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ABSTRACT

The problem of recognizing strings of connected digits is
crucial to a number of applications such as voice dialing of
telephone numbers, automatic data entry, credit card entry, PIN
(personal identification number) entry, entry of access codes for
transactions, etc. Algorithms for connected digit recognition,
based on whole .word reference patterns, . have become
increasingly sophisticated and have been shown capable of
achieving high recognition performance. Much of this
complexity is derived from the design of specialized word
models suitable solely for connected digit recognition.

In this paper we show how we can apply the improved
acoustic modeling techniques (using a continuous density hidden
Markov model framework), developed for large vocabulary
speech recognition applications, to the problem of connected
digit recognition with no changes made to the basic modeling
techniques and with no vocabulary specific information used.
The improved modeling techniques adopted in this study include
an improved feature analysis procedure, that incorporates higher
order cepstral and log energy time derivatives, and an improved
acoustic resolution procedure, that uses more Gaussian mixture
components per state to characterize the acoustic variability in
each state of the model. Using these techniques, string
accuracies of 98.6% for unknown length strings and 99.2% for
known length strings were achieved on the standard Texas
Instruments connected digits database. These string accuracies
are a factor of 2 better than those previously reported using the
same modeling procedures {4], and are even somewhat better
than those reported by Doddington using specialized modeling
techniques for the digits [1].

1. Introduction

Connected digit recognition is an extremely important speech
recognition task because of its application to such problems as
credit card validation, catalog ordering, and digit dialing by
voice. In the last several years, several highly successful
algorithms for recognizing spoken connected word strings from
word prototypes have evolved [14]. These algorithms, all based
on statistical pattern recognition methods, have achieved great
success when applied to the problem of connected digit
recognition. The reasons for this success are twofold. First, the
recognition algorithms are optimal in the sense that they find the
string of digit reference patterns that best (in some objective
sense) matches the spoken digit string. Second, there have been
several highly successful training procedures developed which
derive the digit reference patterns from a training set of fluent
connected digit strings [1-5].
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To achieve high accuracy on connectcdkdigiti recogrﬁtiom a
great deal of research has gone into’devising specialized word
models suitable for connected digit recognitioh. which rely on
the use of separate male/female ‘models,  context dependent
models for the digits wo and' four, confusion class models for
likely digit confusions, etc. (see, for example, Doddington [1]).
With the use of these specialized mode]mg techmques, very high
performance connected digit recognition ‘accuracy was achieved
on the standard Texas Instruments (TT) connected digit database
(1.5% string error rate, 0.5% word error rate for unknown length
strings). Although excellent performance was obtained on this
one task, the techniques and modeling. ideas  were. highly
specialized to the digits vocabulary, and hence’ might not be
straightforwardly generalizable to other: apphcauons (e g. large
vocabulary speech recognition). '

In an effort to improve the performance of: continuous
density, hidden Markov model - (CDHMM) based, large
vocabulary recognition systems, the feature analysis was
extended to incorporate higher-order time derivatives of cepstral
and log energy parameters, .The motivation behind this change
was the observation that, by including higher order information
about the time derivative of the.cepstral vector and log energy
parameter, a more complete 2-dimensional (time and frequency)
representation of the time-varying: speech signal is obtained.
This had the effect of reducing the overall word recognition error
rate by 30% when evaluated on the :DARPA 1000-word
Resource Management connected speech database [6].

In this paper, we show that the improved acoustic modeling
techniques, developed for large vocabulary speech recognition
applications, work extremely-well on the problem of connected
digit recognition, with no changes made to: the basic modeling
techniques. Using the improved:feature set with a single hidden
Markov model (HMM) per digit, we achieved a string error rate
of 1.4% for unknown length strings (with word error rate, which
includes substitutions, insertions and deletions of 0.48%) and a
string error rate of 0.77% for known length sﬁ'ings (with word
error rate of 0.23%) using the standard TI. connected digits
database. The error rate using the improved model is less than
half that of our earlier study, which had fewer spectral
parameters and less acoustic resolution in each model state [4].
Hence, without using any vocabulary. specific or speaker specific
knowledge, the results based solely.on improved modeling
techniques are comparable to (or actually slightly better than) the
best published results oblamed ‘using hxghly specxahzed models
and processing [1].

In Section 2, we discuss the improved feature analysis
techniques. In Section 3 we present recognition results from a
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series of tests on the TI connected digits database.

