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Abstract—Speaker independent recognition of small vocabularies,
spoken over the long-distance telephone network, has been demon-
strated to be a viable technology. However, the algorithms tested and
the tasks eval d typically that user input be restricted to
only a set of defined vocabulary words. Recently, a large scale trial of
speaker independent isolated word speech recognition technology was
carried out in Hayward, CA. The task chosen required that users speak,
in isolation, one of five defined vocabulary words (collect, calling card,
person, third number, and operator). Recognition results were obtained
which showed that when users spoke the vocabulary words in an iso-
lated fashion, the words were correctly recognized about 99% of the
time. However, observations of customer responses during this trial
showed that about 20% of the utterances had the desired vocabulary
word along with extraneous input which ranged from nonspeech sounds
(e.g., clicks and breath noises) to groups of nonvocabulary words (e.g.,
‘I want to make a collect call please’’). Most conventional recognition
algorithms have not been designed to handle this type of input. As such,
modification of the algorithms had to be made to recognize vocabulary
words embedded in speech (i.e., a form of keyword spotting).

This paper describes the modifications made to a connected word
speech recognition algorithm based on hidden Markov models (HMM’s)
which allow it to recognize words from a predefined vocabulary list
spoken in an unconstrained fashion. The novelty of our approach is
that we create statistical models of both the actual vocabulary words
and the extraneous speech and background. An HMM-based connected
word recognition system is then used to find the best sequence of back-
ground, extraneous speech, and vocabulary word models for matching
the actual input. Word recognition accuracy of 99.3% on purely iso-
lated speech (i.e., only vocabulary items and background noise were
present), and 95.1% when the vocabulary word was embedded in un-
constrained extraneous speech, were obtained for the five word vocab-
ulary using the proposed recognition algorithm.

I. INTRODUCTION

HE development of robust, speaker independent,

speech recognition systems that perform well over
dialed-up telephone lines has been a topic of interest for
over a decade [1]-[7]. This work has progressed from
systems that can recognize a small number of vocabulary
items spoken in isolation [3], [51, [7], to systems that can
recognize medium size vocabulary sets spoken fluently
[4]. A basic assumption for most speech recognition sys-
tems is that the input to be recognized consist solely of
words from the recognition vocabulary and background
silence. However, previous studies on the recognition of
a limited set of isolated command phrases for making
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‘‘operator assisted calls’’ have shown that it is extremely
difficult, if not impossible, to get real-world subscribers
to such a service to speak only the allowable input words
[1], [5]. [6]. In a large scale trial of speaker independent,
isolated word, speech recognition technology, carried out
at an AT&T central office in Hayward, CA (i.e., the San
Francisco Bay area) [1], [8], live telephone customer
traffic was used to ‘evaluate the call handling procedures
being developed for a new generation of telephone
switching equipment. Using these procedures, customers
making operator assisted calls were given the option of
verbally identifying the type of call they wished to make
(i.e., collect for a collect call, calling card for a calling
card call, person for a person-to-person call, third number
for a bill-to-third-party call, and operator to get the op-
erator). Each caller was requested to speak one of the five
orally prompted commands in an isolated fashion. While
82% of the users actually spoke one of the command
words, only 79% of these inputs were spoken in isolation
(i.e., only 65% of all the callers followed the protocol).
Monitoring of the customer’s spoken responses. indicated
that 17% of all responses contained a valid vocabulary
item along with extraneous speech input (e.g., I want to
make a collect call please). Most conventional isolated
word recognition algorithms have not been designed to
recognize vocabulary items embedded in various carrier
sentences. As such, modifications to the algorithms had
to be made to allow for the recognition of words embed-
ded in extraneous speech.

In this paper we discuss the problem of recognizing a
small set of prescribed vocabulary words spoken in the
context of unconstrained speech. In the general case, the
recognition system is presented with continuous input and
must decide whether or not any of the pre-defined vocab-
ulary words is present anywhere in the speech. While
much research has been performed on the general word-
spotting task, very little of it has been published. Most of
the techniques that have been described in the literature
are template-based dynamic time-warping approaches
(DTW) [9]-[11]. For example, in [9], Christiansen and
Rushforth described a speaker trained keyword spotting
system which uses an LPC representation of the speech
signal without any syntactic or semantic information about
the task. Using this approach they achieved good results
on a vocabulary set of four words and the ten digits. Myers
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et al. [11] described an approach which used a local min-
imum DTW-based algorithm for the problem of word
spotting. However the proposed system was not evaluated
on any real task.

Higgins and Wohlford [10], also proposed a DTW-
based system for keyword spotting. In their system,
knowledge about the vocabulary and syntax of the input
speech was used. A set of keyword templates and non-
keyword templates was created and compared against sev-
eral pooled filler templates as to their ability to detect key-
words in fluent speech. These filler templates were
generated 1) using data from six ‘‘function’’ words, or 2)
by clustering some nonvocabulary words into segments
roughly equal to syllables using hand-marked data. Their
results indicated that while explicit knowledge of the vo-
cabulary may not be that important, the use of filler tem-
plates may be important. However, they found that the
number of such filler templates greatly influenced their
results. Additionally, they determined that the durations
of the filler templates controlled the accuracy of their sys-
tem. As the number of templates was increased and the
duration of the average filler template was shortened, the
system accuracy improved. Duration constraints are a ma-
jor problem in any DTW-based template matching rec-
ognition' system, since each template has a physical du-
ration and the algorithms are forced to adhere to some
local time duration constraints. An advantage of using
hidden Markov models is that durations are statistically
modeled as part of the training procedure.

