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ABSTRACT

In this paper we discuss the design and implementation of
the ASAT front end processing system, whose goal is to
convert the speech waveform into a range of measurements
and parameters which are then combined to form
probabilistic attributes. The ASAT front end processing
module utilizes a range of spectral and temporal speech
parameters as input to a set of neural network classifiers to
create sets of attribute probability lattices, based on either
single frames or blocks of frames (segments). We test this
architecture by using the 14 Sound Patterns of English (SPE)
features as speech attributes. Without balancing the training
data, the detection accuracies of 4 of the SPE features are
above 90%, 2 features obtain between 80% and 90%
detection accuracy, and 8 features have detection accuracies
below 80%. With a novel method of balancing the feature
training data, the performance of the neural networks
improved significantly, with 6 features having detection
accuracies above 90% and the remaining 8 features with
detection accuracy above 80%.

1. INTRODUCTION

Knowledge-based and statistics-based approaches are two
directions in Automatic Speech Recognition (ASR) and both
have evolved over time [12]. Hidden Markov Model
(HMM) based speech recognition techniques [11] have
achieved great success for controlled tasks. However, when
we require improved (closer to human) accuracy and
robustness, the HMM algorithms gradually fail. Hence a
need has emerged to incorporate higher level linguistic
information into ASR systems in order to further
discriminate between speech classes or phonemes with high
confusion rates.

The Automatic Speech Attribute Transcription (ASAT)
project [8] has the long term goal of improving the
performance of ASR systems by utilizing linguistically
based speech attributes and speech events in an architecture
that integrates knowledge sources, models, data, and tools,
ultimately combining the results with state-of-the-art HMM
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In this paper we discuss the implementation of the ASAT
front end processing system, whose goal is to estimate a set
of attribute probability lattices P(A/F(1))» which can be

combined with information from higher level knowledge
sources (e.g., a word lexicon) to create a phone lattice
B(P/F(1))- a syllable lattice P(SIF(t) and a word lattice

P(W I F(1)) which ultimately are used in a set of event

verification modules to make the final recognition decision.
Fig. 1 shows this process. Fig. 2 shows the general front end
processing system. A speech parameter ['(¢)is a direct

measurement from the speech waveform, such as zero
crossing rate or energy ratio. A speech attribute (also called
speech evidence), 4, is a piece of acoustic, phonetic or

linguistic information that is estimated from the speech
parameters. The attributes, e.g. voicing, nasality etc.,
distinguish the phonemes. An event, e(?), is a stochastic
process corresponding to each attribute that is used to make
the decision that either the attribute is present (+) or absent
(-) at time ¢, as shown in Fig. 3. Such decisions can also be
deferred to higher levels such as phones, syllables, words,
and ultimately sentences, thereby mitigating the curse of
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error propagation that has plagued linguistically based ASR
systems over time.

There have been many research efforts that tried to
utilize knowledge features in speech recognition. Morgan et
al. summarize the state-of-the-art in this area in [9].
Landmark-based speech feature detection algorithms are
described in [5]. The use of auditory models with specific
measurements for stop and fricative consonants detection are
described in [1, 2]. Almost all of these approaches are
somewhat ad hoc in that they lack a general architecture for
speech attribute detection.

2. IMPLEMENTATION OF THE ASAT FRONT END

The ASAT front end processing module utilizes a range of
spectral and temporal speech parameters (both short-time
and long-time measurements) as input to various sets of
attribute classifiers (Bayesian Classifier, Multi-Layer
Perceptrons (MLP), etc.) to create sets of attribute
probability lattices, based on either single frames or blocks
of frames (segments). Fig. 4 shows a block diagram of the
front end framework. Using this framework we attempted to
answer the following key questions, namely:

(1) What parameters to measure—There are numerous
temporal and spectral speech parameter sets (see Table 1).
We had to choose parameter sets that would be most
effective in estimating the speech attributes of interest.

(2) What signal processing algorithm should be used
for each parameter—Often there exist multiple signal
processing algorithms for different speech parameters, e.g.
to calculate formants or pitch period we could use cepstral
or LPC methods. We had to make choices for each
parameter set.

(3) What attributes to estimate—Depending on the
speech representation, different attribute sets are meaningful,
including SPE binary attributes, linguistic attributes such as
nasality, frication, etc.

(4) How to optimize attribute calculation from
training—Attribute events are usually obtained by some
type of probability estimation process, e.g., Multi-Layer
Perceptron (MLP) or Karhunen-Loeve (K-L) expansion.

We use as a training and testing set, data from the TIMIT
database. A key issue with TIMIT data is that the phonetic
labels are known to contain some inherent errors, both in
fine placement, and often in phonetic identification. As

such, part of the effort was spent in deciding how to handle
the TIMIT miss-alignment of label issue.

3. SPEECH PARAMETERS

3.1. Temporal vs. spectral, short-time vs. long-time
Table 1 shows examples of the four speech parameter
classes that were investigated.

Table 1. Speech parameter groups

Short-time Long-time
Temporal voiced/unvoiced/silence | VOT

Pitch burst duration

Segmental SNR unvoiced duration

syllable duration

Spectral MFCC delta(MFCC)

Spectral flatness delta-delta(MFCC)

Relative band energies

3.2. Frame based vs. segment based

Frames are flexible and convenient to implement, and they
characterize static (short-time) properties of speech.
Segments normally cover longer time spans (order of 10
frames or longer) and characterize speech dynamics. A
segment generally contains a variable number of frames. In
this paper all of our results are frame-based.

