IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37, NO. 1i, NOVEMBER 1989

1649

A Frame-Synchronous Network Search Algorithm for
Connected Word Recognition

CHIN-HUI LEE, MEMBER, IEEE, AND LAWRENCE R. RABINER, FELLOW, IEEE

Abstract—This paper describes an implementation of a frame-syn-
chronous network search algorithm for recognizing continuous speech
as a connected sequence of words according to a specified grammar.
Although algorithms of this type have been known since the pioneering
work of Vintsyuk, and have been described in a wide variety of imple-
mentations, the proposed algorithm implements a couple of new fea-
tures which were not used in previous approaches. Furthermore, the
algorithm, which has all the features of earlier methods, is inherently
based on hidden Markov model (HMM) representations, and is de-
scribed in an easily understood, easily programmable manner (based
on pseudocode and detailed block diagram descriptions of the key pro-
cessing blocks). As such, this paper can be considered a tutorial exten-
sion of Ney’s paper on dynamic programming algorithms for con-
nected word recognition. The new features of the algorithm include the
capability of recording and determining () word es cor-
responding to the best several paths to each grammar node, and the
capability of efficiently incorporating a range of word and state dura-
tion scoring techniques directly into the forward search of the algo-
rithm, thereby eliminating the need for a postprocessor in the previous
implementations. It is alse simple and straightforward to incorporate
deterministic word transition rules and statistical constraints (proba-
bilities) from a language model into the forward search of the algo-
rithm.

[. INTRODUCTION

HE problem of recognizing a fluently spoken sentence
(as a string of words or subword units) based on con-
catenating individual word models (or individual subword
models) is extremely important for automatic speech rec-
ognition tasks. A wide variety of approaches to this prob-
lem, all based on the technique of dynamic programming
(DP) [1], have been proposed and evaluated [2]-[13]. The
earliest algorithm for connected word recognition was
proposed by Vintsyuk [2] who showed how DP tech-
niques could be used to get the optimal sequence of words
which match a spoken input. Vintsyuk’s procedure pro-
cessed the speech signal in a frame-synchronous manner,
and therefore his pioneering work formed the basis for
several DP-based solutions to the speech recognition
problems. Vintsyuk also proposed a rudimentary scheme
for incorporating syntactic constraints among words in the
search (i.e., a grammar).
Since Vintsyuk’s work was largely unknown in the U.S.
and Japan, several different DP-based search structures
were proposed for solving the speech recognition prob-

Manuscript received December 28, 1987; revised January 31, 1989.

The authors are with the Speech Research Department, AT&T Bell Lab-
oratories, Murray Hill, NJ 07974.

IEEE Log Number 8930531.

lem, based on concatenation of whole word and subword
templates (or models) including the statistical network ap-
proach of Baker developed at CMU [3], [4] (which was
followed by the research of Lowerre at CMU [5]), the
statistical approach by IBM researchers [6], [7], and var-
jous template-based word match algorithms [8]-[13]. The
key contribution from this early research was the idea of
representing all knowledge sources used for recognition
(e.g., word representation, language model) as networks
(either statistical or deterministic) which could readily be
integrated in with the basic network representing speech
sounds (e.g., subword or whole word units) and the entire
network search could be solved efficiently and accurately
using dynamic programming techniques. A variety of the
algorithms for finding the ‘‘best’’ path through a network
evolved from this research including the stack algorithm
developed by Jelinek [14], and a collection of specialized,
word-based, dynamic programming search methods such
as the two level DP approach of Sakoe [8]. the level
building algorithm of Myers and Rabiner [9], the one-
pass DP approach of Bridle, Brown, and Chamberlain
[10], and the one-stage DP approach of Ney [11]. These
specialized algorithms were all shown capable of obtain-
ing the best sequence of words which matched a given
spoken input string, subject to a wide range of syntactic
constraints (word grammar). Differences among the pro-
cedures were primarily those of implementation (e.g.,
frame-synchronous versus word-synchronous), and fea-
tures (e.g., how duration constraints were imposed, how
alternate strings were generated, etc.).