In Bossemeyer et al. [12], a DTW-based algorithm ap-
proach to the problem of finding keywords was described
which matched the keyword templates to the unknown
speech at each starting frame of the utterance. (Bosse-
meyer used the same keywords and test data that we use
in this paper.) Penalties were added to account for voicing
duration and energy level. This algorithm was tested on
an independent data base and had a 90% recognition ac-
curacy rate on utterances containing extraneous speech
and 97.1% on utterances containing only the keyword.
The algorithm we present here will be shown to perform
significantly better on this same data base.

A significant amount of progress has been recently made
in automatic speech recognition using hidden Markov
modeling (HMM) [13]-[25]. Since the HMM approach
uses a statistical characterization of the signal, it should
contain more information about the signal than does the
DTW-based approach. As such, we chose to develop an
algorithm using HMM technology to attack the problem
of recognizing vocabulary words in fluent speech.

In Wilpon et al. [26], a first attempt at using a hidden
Markov model based recognition system for recognizing
a limited set of vocabulary words spoken in unconstrained
speech was described. The algorithm presented, similar
to the one used in the template-based system described by
Christiansen and Rushforth [9], can be thought of as slid-
ing the input speech past each model in a continuous man-
ner. However, the results achieved were comparable to
those based on the template system described in [12].
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In this paper we present a recognition system which uses
hidden Markov modeling techniques to explicitly model
both the actual vocabulary words as well as extraneous
inputs. Evaluating this approach on a large speaker in-
dependent data base gave word accuracies 0f 99.3% when
the vocabulary word was spoken in isolation, and 95.1%
when the vocabulary word was embedded in extraneous
speech.

In Section II we describe the HMM-based algorithm
for recognizing vocabulary words in the context of un-
constrained inputs. The structure of the HMM’s used in
our work is presented in Section III. Section IV describes
the speech data base used to evaluate our algorithm. Fi-
nally, in Section V we present results from a series of
recognition experiments.

II. HMM-BASED RECOGNITION ALGORITHM

Speech recognition systems which do not require €x-
plicit detection have been widely described in the litera-
ture [13]-[16]. In [16], Wilpon and Rabiner presented an
HMM-based recognition algorithm, which showed that
explicit endpoint detection of speech could be removed
entirely from the recognition system while maintaining
high recognition accuracy. To achieve this, the recogni-
tion system modeled the incoming signal as a sequence of
background signal and vocabulary words. However, this
work was limited in that the vocabulary words had to be
spoken with no extraneous input.

In our current work, the ideas developed in [16] are
extended to handle the case of vocabulary words spoken
in the context of unconstrained speech. The approach that
we have developed models the entire background envi-
ronment, including silence, transmission noises, and,
most importantly, extraneous speech. We represent a
given input as an unconstrained sequence of background
and extraneous speech followed by vocabulary words fol-
lowed by another unconstrained sequence of background
and extraneous speech. We do this by creating one or more
hidden Markov models, which we call garbage models,
representative of extraneous speech inputs. A grammar
driven continuous word recognition system is then used
to determine the best sequence of extraneous speech,
background, and vocabulary words. Given this structure
for the recognition system, the garbage models match the
extraneous speech and the trained vocabulary word models
match the actual vocabulary word that was spoken.

A comprehensive discussion of the complete HMM-
based connected word system is given in [21]. In this sec-
tion we present a brief overview of the recognition sys-
tem. Fig. 1 shows a block diagram of the HMM-based
recognition system. The key elements of the system are
described in the following sections.

A. LPC and Cepstral Analysis

Speech is first filtered typically to a bandwidth of 100-
3200 Hz and then digitized typically at a 6.67-kHz rate.
The digitized speech is then preemphasized using a sim-
ple first-order digital filter with a preempbhasis factor a =
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Fig. 1. Block diagram of overall recognition system.

0.95, and blocked into frames of 45 ms in length with a
shift between frames of 15 ms. Each frame of speech is
weighted by a Hamming window. A pth-order linear pre-
dictive coding (LPC) analysis is then performed on the
data. Thus, for each frame, a set of p + I LPC coeffi-
cients is generated. The input signal is then reduced to a
sequence of LPC frame vectors. There is no automatic
endpoint detection performed on the data. The LPC de-
rived cepstral vector is then computed up to the Qth com-
ponent, where Q > p (where Q = 12 in our implemen-
tation).

Each coefficient of the Q-coefficient cepstral vector,
¢;(m), at time frame / is weighted by a window W.(m)
of the form

W, (m) = [1+—%sh1<§;>J, l=m=0Q (1)

to give
&(m) = ¢(m) - W.(m). (2)

It has recently been shown that by extending the anal-
ysis vector to include spectral derivative (in time) infor-
mation, performance of several standard speech recogniz-
ers improved significantly [17], [18], [22]. As such we
include such spectral derivative information in our anal-
ysis vector as follows.