2. Improved (Expanded) Feature Analysis

A comprehensive description of the complete hidden Markov
model based connected word speech recognizer is given in
References 2 and 5. In this section, we focus our discussion on
the improved front-end feature analysis developed for a large
vocabulary recognition system. All other signal processing in the
recognizer is essentially identical to that described in
Reference 2.

Since we are using a continuous density HMM approach for
characterizing each of the models, it is fairly straightforward to
incorporate new feanwres into the feature vectors. Specifically,
we study the incorporation of higher order time derivatives of
short-time cepstral features and log energy featres into our
continuous speech recognition system. These include: the second
cepstral derivatives (called the delta-delta cepstrum), the log
energy derivative (delta energy), and the second log energy
derivative (delta-delta energy), into our continuous speech
recognition system.

2.1 Second Order Cepstral Time Derivatives

The incorporation of first order time derivatives of cepstral
coefficients has been shown useful for both speech recognition
and speaker verification. Thus we were interested in
investigating the effects of incorporating higher order cepstral
time derivatives. There are several ways to incorporate the
second order time-derivative of the cepstral coefficients. Most of
the existing approaches evaluate the second derivatives (called
the delta-delta cepstrum) as the least squares fit to the second
difference of each of the cepstral parameters defined over a finite
time window. The degree of success in using such a strategy for
the delta-delta cepstrum computation has been mixed.

One of the earliest continuous speech recognition systems
which used the delta-delta cepstral features, (which were
computed as the time derivatives of the first order time
derivatives) was reported on by Ney [7]. Ney tested the system
for speaker independent recognition of the DARPA 1000-word
Resource Management task, and showed a very significant
improvement in word accuracy (over the system without higher
order cepstral information) when testing the recognizer without
using any grammar (i.e. perplexity of 991). The same type of
evaluation was studied in the Bell Labs, PLU-based, large
vocabulary recognition system [6]. We found that direct
incorporation of delta-delta cepstral features gave a 10% word
error rate reduction (over that achieved without using delta-delta
cepstral features).

From our research in large vocabulary recognition, it was
shown that the window size for the second order cepstrum should
be of duration 3 frames of first order analysis data (i.e. an overall
window duration of 7 frames of speech contributed to the delta-
delta cepstrum at a given time). We used the same window
length (namely 105 msec with a 15 msec frame rate) in this
study. The m™ delta-delta cepstral coefficient at frame ! was
approximated as

8a2i(m) = Gy [Mer(m) - A6y m)] O

where AC;(m) is the estimated weighted m” delta cepstral

coefficient evaluated at frame !/ and G, is a scaling constant
which was fixed to be 0.375.

We augment the original 24-dimensional feature vector (12
cepstral 12 delta cepstral coefficients) with 12 additional features
derived from Eq. (1) giving a 36-dimensional feature vector. We
observed that the second order cepstral analysis produces very
noisy observations based on a 45 msec window and a 15 msec
frame shift. Of equal concem is the effectiveness of each of the
additional features. In Ney [7], a pre-selected set of delta and
delta-delta cepstral features was used. An automatic feature
selection algorithm, e.g. a principal component analysis, should
be used to determine the relative importance of all spectral
analysis features. (However we did not use such a feature
selection procedure here. This study will be undertaken in the
future.)

2.2 Log Energy Time Derivatives

Extending the feature vector to include first order time
derivatives of the log energy values, known as delta energy, has
been shown to be useful [6]. Several systems use both log
energy and delta energy parameters as features. In order to use
the energy parameter effectively, careful normalization is
required. In our large vocabulary system, the log emergy
parameter was normalized syllabically. We did not include the
log energy parameter directly in the feature vector; instead we
used the log energy parameter to assign a penalty term to the
likelihood of the observed feature vector. However, we have
found, from our work in large vocabulary recognition [6], that
the delta and delta-delta energy parameters are more robust and
more effective recognition features, and therefore we augmented
the 36-dimensional feature vector with the delta and delta-delta
energy features. Similar to the evaluation of the delta cepstrum
the delta energy at frame [/ is approximated as a linear
combination of the log energy parameters in a 5 frame window
centered at frame . Since the log energy parameter has a wider
dynamic range in value, we replace G in Eq. (1) with a smaller
constant (0.0375) for the evaluation of the delta energy. Again,
we did not attempt to optimize the results of the k-means
clustering algorithm by adjusting the normalization constant.