In this paper, which is tutorial in nature to a great ex-
tent, we propose a frame-synchronous dynamic program-
ming search algorithm for matching a continuous speech
utterance by a connected string of words (or subword
units), which retains the best features of all known DP
approaches, and which provides the capability of incor-
porating duration constraints and word transition rules di-
rectly into the forward search procedure. We also propose
a way to compute the second best path to each grammar
node in the grammar network in a frame-by-frame manner
so that alternate choices of candidate strings can be ob-
tained easily at the cost of very little extra computation.
The algorithm is described in terms of matching se-
quences of statistical word models (HMM’s) although it
is equally applicable to subword models and templates
with trivial modifications. We use the concept of pseu-

0096-3518/89/1100-1649%01.00 © 1989 IEEE

1650

docode and detailed block diagrams to describe both the
overall operation of the algorithm, as well as the individ-
ual blocks. We show how hardware implementations of
the resulting algorithm could be tailored to the specific
needs of individual tasks and word vocabularies.

This paper is organized as follows. In Section II, we
review the procedure for mapping a given recognition task
onto a finite state network (FSN), and show the recogni-
tion problem can be formulated as a maximum likelihood
path searching optimization problem, which can be solved
efficiently, on a frame-by-frame basis, using dynamic
programming techniques. In Section III, we review the
details of a standard, frame-synchronous procedure for
determining the best path through the complete network.
In Section IV, we discuss a simple procedure to search
for the globally second best path in a given FSN so that
alternate choices of candidate strings can be obtained eas-
ily even for a very complicated grammar network. In Sec-
tion V, we present several ways of incorporating statisti-
cal word and state duration penalties and word transition
penalties directly into the forward computation of the
search procedure. In Section VI, we outline the compu-
tational complexity of the algorithm, and give ways to
achieving reduction in computation for specific tasks. Ar-
chitectural issues for implementing the algorithm in hard-
ware are also discussed in this section.

II. SPEECH RECOGNITION VIA FINITE STATE NETWORK
DECODING

It has been shown by researchers at CMU and IBM that
most speech recognition tasks can be organized into a hi-
erarchy of (finite state) networks with a finite number of
nodes and arcs corresponding to acoustic, phonetic, and
syntactic knowledge sources and their interactions [3]-
{71, [14]. Recognition of an utterance corresponds to find-
ing the optimal path through the complete finite state net-
work. This idea of representing all knowledge sources in
an FSN has been applied to both isolated word recogni-
tion and continuous speech recognition [4], {7], [15]. The
optimal network search can be accomplished by sequen-
tial decoding using Dynamic Programming (DP) based on
a simple concept. The concept was stated by Bellman [1]
as the principle of optimality in the following terms: ‘‘An
optimal set of decisions has the property that whatever the
first decision is, the remaining decisions must be optimal
with respect to the outcome of the first decision.”” In terms
of decoding optimal paths in a finite state network, the
principle of optimality enables the decoding to be per-
formed on a frame-by-frame basis, as long as all the in-
formation required for the local optimal paths are kept so
that the global optimal paths can be found based on the
local ones.

For a connected word recognition task, it is instructive
to decompose the network into two levels, namely, a
phrase (grammar) level and an intraword level as in the
formulation of the two-level DP match algorithm [8]. The
two levels have completely different properties. The in-
traword level is usually a word model, which could be a

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37. NO. 11, NOVEMBER 1989

ag 22 a33 %44 0g5=1
a2 az3 G349 945
1 2 3 4 N=5
i |] | l
i {] 1
JUR R S S
OBSERVATION b4(0) by{0) bz(0) bs(0) bs(O)
DENSITY
ENERGY pqle) pale) pale) pale) pgle)
PROBABILITY
A A A A
STATE pq(d) pold) px(d) pgald) ps(d)
DURATION ! 2 3 4 °
PROBABILITY

Fig. 1. A 5-state whole word hidden Markov model.

whole word template, a whole word hidden Markov
model, or word presentation via an FSN of subword tem-
plates or models. In this paper, we will focus our attention
on the use of whole word HMM’s. An example of a sim-
ple 5-state left-to-right HMM, which is also an FSN for
representing a word, is shown in Fig. 1. The intraword
nodes are essentially the HMM states, while the intraword
arcs represent state transitions. For a left-to-right HMM,
each intraword node can be reached from only a small
number of predecessor intraword states (two in the case
of Fig. 1), or from the final state of a valid predecessor
model. In general, the intraword level uses a sparse net-
work representation for most recognition tasks.