The time derivative of the sequence of weighted cep-
stral vectors is approximated by a first-order orthogonal
polynomial over a finite length window of 2K + 1)
frames, centered around the current vector. (K =2inour
implementation; hence the derivative is computed from a
5 frame (75 ms) window.) The cepstral derivative (i.e.,
the delta cepstrum vector) is computed as

Aé(m) = [kﬁkké,k(m)} ‘G, 1=m=Q (3)

where G is a gain term so that the variances of ¢, (m) and
Aé/(m) are about the same. (For our system the value of
G was 0.375.)

The overall observation vector 0, used for scoring the
HMM’s is the concatenation of the weighted cepstral vec-
tor, and the corresponding weighted delta cepstrum vec-
tor, i.e.,

0, = {&(m), agi(m)} (4)

and consists of 24 coefficients per vector.

T 1

B. Model Alignment Procedure

The sequence of spectral vectors of an unknown speech
utterance is matched against a set of stored word-based
hidden Markov models using a syntax-derived, frame-
synchronous, network search algorithm (described in
[19]). Word and state duration probabilities have been in-
corporated into the HMM scoring and network search. A
finite state grammar, describing the set of valid sentence
length inputs, is used to drive the recognition process.
The recognition algorithm performs a maximum likeli-
hood string decoding on a frame-by-frame basis, there-
fore making optimally decoded partial strings available at
any time. The output of this process is a set of valid can-
didate strings.

C. Generating Word Reference Models

In order to generate one or more word models from a
training data set of labeled speech, a segmental k-means
training algorithm is used [20].' This word building al-
gorithm (i.e., an estimation procedure for determining the
parameters of the HMM’s) is iterated for each model until
convergence (i.e., until the difference in likelihood scores
in consecutive iterations is sufficiently small).

To create multiple models per word an HMM-based
clustering algorithm is used to split previously defined
clusters [25]. This algorithm, based on the likelihoods ob-
tained from the current set of HMM’s, separates out from
the set of training tokens those tokens whose likelihood
scores fall below some fixed or relative threshold. That
is, we separate out all the tokens with poor likelihood
scores and create a new model out of these so-called out-
lier tokens. Once the tokens have been clustered, the seg-
mental k-means training algorithm is again used to give a
(locally optimal) set of parameters for each of the models.
Further details of this algorithm can be found in [25).

III. STRUCTURE OF HIDDEN MARKOV MODELS

Fig. 2 illustrates the structure of the HMM’s used to
characterize individual words as well as the background
environment, and the extraneous speech [21]-[23]. The
models are first-order, left-to-right, Markov models with
N states. Each model is completley specified by the fol-
lowing:

1) A state transition matrix A = g; j» with the constraint
that

a; =0 j<ij=i+2 (5)

(i.e., we allow transitions from state j only to itself, or to
state j + 1).
2) A continuous mixture density matrix B = b;(x) of
the form
M

bi(x) = .gl cmi N[x, tnj, Uyl (6)

'The segmental k-means algorithm tries to optimize the likelihood of the
observation sequence and the state sequence over all model parameters as
opposed to the conventional Baum-Welch procedure which tries to opti-
mize the likelihood of the observation sequence (over all possible state
sequences) over all model parameters.
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Fig. 2. Representation of HMM used for each word in the vocabulary and
for the silence and extraneous speech models.

where x is the input cepstral vector, c,; is the mixture
weight for the mth component in state j, p,,; is the mean
vector for mixture m in state j, and U,,; is the covariance
for mixture m in state j. All evaluations described in this
paper used diagonal covariance matrices. In our evalua-
tions, the number of states per model was set to 10 and
the number of mixture components per state M was set to
nine. (Several other values for N and M were evaluated.)

3) A set of log energy densities p;(&), where ¢ is the
dynamically normalized frame energy, and p; is an em-
pirically measured discrete density of energy values in
state j.

4) A set of state duration probabilities p,; (7), where 7
is the number of frames spent in state j, and p; is an em-
pirically measured discrete density of duration values in
state j. (Although p; (7) is clearly not independent of the
exponential duration density implied by the self-transition
coefficient a;;, in practice it has been found that one can
assume independence and not have any serious effect on
recognition performance [18].)

IV. MODELING OF BACKGROUND AND EXTRANEOUS
SPEECH

The grammar used in the recognition process allows for
any number (or zero) of (extraneous speech) garbage
models and background models followed by one or more
(or none) of the vocabulary words to be recognized and
followed by another unconstrained sequence of garbage
and background models. In our tests we know a priori
that only one vocabulary word appears in any utterance,
hence we limited the grammar to find exactly one vocab-
ulary word. This is shown graphically in Fig. 3, where
node 0 is the starting node and node / is the terminal node.

The garbage models and background models are gen-
erated automatically, using the training procedures de-
scribed in Sections II-C and VI.