The second order time derivatives of the energy parameters,
called the delta-delta energy, are computed similar to the way the
delta-delta cepstral features are evaluated in Eq. (1). Again we
use a window of 3 frames, and the constant G, is fixed to be
0.375. Starting with the 24-element feature vector, by adding
delta-delta cepstrum, delta energy and delta-delta energy to the
feature set, for every frame I/, we have a 38-element feature
vector,

3. Experimental Evaluation and Results
3.1 Speaker Independent Connected Digits Database

To evaluate the performance of the connected digit
recognizer, in a speaker independent mode, we used the standard
TI commected digits database [8], as distributed by the National
Institute of Standards and Technology (NIST). This database
contains connected digit strings from 225 adult talkers (equaily
distributed among male and female talkers), and was
conveniently divided into training and testing sets, for
consistency of comparison of results among the different
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researchers using this database. This database was-dialectically
balanced with an equal mix of talkers from 22 dialectical regions.
At least 10 talkers (5 male, 5 female) from each dialectical region
were included in the database.

As provided by the NIST, the digitized strings were sampled
at a 20 kHz rate. For consistency with the telephone bandwidth,
all strings were digitally filtered to a 3.2 kHz bandwidth, and
downsampled to a 6.67 kHz rate. This downsampled version
represents a much lower data rate than what was used in other
connected digit recognition systems {1,3]. A total of 8568
training strings and 8578 testing’ strings were used (a small
number of the strings on the digital tapes were unreadable).

3.2 Recognition Results for Different Feature Analysis

Table 1 presents the results from a series of recognition
experiments to determine the effect of sequentially adding
components to the feature analysis vector. In all the experiments,
we trained a single hidden Markov model per word, based on a
continuous density model, with state observation . densities
approximated by mixture-Gaussian densities with diagonal
covariance matrices. Each model was a standard lefi-to-right
design with 10 states and 64 Gaussian mixture components per
state. For this task, the segmental k-means training procedure
was used [5). For comparison purposes, a baseline experiment
was run using the experimental design in Reference 4, namely
using only 9 Gaussian mixtures per state. The recognition error
rate (using a single HMM per word) in this test was 3.9% and
2.4% for unknown and known length strings, respectively (this
reduces to 2.8% and 1.6% using 2 HMMs per word). We can see
from the table that, as new features are added, the recognition
string error rate is reduced from 2.9% (with a word error rate of
0.5%), for unknown length (UL) strings (1.8% for known length
(KL) strings, with a word error rate of 0.2%) using only the
cepstrum and delta cepstrum features, to 1.4% for unknown
length strings (0.8% for known length) using both the 1st and
2nd order cepstrum and energy features. The table shows that a
feature vector consisting of the cepstrum, delta cepstrum, delta
energy and delta-delta energy (a 26 component vector) yielded
the same results (2.1% string error rate) as using the cepstrum,
delta cepstrum and delta-delta cepstrum (a 36 component vector).
This alone represents a 30% reduction in the string error rate. By
combining the cepstral and energy derivatives into a single
feature vector (a 38 component vector), the string error rate was
further reduced to 1.4% (an addition 30% string error rate
reduction). Additionally, we evaluated the improved recognition
system on the training database itself and achieved a 0.3% and
0.05% string error rate on unknown and known length strings

respectively. The error rates of this improved model (which is

based solely on improved acoustic parameterization) are almost a
factor of three less than the baseline result which used fewer
spectral features and thus less acoustic resolution in each model
state, and are comparable to the best results obtained using
highly specialized models (i.e. models tailored to the specific
vocabulary) and processing [1].

Figure 1 shows cumulative plots, for the testing set based on
both UL (part a) and KL (part b) strings, of the percentage of
talkers with string error rate above a threshold. The median UL
string error rate is 0.4% (with 58% -of the talkers having no
errors) and the median KL string error rate is 0.2% (with 74% of
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the talkers having no errors).. The UL string: error rates are

lower, by a factor of about .4, than the average error rates
reported in Table 1, showing that a large percentage of the string
errors were generated by a small fraction of ‘the talkers. This
result was noted by Bush and Kopec:[3] and Rabiner, etal [2].