As for the interword level, it is simply represented by
a grammar network (according to the language), in which
the nodes represent word boundaries, and the arcs repre-
sent whole word models and word transitions. These
grammar level network representations range from simple
networks with few syntactic constraints to highly con-
strained, complicated grammar networks. A simple gram-
mar network for a voice dialing application is shown in
Fig. 2. The grammar nodes provide points for path merg-
ing (e.g., at grammar node 1, the two sets of paths merge),
and each grammar arc is labeled with the set of contex-
tually allowable words. By replacing each word on the
grammar arcs in Fig. 2 with the corresponding word
models (similar to the one shown in Fig. 1), we get a
complete finite state network showing all internal and
grammar nodes and arcs. From this point on we will only
use the simple grammar level network, like the one given
in Fig. 2, to represent the complete FSN for a recognition
task.

Several examples of the FSN representations of con-
nected digit recognition tasks are given in Fig. 3. In the
examples, the grammar nodes labeled ‘‘0’’ are defined as
starting nodes, and the grammar nodes with a branching
arc labeled ‘‘exit’’ are terminal nodes where a string can
terminate. Example 1 [Fig. 3(a)] is a grammar network
for recognizing strings with from one to seven digits as is
typically used for connected digit recognition problems
(e.g., dialing a variable length telephone number). There
are seven terminal nodes in the network, and therefore it
is possible to generate digit string candidates with from
one to seven digits for this task. Example 2 [Fig. 3(b)] is
a grammar network that can be used to recognize an ar-

LEE AND RABINER: FRAME-SYNCHRONOUS NETWORK SEARCH ALGORITHM

CALL NAMES

ENTER, GROUP

CENTER
DIGITS
EXTENS|ON
DIGITS

Fig. 2. A grammar network for a simple recognition task.

EXIT

EOn0808050505050
EXIT NEXIT NEXIT N\EXIT \EXIT \EXIT \EXIT
1 2 3 4 5 6 7
DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT
STRING STRING STRING STRING STRING STRING STRING

(a)

3n, +1
DIGIT
STRING

()
Fig. 3. FSN examples for connected digit recognition. (a) Example 1: a
network to recognize up to 7 digits. (b) Example 2: a network to rec-

ognize an arbitrary number of digits. (¢) Example 3: a network to rec-
ognize three possible strings of any number of digits.

3n, +2
DIGIT
STRING

bitrary number of digits. The one-pass DP algorithm [10],
[11] basically uses this grammar for template-based DTW
connected word recognition with unconstrained syntax.
The dashed link between the terminal node and the start-
ing node provides a mechanism (a null transition) so that
different length partial strings can be merged in the for-
ward search procedure. One problem with this network is
that for each spoken utterance, there is only one recog-
nized candidate string, which may or may not be the cor-
rect length string. However, compared to the network of
Example 1, the number of paths to search is greatly re-
duced (by a factor of 7). Example 3 [Fig. 3(c)] is an ex-
tension of Example 2 which is capable of giving candidate
strings of lengths 3n, + 1, 3n, + 2, and 3n; + 3, where
ny, n,, and ny are any nonnegative integers. This FSN can
be used to recognize any number of digits and usually the
correct length string is included in the set of recognized
strings (along with the best string with one insertion and
the best string with one deletion). The network of Ex-
ample 3 is a good compromise between the networks of
Examples 1 and 2 in that the search is greatly reduced
(from that of Example 2) while candidates of different
lengths can still be produced. From our experience with
connected digit recognition, the correct string is very
likely to be included in the top candidate strings from net-
works such as that of Fig. 3(c), unless the match between

1651

the unknown utterance and the word models is poor and
therefore should be rejected. More complicated FSN’s in-
clude simple pronunciation networks for word models
(e.g., [3]1-[7]), and more complicated grammar networks,
like the Bell Laboratories Airline Reservation System
[12].

In order to search for the optimal path in an FSN, some
cost measure (e.g., distance, likelihood) associated with
a path is required. This cost includes the cost of staying
in an intraword internal node, the cost of making transi-
tions from one internal node to another through an intra-
word arc, the cost of entering a grammar node, and the
cost of entering a grammar arc. In a speech recognition
task, in which whole word models are characterized by
an HMM, the accumulated cost of a path to any node in
the FSN at time ¢ can be defined as the negative of the
accumulated likelihood of the path at time ¢, where like-
lihood is defined as the logarithm of the probability of that
path. Therefore, the resulting network is a stochastic FSN
where the cost of a path depends on the observation se-
quence, the duration spent on a certain node, and the tran-
sition history of the path.

