Figure 41 shows a block diagram of a spoken language
translation system, as used in the VEST project (where
the two languages are English and Spanish). The system
consists of:
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Fig. 41. Flow digram of the VEST (Voice English-Spanish
Translator) system.

Speech Output

1) A dual language speech recognizer which automati-
cally determines both the spoken language, and the
best sentence in that language. The recognizer is
controlled by a grammar network, generated from a
task language specification, which is common to both
the recognizer and a bilingual parser.

2) A bilingual parser which parses the English or Span-
ish text according to the language model for the
task.

3) A bilingual translator which maps the parse tree
in one language to a parse tree in the companion
language according to a set of language translation
rules appropriate to the task and the parse tree.

4) A pair of TTS modules, one for Spanish one for
English, which speaks out the translated version of
the spoken input request in the companion language.

The VEST system runs on an array DSP processor with

128 floating-point DSP’s (AT&T DSP 32C) performing all
the computation for recognition and language translation,
and with a workstation (a SPARC II) doing the TTS for both
English and Spanish. The common language model, used
for recognition and language translation, was created using
a standard grammar compiler, available at Bell Labs. The
system has a vocabulary of 453 words, combined; uses 401
production rules (hand written) to generate the language
model; uses 1228 rules in the context free grammar for
parsing; has a 1600 state, 6400 node, 7500 transition finite
state grammar for recognition, with a perplexity of 86;
and uses 877 translation rules (hand written) to translate
between languages. The entire system was informally eval-
uated and achieved 96% semantic sentence accuracy for a
single talker. (The system is speaker-trained.) The VEST
system was successfully demonstrated at the 1992 World’s
Fair in Seville, Spain, by Telefonica, for a 6 month period
with about 6 sets of trained operators.

B. Issues in Spoken Language Translation

Although a modest degree of success has been achieved
in building spoken language translation systems, there
remains a great deal to be done before such systems can
be applied to real problems in telecommunications. Among
the issues which must be investigated and resolved are the
following:
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1) the need for common tasks with increasing levels of
difficulty so as to evaluate progress and problems
which need to be solved;

2) the need for large amounts of training and testing
data to train the recognition systems, and to evaluate
performance of each part of the system;

3) the need for a formal evaluation methodology so as
to separate overall system performance scores from
scores for each component of the system: we also
need to understand how to maintain a user dialog in
the face of small and gross errors in either recognition
or translation.

4) the need for lots of computing capability to keep
up with recognition and translation in real-time, an
absolute necessity for a system for spoken language
translation;

S) the need for more statistical and knowledge-based
paradigms to automate the processes of language
model generation, and language translation rule gen-
eration.

VIII. AcousTIC CHALLENGES IN
TELECOMMUNICATIONS [31]-[33]

One of the challenges of universal communications is to
provide high-quality voice communications in different en-
vironments (e.g., restaurants, train stations, airports, offices,
homes), in different mobility modes (e.g., walking, jog-
ging, driving, stationary), and in different group situations
(e.g., one-on-one, one-on-many, many-on-many). There are
three acoustic challenges that must be met to provide this
universal voice communications capability, including:

1) advanced microphone technology which has the ca-
pability of finding and localizing a sound source (i.e.,
talker) as well as suppressing noise sources in the
background [32];

2) advanced loudspeaker technology which has the ca-
pability of focusing sound in a desired field (e.g.,
around a single listener, or in a cone of listeners);

3) advanced echo cancellation which has the capability
of eliminating feedback paths from the loudspeaker
to the microphone [31], [33].

In the area of microphone technology a wide array of

designs have been proposed and tested, including:

1) Differential microphones which provide on the order
of up to 20-dB cancellation of a far end noise source
while enhancing a signal source in the near field of
the microphone.

2) Adaptive microphones which are capable of lock-
ing onto and tracking a signal source and keeping
approximately constant volume from the source.

3) Array microphones which automatically, and adap-
tively, configure themselves to find and track signal
sources while rejecting undesired noise and reverber-
ation.

Current research is focused on the creation of “smart”
microphones which integrate the capabilities of differential,
adaptive, and array microphones in a single configuration
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which automatically and adaptively configures itself to find
and track signal sources, at the same time finding, tracking,
and canceling noise sources. Similarly, we can envision
“smart” loudspeakers which automatically and adaptively
configure themselves to focus sound in a specified region
of space.

Taken together, a system with smart microphones, smart
loudspeakers, and appropriate echo cancelers, holds the
promise of providing echo-free, noise-free, high-quality
(broad-bandwidth) speech communications between groups
of people, anywhere, and at anytime.

A. Vehicle-Focused Speech Processing

By way of example, consider the capabilities of control-
ling and communicating in a vehicular environment, that are
enabled by voice processing and associated electroacoustic
transducers. One set of possibilities is shown in Fig. 42. It
can be seen that the opportunities include:

1) speech-based alerting, based on coding or TTS, of
problems associated with car operation or the audio
system within the car;

2) speech control, via voice recognition, of various as-
pects of instrumentation including the radio, the com-
fort features of the car, lights, wipers, speed control,
and turn signals;

3) voice lock access to the car, via speaker verification,
including restricted access to the trunk and glove box:
based on verification, a personalized set of driving
options, such as seat and mirror positions, could be
created for each driver of the car;

4) use of cellular telephony for hands-free, eyes-free,
voice telephony within the car, including repertory
dialing of commonly called numbers by voice com-
mands;

S) use of hands-free microphone for telephony and voice
control of car features;

6) use of acoustic conditioning to minimize car noise
and to create a good acoustic environment for listen-
ing to audio broadcasts in the car.

It is clear that the car of the future could look and feel
significantly different than the car of today, based on voice
processing technology.

IX. SUMMARY

As we head inexorably toward the turn of the cen-
tury, we see rapid progress toward the vision of uni-
versal communications, especially in the area of voice
processing. As mentioned several times in this paper,
the revolution in VLSI, especially in the area of DSP
chip technology, has fueled many of the advances by
providing the computational power to perform a wide range
of voice and image processing operations in real time on
a single chip. This point is illustrated in Fig. 43 which
shows a plot of the single DSP chip CPU instructions
per second versus time (from 1980 to 1995), along with
individual points showing the CPU capability needed for
various voice and image processing tasks. It can be seen
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Fig. 42. Examples of how voice processing and electroacoustic
design could be incorporated into an automobile to improve the
performance and make the features of the automobile easier to
use.
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Fig. 43. Plot of the signal processing requirements for several
speech and image processing applications as compared to the
capability of single-chip DSP processors from 1980 to 1995.

that in 1993, all but the most advanced large-vocabulary
speech recognition and the HDTV receiver tasks can be
implemented on a single DSP chip. Thus the implication of
this is that with program downloading capability, a single
DSP chip could be multiplexed to perform a wide range of
voice processing, image progessing, and communications
functionality, thereby providing a strong platform for the
personal communicator of the year 2001.
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