3.3 Error Analysis T :

An analysis of the string errors ﬁsing the 38 ébmponent
feature vector and 64 mixture components per state (1 e. our best
results) shows the following:

o The most confusable pair-of words was. two bemg mis-
recognized as ok (12 out of 68 substitutions). The next most
confusable pair was five mis-recognized as four (5 times). All
other confusions occurred less: than 5 r.imés In 27 (out of the
68) of the word substitutions, the: word oh-was the subsnmted
word. ; :

25 of the 42 deletions were for the dlgll oh and 15 were for
the digit 8 : :

The most inserted digit was the dxgu ok (19 out of 27
insertions).

The digit two was the most mis-recognized digit (14 out of 68
mis-recognitions) and zero the second most mm-recogmzed
digit (11 times).

The above analysis shows that in about half the digit errors, the
word oh was involved. This result is to_be expected since ok can
be spoken rather rapidly and therefore is a pnme cand1date for
digit insertion, deletion, or substmmon

An analysis was also made of errors in the recogmuon of the
training set and trends very similar to those dlscussed above were
found.

3.4 Effects of Number of Mixtures Per Stafé

To demonstrate the effects of using greater or fewer than 64
mixtures per state, an experiment was run, in which a set of
HMM'’s was designed using the improved feature analysis
described above with 9, 16, 32, 64 and 128 mixtures per state.
Nominally these figures represent the maximum number of
mixtures per state. When insufficient data existed to design the
appropriate set of mixtures, the ‘actual number of mixtures per
state was reduced appropriately. Again, only a single HMM was
designed for each digit. The results of this experiment, in the
form of string error rates for: UL strings and KL strings for
different mumber of mixtures perfkstat’ke are given in Table 2. It
can be seen that as the number of mixtures per state goes from 9
to 32, a 33% reduction in string etror rate occurs (from 2.4% to
1.6% for unknown length strings). For nuns with 32 to 64
mixture components per state, a small but significant reduction in
string error rate was observed (down .to 1.4%). However,
increasing the number of mixture components per state from 64
to 128 yielded no real performance difference for UL strings. It
should be noted that the computation of the local likelihood
scores doubles for each factor of 2 increase in the number of
mixture components per - state. :Hence.l for - real-time
implementations one must consider the added value of increased
number of mixture components per state.” . '



4. Summary 7. H. Ney, ‘*Acoustic-Phonetic Modeling Using Continuous

. Mixwre Densites for the 991-Word DARPA Speech
In this paper we have presented results that demonstrate Recognition Task,” Proc. ICASSP 90, pp. T13-716,

major improvements in our ability to recognize relatively .
unconstrained strings of connected digits (i.e. strings up to 7 Albuquerque, NM, April 1990.

digits in length). We have shown that by incorporating 8. R. G. Leonard, ‘A Database for Speaker-Independent
information about the time derivatives of the cepstral coefficients Digit Recognition,”’ Proc. 1984 ICASSP, pp.42.11.14,
and log energy features, along with instantaneous cepstral March 1984,

coefficients, we can significantly improve recognizer
performance. We have also demonstrated the flexibility of using

continuous density HMM approaches. The techniques we String
developed in CDHMM-based large vocabulary recognition can Error
be applied directly to smaller recognition tasks with little or no Size of Rate (%)
change in basic modeling strategy. Feature
The incorporation of first and second order time derivatives Analysls Type Vector | UL KL
of the cepstral and energy parameters improved recognition cep + dcep 24 29 1.8
performance significantly, with a top performance of 1.4% and
0.8% string error rate for UL and KL strings, respectively. This cep + dcep + de 25 22 13
is almost a 3-to-1 reduction in the number of errors made using cep + deep + de + dde 26 2.1 12
an earlier system, which did not have such a fine acoustic
representation, and is comparable to the best published results on cep + dcep + ddcep 36 | 21 12
this database, which used highly stylized models for each digit.
In addition, we have used this improved feature analysis on oep + doep + ddeep + de 37 17 10
several other speaker independent cormected word databases and cep + dcep + ddcep + de + ddeff 38 14 0.8
have also seen equally impressive reductions in error rates.
) o TABLE 1
V\fe believe that a better feature ana.]ys1s is one of the ke.y cep = cepstrum
techniques we can benefit most from in the area of acoustic deep =
cep = delta cepstrum

modeling for both connected digit recognition as well as large ddcep = delta-delta cepstrum

vocabulary speech recognition. de = delta energy
dde = delta-delta engery
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