We now describe how to associate a stochastic cost
(penalty) to different parts of an FSN based on using whole
word HMM’s. For simplicity, we will mix the usage of
probability, likelihood, and cost as long as no ambiguity
exists. The cost of staying in an internal state at time ¢ is
related to the probability of observing the feature vector
in that state at time 7, and can be defined as the negative
of the logarithm of the state observation probability. The
cost of making an internal transition includes the negative
of the logarithm of the transition probability, plus some
possible state duration penalty, which depends on the time
spent in the internal state. The cost of entering the right
grammar node of a grammar arc includes a possible state
and word duration penalty. Finally, the cost of leaving
the left grammar node of a grammar arc includes a pos-
sible word transition penalty. With all the costs assigned
properly, the search for the best path in an FSN is essen-
tially the same as finding the minimum cost path through
the network or equivalently performing the maximum
likelihood network decoding.

III. A FRAME-SYNCHRONOUS ALGORITHM FOR
CoNNECTED WORD RECOGNITION

The DP network search algorithm proposed here is essen-
tially a variation of the frame-synchronous approaches of
Vintsyuk, Bridle et al., and Ney [2], [10], [11]. For each
node in the FSN, at any time ¢, the algorithm searches for
the best path arriving at that node at that time, and con-
structs the optimal path of duration ¢ to that node from all
the best paths of duration (¢ — 1). The principle of opti-
mality of DP tells us that the best path to any node i, at
time ¢, can be determined from the best paths to all nodes
Jj, at time (¢ — 1), plus the best policies (transitions from
node j to node i) at time ¢. Parameters needed for com-
puting the best paths include the accumulated likelihood
to any node on the FSN, the path information such as

1652

source and destination grammar nodes for each grammar
arc on the path, and word and state durations required in
order to compute duration probabilities and for traceback.
A full description for such a frame-synchronous network
search algorithm is as follows.

A Frame-Synchronous Network Search Algorithm:

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37, NO. 11. NOVEMBER 1989

A. A Modified Intraword Viterbi Decoding Algorithm

Incorporation of Word and State Duration and Word
Transition Penalties: Conventional Viterbi decoding al-
gorithms for finding the best decoded sequence for a given
hidden Markov model are widely known and described in
the literature, e.g., [16]. A duration scoring strategy is

Step 1) Perform initialization for all nodes and traceback buffers

Step 2) Perform optimal path building frame-by-frame

For every frame of input speech (while not end of utterance)

Perform feature extraction

Perform local likelihood computation for all active states in the word models
For every active grammar node in the network (grammar node loop)

For every active predecessor grammar node

For every active grammar arc between them (word model loop)
Perform local DP for every active internal node (internal state loop)
Update accumulated path likelihood and path information

End every active grammar arc
End every active predecessor grammar node
Perform path merging DP

Update accumulated path likelihood and path information

Update accumulated traceback buffers

End every active grammar node in the network
End every frame of input speech
Step 3) Perform postprocessing and backtracking
For every active terminal node in the network

Perform duration scoring postprocessing

Perform tracebacking to identify recognized string
End every active terminal node
Step 4) Determine the recognized string.

It is clear that the frame-synchronous recognition al-
gorithm consists of six main modules, namely: 1) a fea-
ture extraction (FE) module to compute the desired fea-
ture vector; 2) a local likelihood (LL) module to evaluate
the probability of observing the feature vector at all inter-
nal states of the word model representations; 3) an intra-
word decoding (DP1) module to perform a modified Vi-
terbi decoding with duration penalties incorporated in the
forward search; 4) a grammar level decoding module
(DP2) to perform path merging at every grammar node or
level boundary according to the syntactic constraints im-
posed by the finite-state network; 5) a postprocessing (PP)
module to combine duration penalties with path likeli-
hood; and 6) a backtracking (BT) module to decode the
optimal candidate strings. The six modules are arranged
in the block diagram shown in Fig. 4. Note that DP1, the
intraword decoding, can be performed in parallel to the
FE and LL modules so that computation can be distrib-
uted evenly among several special purpose processors.
The “*Update”” module shown in Fig. 4 uses the local
likelihoods computed in the LL module to update the ac-
cumulated likelihoods of the optimal paths to all the in-
ternal nodes. Modules FE and LL are essentially standard
procedure for extracting recognition features and for cal-
culating HMM state likelihoods based on these features.
We will now describe modules 3-6 in more detail in the
following sections.

generally not incorporated into the algorithm. Even in
cases in which state duration penalties were included, they
either were of a simplified form, e.g., minimum and max-
imum durations [5], or were included only in a postpro-
cessor [17]. We will now show how to modify the Viterbi
decoding algorithm to include all possible state and word
duration probabilities and word transition probabilities so
that all the probabilities can be incorporated in the for-
ward search scheme either before or after paths are
merged at the nodes of the FSN. Fig. 5 illustrates the re-
sulting intraword decoding strategy for a 5-state network
(N =15).