V. EXPERIMENTAL DATA BASE

A speech data base, consisting of approximately 75 000
utterances, was collected during a large scale trial of
speaker independent isolated word recognition technol-
ogy, carried out at an AT&T central office in Hayward,
CA [1], [8). The five word vocabulary defined for this
task was collect, calling card, third number, person, and
operator. Each utterance was obtained from a telephone
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Fig. 3. The grammar used to recognize the vocabulary words in the con-
text of extraneous speech and/or background silence.

customer during the course of a normal operator assis-
tance call. Each caller was automatically prompted (by a
voice response system) to speak one of the five keywords
in an isolated fashion. During the trial about 17% of all
customer responses contained a valid vocabulary word
along with extraneous input which ranged from non-
speech sounds, such as background music or door slams,
to extraneous speech such as:

(silence) collect call please (silence)

Um? Gee, okay, I'd like to place a calling-card call
Collect from Tom (silence)

I want a person call

{silence) Please give me the operator.

Of the 75 000 collected utterances, a random set of 7980
utterances was digitized and used for experimentation.
Table I shows the distribution of the digitized utterances
that were used in our recognition experiments. The dis-
tribution of utterances for each of the five vocabulary
words varies widely and is proportional to the percent of
operated assisted calls made of each type. Each custom-
er’s utterance contained only one of the prescribed vocab-
ulary words. A trained listener labeled the 1483 customer
utterances that contained extraneous speech, so as to cre-
ate separate vocabulary word and extraneous speech data
bases. Fig. 4 shows the segmentation output for a typical
utterance. Fig. 4(a) shows the waveform and Fig. 4(b)
shows the log energy contour. The dashed lines indicate
the boundaries between words. The extraneous speech
data base was used to train our garbage (extraneous
speech) models. Additional examples are shown in Figs.
5 and 6. Roughly half the utterances in each category were
used for training; the other half were used for testing.

Some interesting results can be found by examining the
actual speech transcriptions. In addition to the five vocab-
ulary words, there were 477 other unique words spoken.
Table II shows the distribution of the three most frequent
extraneous inputs as a function of the vocabulary word
spoken. For example, when the vocabulary word calling
card was spoken along with extraneous input, the word
um was also spoken 53.8% of the time. Table III shows
the distribution of the three most frequent words as a
function of the vocabulary word spoken including whether
the extra word was spoken immediately before or after the
vocabulary word. If we were to optimize our algorithm to
this specific vocabulary and task, this information could
be very useful. We see in this table that the word um oc-
curred immediately before a vocabulary word about 80%
of the time (when the vocabulary word was not spoken in
isolation).
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TABLE ] 15000
HAYWARD SPEECH DATA BASE DISTRIBUTIONS
B
Words Spoken Words Spoken %
as Isolated as Part of a 5
Utterances Connected Phrase (a) Z
o
Vocabulary m
Word Total | Training | Testing || Training Testing
Collect 4320 1703 1602 510 505 -11000
Calling-card 2121 910 955 132 123 0 =z
Third-number 619 273 281 34 3l 7 “ 40 2
Person 170 77 67 14 12 : ;
Operator 751 320 309 65 57 i 3
(b) | ]
Totals 7980 | 3283 3214 755 728 i ©
TYPE 4 m
um feaLiine caro CALL &
TYPE2 Sy e, g
18000 TYPE3 N
I o &
[o] 36
z TIME (sec)
(a) E. Fig. 6. (a) Linear amplitude and (b) normalized energy plots of the utter-
§ ance, “‘Um gee OK I'd like to place a calling card call,”” and the re-
spective segmentations and labels.
-18000
58 Z TABLE II
2 OCCURRENCE OF SELECTED NONVOCABULARY WORDS SPOKEN ALONG WITH
! =4 VOCABULARY WORDS
(b) | m -
| o Selected Non-keywords with their Frequency
I m
TYPE 1 -Gwz.l‘.—us e . z Non-Vocabulary | Collect | Calling-card | Third-number | Person | Operator
i 2
TYPE 2 N vgéﬁuuﬂv KR 5] um 24.5% 53.8% 39.7% 45.8% 28.3%
- ! -
TYPE3 - RANoOM DaTar o 8 please 25.0 19.6 206 167 | 442
o 15 call 341 23 o 8.3 09
TIME (sec)

Fig. 4. (a) Linear amplitude and (b) normalized energy plots of the utter-
ance, “‘Please give me the operator,”’ showing 3 types of segmentation
and labeling. Each of the 3 sets of segmentations and labels was used to
train vocabulary word, background silence, and extraneous speech

models.
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Fig. 5. (a) Linear amplitude and (b) normalized energy plots of the utter-
ance, *‘Collect from Tom (silence),”” and the respective segmentations
and labels.

VI. RECOGNITION EXPERIMENTS

Several recognition experiments were carried out to de-
termine the minimal amount of a priori knowledge of the
data base needed to train the vocabulary word, back-
ground, and extraneous speech models. Additionally, we
also examined the issue of number and size (in terms of

number of states) of the extraneous speech models nec-
essary to achieve the best performance.