4. SPEECH ATTRIBUTE CALCULATION

The topology of speech attributes can be parallel,
hierarchical or combined. The hierarchical architecture, [6],
is most efficient but suffers from the problem of error
propagation from higher levels of attributes to lower levels.
The parallel topology (as used in ASAT) avoids this
problem, but assumes that all speech attributes are
independent whereas in reality they are not. In this initial
experiment we use the parallel attribute organization. We
tested this architecture using the set of 14 Sound Patterns of
English (SPE) [4] distinctive features as speech attributes.
The attribute combination module can use the same
architecture for all the attributes, or tailor the estimation
method for each attribute. We chose to train a separate
frame-based ANN for each of the 14 SPE features.

5. EXPERIMENTS

Most of our experiments used single frame parameters
(nominally a set of 13 Mel-Frequency Cepstral Coefficients
(MFCCQC)), but we also did experiments with other speech
parameter sets. We used MLPs with both one and two
hidden layers for our experiments. In all the following
experiments, the window length was 32 ms and frame rate
was 100 Hz.

We first tested the effect of boundary frames on the
attribute estimates since the TIMIT phoneme alignment has
known errors and we only want to use the most reliable data
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Fig. 4 Implementation of ASAT front end processing

for training. Using the Bayesian classifier described in [3]
for voiced/unvoiced/silence frame -classification and the
entire TIMIT training set for training and test set for testing,
we found that by restricting the training and test sets to a
subset of the phonemes (we call it the “stable phoneme set”
that includes vowels, diphthongs, semivowels, glides,
fricatives, affricatives and silence, a total of 711357 frames
for training and 262781 frames for testing), and by avoiding
phone boundary frames we achieved classification
accuracies of 99% for voiced frames, 87% for unvoiced
frames, and 96% for silence/background frames. Using the
model obtained above and testing on all phonemes in the test
set (a total of 324229 frames, still omitting the unreliable
phone boundary frames), the classification accuracy fell to
96% for voiced frames, 72% for unvoiced frames, and 93%
for silence/background frames. Finally when all phonemes
and all frames were used in testing (a total of 512536
frames), the classification error fell further to 93% for
voiced frames, 60% for unvoiced frames, and 86% for
silence/background frames.

We tested both 2-layer MLP using the Netlab toolbox
[10] and 3-layer MLP using the Matlab neural network
toolbox for classification of the 14 SPE features based on
single frame 13 MFCCs. The 2-layer MLP consists of 100
nodes in the first layer and 1 node in the output layer. It
performed well but there existed a convergence problem.
Using the Matlab neural network toolbox, due to computer
memory limits, we had to sample the frames in the training
set. Due to the high correlation between adjacent frames, we
choose 1 out of every four consecutive frames for training
and testing. Thus, the training set size was 48,000 frames
and the test set size was 33,020 frames. The phoneme
boundary frames and the immediately adjacent frames were
also discarded. For the 3-layer ANN we found that having
100 nodes at the first layer, 26 nodes for the second layer
and 1 node for the output layer gave the best classification

accuracy for the 14 SPE features.

Initially we trained the 3-layer MLP classifiers using
randomly selected frames for each feature where there
generally were far more occurrences of frames with the “—
feature” present than frames with the “+ feature” present.
We call this training set the “unbalanced” set. We classify
the testing performance as “good” when the accuracy is
above 90% for both + feature and — feature detection, as
“acceptable” when both + and — feature detection rates are
above 80% but at least one is below 90 %, or as “poor”
when at least one of the feature detection rates is below
80%. The results for the unbalanced training set showed
that for 4 of the 14 SPE features, the performance was
“good”, for 2 other features the performance was
“acceptable”, and for the remaining 8 features, the
performance was “poor”.

Since we are mostly interested in detecting the + features
accurately and reliably, we devised a way to carefully
balance the training set so that the number of training
samples with the + features was comparable to the number
of training samples with the — feature. Based on a balanced
training set, the + feature detection performance
significantly improved without seriously affecting the —
feature detection accuracy. Our results showed that 6 MLPs
achieved “good” detection performance (as compared to 4
for the unbalanced training set), and the remaining 8 features
achieved “acceptable” performance (as compared to 2 for
the unbalanced training set). For all the 14 features the
average frame correctness for + feature detected as + is
90%, — detected as — is 90.5% and overall is 90.4% (as
compared to 81.9%, 95.1% and 91.5% respectively for the
unbalanced training set). Fig. 5 shows the comparison of
detection performance on unbalanced and balanced training.
On average there are 4 “+” features for a TIMIT phoneme.
With a balanced training set, the “+” features can be
detected more accurately and the area under an ROC curve
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of a balanced training set is larger than that of any
unbalanced training sets. King et al. [7] achieved similar
results for the SPE feature detection, but they did not
consider the importance of balancing the “+” and “-”
features.

We also compared MFCC, PLP and RASTA-PLP speech
parameters and found that MFCC coefficients gave the
highest classification accuracies for 9 of the 14 SPE
features, while PLP parameters gave the highest
classification accuracy for 3 features, and finally RASTA-
PLP gave the highest classification accuracy for the
remaining 2 features.

6. CONCLUSION AND FUTURE WORK

During the first year of the ASAT project, we measured a
range of spectral and temporal, short term and long term
parameters, and included them in the ASAT parameter set.
We extensively tested ANN’s of different types and
provided linguistic/distinctive feature labels with varying
degrees of success. Training on balanced training sets
showed significant improvements over standard ANN
training methods which use randomly selected training data.
Due to the TIMIT labeling errors, boundary frames were
discarded for training purposes. We also found that
different auditory models were of benefit to different speech
features. In future research, we will investigate segment-
based methods and compare their performance with that of
frame-based methods. We also hope to find better speech
measurement parameters, more meaningful attributes, and
better parameter combination strategies to form attributes, in
order to provide the next processing stages with more
accurate detection probabilities.
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