The input to the intraword FSN, at time 7, is the like-
lihood score inbest(LG, t — 1), of the best path to each
grammar node (LG for left grammar node of each word
model arc) at time (7 — 1), as well as the likelihoods, like
(i, t — 1), of the best path reaching each internal state i
at time (¢ — 1). For notational convenience, we also de-
fine a likelihood score for state 0 at time (¢ — 1) as

like(0, r — 1) = inbest(LG, ¢t — 1)
+ word transition penalty

where the word transition penalty is the likelihood of
making a transition into the word arc, given the corre-
sponding sequence of words on the best path reaching the
left grammar node at time (¢ — 1). The word transition
penalty can be deterministic, such that it is zero for all

LEE AND RABINER: FRAME-SYNCHRONOUS NETWORK SEARCH ALGORITHM

UNKNOWN UTTERANCE
t=1

DPINIT

RECOGNIZED STRING

Fig. 4. A block diagram of the frame-synchronous network search algo-
rithm.

outbest(RG, 1) = {ike(N,t)
+ word and state duration penalties

like(i,H) = ploglocal(i,t)+max]tike(i,t~1)+afi, i),
like(i-1t-1}+a(i-1,i}+state duration penalty

like(O,1-1) = inbest(LG,1-1)
@ + word transition penalty

-1 t

Fig. 5. An illustration of the modified Viterbi decoding algorithm.

possible transitions and minus infinity for all transitions
not allowed in the language of the task. The word tran-
sition penalty can also be stochastic, such that it is defined
as the logarithm of the probability of a language model
(e.g., bigram or trigram). For all intraword nodes, 1 < i
< N, we have the modified Viterbi maximization such
that the likelihood of state i, at time ¢, like (i,), is com-
puted as follows:

like (i, #) = max [like (i, r = 1) + a (i, i),
like (i — 1,0 —1) +a(i—1,1i)
+ state duration penalty] + ploglocal (i, ¢)

where ploglocal (i, t) is the logarithm of the local prob-
ability of the feature vector at time ¢ occurring in state i
of the word model, log (b;(0,)), a(j, i) is the logarithm
of the probability of making a transition from state j to
state i, and state duration penalty is the logarithm of the
probability of having stayed in state (i — 1) for d frames,
log(p;_ (d)), where d is the dwell time in state (i — 1).
Finally, the likelihood of the best output path reaching the
right grammar node RG at time ¢, called outbest (RG, 7)
is of the form:

outbest (RG, t)

= like (N, t) + word and state duration penalties

1653

and the best path from this word arc merges with other
paths joining at the same grammar node to produce the
best path reaching the grammar node, and it ultimately
becomes the input path to other succeeding word arcs in
the grammar network, or becomes a path to generate a
recognized string at time ¢ if the grammar node happens
to be one of the terminal nodes.

The storage arrays needed for performing the modified
Viterbi decoding of Fig. 5, including the state dwell time
and path elapse time as required for duration scoring,
postprocessing, and backtracking, are listed in the follow-
ing. The time index is dropped from all variables because
it is no longer required if a scratch array is added to man-
age memory storage properly.

like(i) = accumulated likelihood of the best path to
node i

elapse(i) = duration of the best path to node i since
it enters the LG

dwell(i,1:i) = state dwell times of all states up to
node i for the best path to node i

a(j, i) = logarithm of the transition probability from
node j to node i

inbest(LG) = likelihood of the best path entering LG
(from previous grammar nodes)

outbest(RG) = likelihood of the best path reaching
RG (into succeeding grammar nodes)

ploglocal(i) = current observation likelihood for
node i

scratch(i) = temporary scratch array needed to save
like(i) at previous frame.