A. Data Base Labeled as Vocabulary Words and
Specific Nonvocabulary Words

In this first experiment, we assumed that we had a com-
pletely labeled speech data base, which consisted of both
vocabulary words and specific nonvocabulary words.
Several examples of this type of labeling can be seen in
Figs. 4-6~indicated as Type 1. Based on the labeling of
the data base described in Section V, 10-state, 9 mixture/
state hidden Markov models were generated for each of
the n most frequently spoken nonvocabulary words and
noises, plus a single 10-state, 9 mixture/state model for
the background. Table IV shows a list of the 13 most fre-
quently occurring extraneous signals. The list contains
mainly words, but also contains many nonword signals,
for example, clicks and breath noises. Table V shows rec-
ognition word accuracy and the extraneous speech (sig-
nal) coverage as a function of n. We see that the recog-
nition accuracy for the isolated data base is relatively
insensitive to the number of extraneous speech models in
the range of from 3 to 13 nonvocabulary word models.
This implies that there is a large separation between the
extraneous speech models and the specific vocabulary
word models for this task. We also see that with n = [,
only 11.6% of all extraneous speech segments have been
used to create the single garbage model. However, the
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TABLE 111
SELECTED NONVOCABULARY WORDS WITH THEIR FREQUENCY OF
OCCURRENCE DIRECTLY BEFORE AND DIRECTLY AFTER THE KEYWORDS

l Non-Vocabulary Collect Calling-card Third-number Person Operator
l % Before|% After|% Before|% After|% Before |% After |% Before|% After|% Before|% After
‘7 um 71.8 6.5 82.9 4.3 85.2 3.7 63.6 [ 7.9 3.1
‘ please 0 68.5 0 84.3 0 92.9 0 100 0 96.0
. call 4.1 93.6 16.7 833 - - 0 100 0 0
TABLE IV TABLE VI
MosT FREQUENTLY OCCURRING NONVOCABULARY ITEMS PRESENT IN THE RECOGNITION WORD ACCURACY AS A FUNCTION OF THE NUMBER OF STATES
DATA BASE IN A SINGLE SILENCE HMM
Frequency # of States in % Correct % Correct % Correct
Number Item Silence Model || Isolated Data | Embedded Data All Data
1 98.6 94.0 97.8
! o 2 97.3 91.9 96.3
2 please 3 99.2 93.8 98.2
3 call 4 99.1 94.2 98.2
. 3
4 clicks (lip smacks and telephone lineclicks) 13 ZZ; g:,; 323
5 breath noises
6 from
7 background noise (eg. stereo)
8 background speech (eg. side conversation at public telephones) . . . .
o s and a single hidden Markov model was trained as a uni-
10 this versal extraneous speech model. A separate background
1 0 model was also generated. For this experiment we ex-
12 my amined the effects of varying the number of states used
B : J for the background model on the word recognition accu-

TABLE V
RECOGNITION WORD ACCURACY AS A FUNCTION OF THE NUMBER OF
NONVOCABULARY WORD SPECIFIC MODELS

# of Non-Vocabulary % Coverage of % Correct % Correct % Correct
Word Specific Models | Extrancous Speech Segments || Isolated Data | Embedded Data All Data

1 11.6 98.9 91.6 §7.6

2 210 9.9 91.9 97.6

3 30.0 99.0 94.6 98.2

4 38.2 99.0 94.8 98.2

7 55.2 99.1 94.8 98.3

13 619 9.1 94.6 98.3

recognition accuracy is fairly high. As n varies from 2 to
13, we see that the system performance increases, until a
coverage of 30% (n = 3) at which point it levels off. By
creating models for the most frequently occurring words
and noises (in addition to a background model), we were
able to achieve a recognition rate of 94.8% when the vo-
cabulary word was spoken along with extraneous input
(embedded) and 99.1% when the vocabulary word was
spoken without extraneous input (isolated).

B. Data Base Labeled as Vocabulary Word and
Extraneous Speech Sequences

In this experiment, we relaxed the labeling require-
ments on the training data base. Here we made the as-
sumption that the data base was either labeled as vocab-
ulary words or extraneous speech sequences, without any
detailed classification of the extraneous speech se-
quences. Examples of this type of data labeling are shown
in Figs. 4-6 and are indicated as Type 2.

In this test, all the extraneous speech regions (including
nonvocabulary words and noises) were combined together

racy. The results of this experiment, as shown in Table
VI, indicate that with a single extraneous speech model
and a single 1-state background model, the word recog-
nition accuracies (98.5% on isolated data and 94.0% on
embedded data) were comparable to those obtained using
13 10-state HMM’s generated from specific word tokens
(as shown in Table V). Slight improvements were ob-
tained using a single 10-state background model, for
which the word recognition accuracies were 99.2% for
isolated data and 94.2% for embedded data (for an overall
accuracy of 98.3%). These recognition accuracies are
significantly better (more than 5% improvement in word
accuracy) than those reported by Bossemeyer et al. on the
same data base and for the same task [12]. Tables VII and
VIII show the recognition confusion matrix generated
from this test for the isolated and embedded speech data.
This table shows that the recognition accuracy is highest
for the vocabulary words that had the most training data
available (e.g., collect and calling card) and lowest for
the words with the least training (e.g., person and third
number).