We now describe the modified Viterbi decoding algo-
rithm.
A Modified Viterbi Decoding Algorithm:
Step 1: Initialization
like(0)=inbest(LG) + word transition penalty
elapse(0)=0
dwell(0,0)=0
a(0,1)=0
Step 2: compute the best path reaching node i,
1<i<N, at time ¢
scratch(i) = like(i)+ a(i, i)
scratch(i — 1) = like(i — 1)+ a(i—1, i) + state
duration penalty
if (scratch(i) .gt. scratch(i — 1)) then
elapse(i) = elapse(i) + 1
dwell(i, i) = dwell(i, i) +1
else
scratch(i) = scratch(i—1)
elapse(i) = elapse(i—1)+1
dwell(i, i) = 1
dwell(i, 1:i—1) = dwell(—1, 1:i—1)
endif
Step 3: update accumulated state likelihood and pro-
duce output path score at time ¢
like(1 : N) = scratch(1:N)+ ploglocal(1:N)
outbest(RG) = like(N) +word and state dura-
tion penalties.

1654

As shown in Step 3 above, the local likelihood array is
not needed for the DP search. It is only used to incorpo-
rate the likelihood of observing the current feature vector
when updating the path likelihood.

B. Grammar Node Path Merging Algorithm

Grammar nodes on a network allow paths reaching that
node to merge so that only a limited number of the paths
are allowed to grow to the succeeding grammar nodes. If
only the optimal path is desired at each of the terminal
nodes of a grammar network, then path merging at a
grammar node eliminates all nonoptimal paths reaching
that node. The grammar node path merging algorithm used
here is similar to the one used in level building imple-
mentation [18] where the optimal path at each grammar
node is selected from the set of the output paths from the
preceding word arcs reaching that grammar node. For a
general grammar network, we not only need a backpointer
array, bp, to indicate how long the best path reaching node
g has stayed in the best arc, we will also need a node
backpointer array, bpnode, to indicate the left grammar
node of the best arc reaching that grammar node. An il-
lustration of path merging and path branching at a gram-
mar node is shown in Fig. 6. The storage arrays needed
to accomplish the path merging are as follows:

P(g) = the set of all arcs reaching node g = {k|RG(k)
=g}

glike(g, 1) = accumulated likelihood of the best path
reaching node g at time ¢

word(g, t) = identification of the rightmost arc on
the best path reaching node g at time ¢

bp(g, t) = elapse of the rightmost arc on the best
path reaching node g at time ¢

bpnode(g, t) = left grammar node of the best arc
reaching node g at time ¢

outbest(g, k) = likelihood of the best path reaching
node g from arc k,

and for every grammar node g, the path merging algo-
rithm can be described in three steps as shown in the fol-
lowing.
A Grammar Node Path Merging Algorithm:
Step 1: Perform path merging for all paths reaching
grammar node g at time ¢

glike(g, t) = max [outbest(g, k)]
keP(g)

inbest(g) = glike(g, ?)

Step 2: Save traceback information of the best path
reaching grammar node g at time ¢
word(g, t) = argmax [outbest(g, k)]

keP(g)
bp(g, t) = elapse[word(g,)]
bpnode(g, 1) = LG[word(g, 1)]
Step 3: Use elapse and dwell times to compute duration
penalties for postprocessing.

C. Postprocessing

At the end of the forward search, we have available a
list of several possible candidate strings (e. g., string cor-

[EEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. VOL. 37, NO. 11, NOVEMBER 1989

Plg) = { kIRG (k)=q}

glike (g, 1) = m?(x [ouvbest(q, 1, k)]
word (g,t) = argmax [oulbesﬂg.t.k)]
k

bp{g,t) = elapse [wovd (g,t)]
bpnode(g,t) = LG [word(g,!)]

Fig. 6. An illustration of the path merging algorithm at a grammar node.

responding to best path reaching each terminal node of
the grammar network). Postprocessing is a delay-decision
strategy to incorporate additional information before the
most likely string is selected. The postprocessor used in
the level building algorithm [18] incorporates a state du-
ration probability penalty at the end of the level building
search so that computation cost is reduced while still
achieving comparable performance to Ferguson’s internal
duration model [19]. In the frame-synchronous search al-
gorithm, it is possible to incorporate either or both of the
state and word duration probability penalties in the post-
processor; however, these probabilities can also be ac-
cumulated directly in the forward search procedure as
shown above, so that postprocessing can be accomplished
with very little incremental computational cost.

D. Traceback Procedure

The traceback procedure used to determine the string
corresponding to the optimal path through the FSN is ba-
sically the same as used in most frame synchronous al-
gorithms and is of the following form.

Traceback
Initialize: i=g, j=t, k=0
While (j .ne. 0)
k=k+1
iword(k) = word(i,)
idur(k) = bp(i,j)
i = bpnode(i,)
Jj =j — idur(k)
EndWhile

After traceback, the number of words in the string is &,
and the word sequence of the recognized string and the
corresponding word durations can be recovered from the
iword and idur buffers, respectively.

In most applications, we are interested in obtaining a
reasonable (although not necessarily optimal) list of can-
didate strings as soon as the end of the utterance is de-
tected. In this case, traceback information can be saved

LEE AND RABINER: FRAME-SYNCHRONOUS NETWORK SEARCH ALGORITHM

differently or completely eliminated, while only keeping
the accumulated path information to each node in the FSN.
For instance, for every desired output string at every ter-
minal node, we can save current string results such as ac-
cumulated path likelihood, partial decoded string, and ad-
ditional accumulated probability to be used in the
postprocessor. Therefore, at the end of an utterance, the
additional information desired can be incorporated into
the accumulated path likelihood and the best string results
can be reported right away. However, this results in less
flexibility because all the intermediate path information is
lost. For example, it is possible that when an end of the
utterance is detected, we find that the utterance actually
ends earlier; in that case we might prefer that the best
strings be determined from the candidate string that ter-
minated at the earlier time. It will also become clear in
the next section that if multiple optimal candidate strings
are desired at every terminal node of an application net-
work, then the intermediate path information becomes
crucial in the search procedure.

IV. SEARCH FOR THE GLOBALLY SECOND BEST PATH
TO EACH GRAMMAR NODE

For many connected word recognition applications, it
is required that more than one recognition candidate string
be presented so that the recognition system can select the
best string based on other high level information, such as
a database, to verify permissible strings on the candidate
list. The system can also present alternative strings to the
speaker (in the cases where a recognition error might oc-
cur), or decide if alternative strings have sufficiently high
scores so that other input is required before making a final
recognition decision. Conventional frame synchronous al-
gorithms have not described ways of generating multiple
candidate strings at each grammar node. In this section
we propose a novel approach to obtain the globally second
best paths to all the grammar nodes in an FSN, and the
same idea can be extended to include higher rank candi-
date strings.

By definition, the globally second best path to any
grammar node, in a finite state network, is different from
the globally best path to that node in the sense that the
decoded strings should be different. Since the search is
only focused on the grammar node level, rather than on
the internal node level, there is very little additional com-
putation required. Similar to the search strategy for the
optimal path, searching for the second best path to any
grammar node can be accomplished sequentially by com-
puting the second best path to that grammar node at any
time ¢. The second best path information required is also
similar to what is needed for the optimal path.

The algorithm proposed here to search for the globally
second best path to every grammar node in the finite state
network can be formulated based on a concept extended
from the principle of optimality. It states that the second
best path to any grammar node g, at time ¢, is either path
Py,(g) or path P,, (g) defined as follows. We define 1(g)
and 2(g) to be the globally best and second best paths

1655

) G-Node g

t=4 WD t(q)

Path B, (g) =1(i)+1'(g)
Poth Py (g) =1 (11 +2'(g)
Path Py, (g)=2(i)+1'(g)

Fig. 7. An illustration of the procedure for searching for the second best
path.

reaching grammar node g, and 1'(g) and 2'(g) to be the
locally best and second best subpaths (arcs) on the locally
best and second best paths reaching grammar node g. The
search idea is illustrated in Fig. 7, where we plot the best
path P,,(g) and the second best candidate paths P;,(g)
and P,, (g). From the principle of optimality, the best path
is composed of the locally best subpath 1'(g) = a of du-
ration bp(a) and the best path 1(i) reaching the left
grammar node i = LG (a) of arc a at time (i) =1t —
elapse (a). The candidate path P}, (g) is composed of the
locally second best subpath 2'(g) = b of duration
elapse (b) and the best path 1(j) reaching the left gram-
mar node j = LG(b) of arc b at time #(j) = 1t —
elapse (b); the candidate path P,;(g) is composed of the
locally best subpath 1’(g) and the second best path 2 (i)
reaching grammar node i at time #(i). Nodes i and j can
be the same, and word durations elapse (a) and elapse (b)
can also be the same; however, the grammar arcs a and b
should be different to guarantee that the complete second
best path to the grammar node is different from the best
path to the same grammar node.