Given the encouraging performance scores of Table VI,
we used the HMM clustering algorithm described above
to build multiple HMM’s from our large unlabeled data
base of extraneous speech inputs. Table IX shows the
word recognition accuracies as a function of the number
of extraneous speech HMM’s used (all models were
10-state, 9-mixture per state models). The overall perfor-
mance (i.e., word recognition accuracy) remains about the
same when using from one model to five models to rep-
resent the extraneous speech.

To improve performance further, we can use a rejection
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TABLE VII
CONFUSION MATRIX FOR ISOLATED SPEECH RECOGNITION TEST (IN PERCENT)
Recognized Word
Total # of
Collect  Calling-Card  Third-Number  Person  Operator | Utterances
Collect 99.7 0.2 [} 4] 0.1 1602
Calling-Card 0.9 98.9 0 0.1 0.1 955
Actual Word | Third-Number 7.1 3.6 85.8 0 36 67
Person 0 1.5 0 97.0 1.5 28
Operator 1.6 0.6 0 0.3 97.4 309
TABLE VIII
CONFUSION MATRIX FOR EMBEDDED SPEECH RECOGNITION TEST (IN
PERCENT)
Recognized Word
Total # of
Collect  Calling-Card  Third-Number  Person  Operator | Utterances
Collect 94.7 2.2 0.8 0.1 1.4 505
Calling-Card 0.8 97.6 0.8 0.8 0 123
Actual Word | Third-Number 6.5 0 90.3 0 32 31
Person 8.3 0 0 83.3 8.3 12
Operator 35 0 0 0 96.5 57
TABLE IX in each training utterance. For initialization of the back-

RECOGNITION WORD ACCURACIES AS A FUNCTION OF THE NUMBER OF
GARBAGE HMM's

# of Garbage % Correct % Correct % Correct
Models Isolated Data | Embedded Data || All Data

1 9.2 942 98.3

2 9.3 938 98.3

3 9.2 94.9 98.4

4 9.3 95.1 98.5

5 9.3 9.5 98.4

criterion to defer recognition decisions. Fig. 8 shows a
plot indicating the tradeoff between recognition error rate
and rejection rate (i.e., no recognition decision is made)
based on the recognizer that used five extraneous speech
models. The dashed line shows the results for vocabulary
words embedded in extraneous speech; the solid line
shows the results for the purely isolated speech; the dotted
line shows the results on the entire data base. These re-
sults were obtained by applying a threshold test on the
output likelihood scores generated by the recognizer. The
figure shows that to achieve greater than 98% correct on
the embedded speech about 10% of the utterances would
have to be rejected. For the isolated data to be recognized
with a 99.7% accuracy, 4.0% of the utterances would
have to be rejected. Finally, for the entire data base to be
recognized at an accuracy greater than 99.5%, 5.8% of
all utterances would have to be rejected.

C. Data Base Labeled for Vocabulary Words Only

In this last experiment, we removed all constraints on
the labeling in the data base used to train the extraneous
speech model. The only requirements were that we ortho-
graphically label (but not segment) the vocabulary words

T T ’

ground silence model and the universal extraneous speech
model, we assume only that we can use the training data
base as an unlabeled set. Examples of this type of labeling
can be seen in Figs. 4-6-indicated as Type 3. Even though
a vocabulary word is present in these examples, the entire
utterence is used to train the extraneous speech model.
Fig. 7 shows a flow diagram of the training process used
to obtain the final vocabulary word and extraneous speech
models. To initialize the training process, a set of HMM’s
is built from the isolated vocabulary words and the pool
of random speech data. Given this set of bootstrap models
and the set of training data that contains the vocabulary
words, the segmental k-means training algorithm is used
to segment the training strings into vocabulary words,
background, and extraneous speech. New models are then
created and the process iterates itself to convergence.
Using this fully automatic training procedure to generate
a single extraneous speech model, a word recognition ac-
curacy of 99.4% was obtained when the vocabulary word
was spoken in isolation and 94.5% when the vocabulary
was embedded within extraneous input. These results,
which are comparable to those based on the most detailed
training, show that both background and extraneous
speech models can be bootstrapped successfully without
having a detailed transcription of the training files.

In a final experiment a single extraneous speech model
was generated, using the training procedure just de-
scribed, without generating a separate background model.
Recognition results were comparable to the results pre-
sented above, namely 99.1% word accuracy for the iso-
lated data base and 94.0% word accuracy for the embed-
ded data base. This indicates that a single extraneous
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Fig. 8. Tradeoff in word recognition error rate versus rate of rejection (no
decisions) for the embedded words, the isolated words, and the entire
data base.

speech model can be generated which adequately char-
acterizes both the extraneous speech and the background.

VII. DiscussioN

Automatic speech recognition can be used to greatly en-
hance current telephone network based services and to
create a wide variety of new services. In addition, since
Touch-Tone® penetration is only about 65% nationwide
in residences, ASR capabilities are a must if new services
are to be made available to the general public. One ex-

1877

ample, presented here, is automating operator services.
Others include catalog order entry, credit card verification
and repertory dialing. Unfortunately, since current rec-
ognition algorithms require that user input be restricted
solely to a set of predefined vocabulary items (and some-
times grammatical structures), the human factors issue
often become overwhelming. Hence, speech recognizers
using even very small vocabulary sets (i.e., 10-20 words)
have not been deployed for wide scale use.

In this paper we have presented an algorithm based on
hidden Markov model technology, which was shown ca-
pable of accurately recognizing a predefined set of vocab-
ulary items spoken in the context of fluent unconstrained
speech.

A key point to note is that the assumptions made in this
paper are the reverse of those made in previous work on
creating a background silence model [16]; namely, that
we expected we would have to create a large number of
extraneous speech models to obtain high performance. By
creating this large number of extraneous speech models
we did get good performance on recognition of the vo-
cabulary words in unconstrained speech. Our secondary
goal became one of trying to find ways to reduce the num-
ber of extraneous speech models to a small value (e.g.,
one) and still maintain performance close to that of the
system with a large number of extrancous speech models.
We showed that indeed this was the case and presented
two methods for achieving this goal. We never expected
the system with a small number of universal extraneous
speech models to outperform the system with a large num-
ber of such models—our goal was to maintain the perfor-
mance of the system. We showed that, for a specified vo-
cabulary of five words used for call type routing in
operator assisted calls, we could correctly recognize
99.3% of purely isolated speech and 95.1% of the spoken
words when they occurred in fluent speech spoken over
the long-distance telephone network.

REFERENCES

{1] J. G. Wilpon, D. M. DeMarco, and R. P. Mikkilineni, *‘Isolated
word recognition over the DDD telephone network—results of two
extensive field studies,”” in Proc. 1EEE Int. Conf. Acoust., Speech,
Signal Processing (New York, NY), Apr. 1988. 15.1.10, pp. 55-57.

[2] C.-H. Lee, *‘Some techniques for creating robust stochastic models
for speech recognition,”” J. Acoust. Soc. Amer., suppl. 1, vol. 82,
Fall 1987.

[3] F. Itakura, **Minimum prediction residual principle applied to speech
applications,”” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-23, no. 1, pp. 67-72, Feb. 1975.

[4] L. R. Rabiner, and S. E. Levinson, ‘‘Isolated and connected word
recognition—theory and selected applications,”” IEEE Trans. Com-
mun., vol. COM-29, no. 5, pp. 621-659, May 1981.

{51 J. G. Wilpon and L. R. Rabiner, **On the recognition of isolated
digits from a large telephone customer population,” Bell Syst. Tech.
J.. vol. 61, no. 7, pp. 1977-2000, Sept. 1983.

[6] 1. G. Wilpon, **A study on the ability to automatically recognize tele-
phone quality speech from large customer populations,”” AT&T Tech.
J.. vol. 64, no. 2, pp. 423-451, Feb. 1985.

[71 L. R. Rabiner, and J. G. Wilpon, ‘*‘Some performance benchmarks
for isolated word, speech recognition systems,”> Comput. Speech,
Language. vol. 2, no. 3/4, pp. 343-358, Dec. 1987.

[8] R. Thanawala, B. H. Fetz, and R. J. Piereth, ‘*Automatic speech
recognition in the public switch network,™ in Proc. Sth World Tele-
com Forum, vol. 1, pt. 2, 1986, pp. 235-238.




1878

[9] R. W. Christiansen, and C. K. Rushforth, ‘‘Detecting and locating
key words in continuous speech using linear predictive coding,”’ IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, no. 5, PP-
361-367, Oct. 1977.
A. L. Higgins, and R. E. Wohiford, ‘*Keyword recognition using
template concatenation,’” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing (Tampa, FL), Mar. 1985, pp. 1233-1236.
C. 8. Myers, L. R. Rabineer, and A. E. Rosenberg, “‘An investiga-
tion of the use of dynamic time warping for word spotting and con-
nected word recognition,” in Proc. Conf. Acoust., Speech, Signal
Processing (Denver, CO), Apr. 1980, pp. 173-177.
R. W. Bossemeyer, J. G. Wilpon, C. H. Lee, and L. R. Rabiner,
*‘Automatic speech recognition of small vocabularies within the con-
text of unconstraint input,” J. Acoust. Soc. Amer., suppl. 1, vol. 84,
Nov. 1988.
[13] F. Jelinek, ‘‘Continuous speech recognition by statistical methods,”’
Proc. IEEE, vol. 64, pp. 532-556, 1976.
[14] J. Spohrer, P. Brown, P. Hochschild, and J. Baker, ‘‘Partial trace-
back in continuous speech recognition,’’ in Proc. IEEE Int. Conf.
Cybern. Soc. (Boston, MA), Apr. 1980.
L. Bahl, R. Bakis, P. Cohen, A. Cole, F. Jelinek, B. Lewis, and R.
Mercer, “‘Speech recognition of a natural text read as isolated words,”’
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (At-
lanta, GA), Apr. 1981, pp. 1168-1169.
J. G. Wilpon and L. R. Rabiner, ‘‘Application of hidden Markov
models to automatic speech endpoint detection,’’ Comput. Speech
Language, vol. 2, no. 3/4, pp. 321-341, Dec. 1987.
A. B. Poritz and A. Richter, *‘On hidden Markov models in isolated
word recognition,’” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing (Tokyo, Japan), Apr. 1986, pp. 705-708.
L. R. Rabiner, J. G. Wilpon, and F. K. Soong, ‘‘High performance
connected digit recognition using hidden Markov models,”’ IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, no. 6, pp. 1214~
1225, Aug. 1989.
C. H. Lee and L. R. Rabiner, ‘A frame-synchronous network search
algorithm for connected word recognition,’” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 37, no. 11, pp. 1649-1658, Nov.
1989.
L. R. Rabiner, J. G. Wilpon, and B. H. Juang, ‘‘A segmental k-
means training procedure for connected word recognition based on
whole word reference patterns,”” AT&T Tech. J., vol. 65, no. 3, pp.
21-31, May 1986.
L. R. Rabiner, J. G. Wilpon, and B. H. Juang, ‘A model-based con-
nected-digit recognition system using either hidden Markov models
or templates,’” Compur., Speech, Language, vol. 1, no. 2, pp. 167-
197, Dec. 1986.
K.-F. Lee, ‘‘Large-vocabulary speaker-independent  continuous
speech recognition: The SPHINX system,”’ Ph.D. dissertation, Car-
negie-Mellon Univ., Pittsburgh, PA, 1988.
[23] F. Jelinek, ‘‘Continuous speech recognition by statistical methods,””
Proc. IEEE, vol. 64, pp. 532-556, 1976.
{24] L. R. Rabiner, B. H. Juang, S. E. Levinson, and M. M. Sondhi,
*‘Recognition of isolated digits using hidden Markov models with
continuous mixture densities,”” AT&T Tech. J., vol. 64, pp. 1211~
1234, 1985.
L. R. Rabiner, C. H. Lee, B. H. Juang, and J. G. Wilpon, ‘*‘HMM
clustering for connected word recognition system,”” in Proc. ICASSP
‘89 (Glasgow, Scotland), May 1989, pp. 405-408.
J. G. Wilpon, C. H. Lee, and L. R. Rabiner, *‘Application of hidden
Markov models for recognition of a limited set of vocabulary words
in unconstrained speech,”” in Proc. ICASSP '89 (Glasgow, Scotland),
May 1989, pp. 254-257.

[10]

[11]

[12]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[25]

[26]

Jay G. Wilpon (M’84-SM’87) was born in New-
ark, NJ, on February 28, 1955. He received the
B.S. and A.B. degrees (cum laude) in mathemat-
ics and economics, respectively, from Lafayette
College, Easton, PA, in 1977, and the M.S. de-
gree in electrical engineering/computer science
from Stevens Institute of Technology, Hoboken,
NIJ, in 1982.

Since June 1977 he has been with the Speech
Research Department at AT&T Bell Laboratories,
Murray Hill, NJ, where he is a Member of the

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 38, NO. 11, NOVEMBER 1990

Technical Staff. He has been engaged in speech communications research
and is presently concentrating on problems in isolated and connected word
speech recognition. He has written extensively in this field and has been
awarded several patents. His current interests lie in training procedures for
both speaker dependent and speaker independent recognition systems, key-
word spotting algorithms, speech detection algorithms, and determining
the viability of implementing speech recognition systems for general usage
over the telephone network.

Mr. Wilpon received the 1987 IEEE Acoustics, Speech, and Signal Pro-
cessing Society’s Paper Award for his work on clustering algorithms for
use in training automatic speech recognition systems.

Lawrence R. Rabiner (S’62-M'67-SM’75-F’75)
was born in Brooklyn, NY, on September 28,
1943. He received the S.B. and S.M. degrees
simultaneously in June 1964, and the Ph.D. de-
gree in electrical engineering in June 1967, all
from the Massachusetts Institute of Technology,
Cambridge.

From 1962 through 1964 he participated in the
cooperative plan in electrical engineering at Bell
Laboratories, Whippany, NJ, and Murray Hill,
NJ. He worked on digital circuitry, military com-
munications problems, and problems in binaural hearing. Presently he is
engaged in research on speech recognition and digital signal processing
techniques at Bell Laboratories, Murray Hill. He is coauthor of the books
Theory and Application of Digital Signal Processing (Prentice-Hall, 1975),
Digital Processing of Speech Signals (Prentice-Hall, 1978), and Mulsirate
Digital Signal Processing (Prentice-Hall, 1983).

Dr. Rabiner is a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, the
National Academy of Engineering, the National Academy of Science, and
is a Fellow of the Acoustical Society of America.

Chin-Hui Lee (5°’78-M'82) was born in July
1951. He received the B.S. degree from National
Taiwan University, Taipei, in 1973, the M.S. de-
gree from Yale University, New Haven, CT, in
1977, and the Ph.D. degree from the University
of Washington, Seattle, in 1981, all in electrical
engineering.

In 1981, he joined Verbex Corporation, Bed-
ford, MA, where he was involved in research work
on connected word recognition. In 1984, he be-
came affiliated with Digital Sound Corporation,
Santa Barbara, CA, where he was engaged in research work in speech cod-
ing, speech recognition, and signal processing for the development of the
DSC-2000 Voice Server. Since 1986, he has been with AT&T Bell Labo-
ratories, Murray Hill, NJ. His current research interests include speech
modeling, speech recognition, and signal processing.

E. R. Goldman, photograph and biography not available at the time of
publication.