In the algorithm proposed in Section III, we only allow
the optimal paths at time (# — 1) to be used in construct-
ing the optimal paths at time ¢. If we also allow other
candidate paths to construct paths in the next level, then
the amount of search will increase proportionally to the
number of candidate paths retained. It turns out that
P, (g) is the second best path among all other paths if
paths can only be constructed from the local best ones.
Similarly, P,;(g) is the second best path if other candi-
date paths are allowed to grow before they are pruned
when merging at the grammar node LG (a) at time t —
elapse(a). The algorithm proposed here extends the
property of the principle of optimality in that only paths
P,(g) and P,;(g) are compared. As a result, the algo-
rithm requires no additional search computation, and only
some additional bookkeeping is required.

1656

The traceback information and duration probabilities of
the globally second best paths are managed similarly to
that of the globally best paths. However, additional in-
formation is required to indicate whether to use the trace-
back buffers of the best or the second best paths for local
traceback so that the correct second best string can be re-
trieved. We also need a node pointer to indicate where in
the network the first branching occurs, so that traceback
for the second best path is performed only up to that node.

V. INCORPORATION OF STATE AND WORD DURATION
PROBABILITIES

When intraword state duration is incorporated in an ap-
propriate manner, the performance on some recognition
applications improves [20], [21]. These explicit duration
models have been shown to significantly increase the
computation and storage associated with scoring. A sim-
ple alternative, which has been proposed in [18], is to
account for the state duration in a postprocessor after the
forward level building search is completed. In the follow-
ing, we focus our discussion on how to incorporate both
the word and state duration probabilities into the forward
HMM scoring and network search. Details of the exact
way in which the word and state durations are measured,
and the way in which weights are assigned when these
duration penalties are incorporated in the HMM scoring,
are given in [18]-[21].

We have shown in Section I how duration penalties can
be represented in the network search by associating proper
cost to arcs on a finite state network. In Section ITI-A we
also formulated a general strategy showing how the du-
ration penalties can be incorporated in the modified Vi-
terbi decoding algorithm. The way duration penalties are
incorporated depends on the HMM scoring strategy in the
network search. If they are to be used before the paths
merge at a certain node in the network, then they should
be added to the path likelihoods before the paths are com-
pared and pruned. If the scoring scheme requires the du-
ration penalties to be included only at the end of the ut-
terance, then a separate buffer is needed to save the
additional duration information so that the duration pen-
alties can be imposed by a postprocessor.

The word duration probability is usually included at the
end of a word (strategy WW); therefore, candidate paths
with unlikely word durations are more likely to get pruned
even when the path likelihoods are reasonable. However,
we can impose the word duration penalty at the end of an
utterance and use a postprocessor to handle the additional
information before the best candidate path is selected
(strategy WU). We can also use normalized word dura-
tions or normalized accumulated word durations in the
scoring. Finally, we can consider not using any word du-
ration information at all (strategy W0). The WW strategy
was used in the level building search [18] with good suc-
cess.

In a similar manner, the state duration probability can
be included at the end of a state (strategy SS), at the end
of a word (strategy SW), or at the end of an utterance

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37, NO. 1l. NOVEMBER 1989

(strategy SU) by using a postprocessor. We also can use
either normalized state durations within a word or nor-
malized accumulated state durations within a word. We
can avoid using the state duration information (strategy
S0). The SU strategy was used in [18], again with good
success.

The effect of word and duration models on recognition
performance often depends on the tasks being evaluated,
the feature vectors used, the duration models used, and
the amount of training data available to estimate the du-
ration model parameters. In this paper, we are mainly in-
terested in presenting a number of possible word and state
duration scoring configurations in a unified manner, so
that duration information can be incorporated easily into
frame synchronous search algorithms.

VI. CoMPUTATIONAL COMPLEXITY OF THE FRAME
SYNCHRONOUS ALGORITHM

We have mentioned in Sections III and IV that the
grammar level search and the computation of the second
best paths only add incremental computational cost.
Therefore, most of the computational issues that will be
addressed are based on the connected digit recognition
grammar shown in Fig. 3(a), where up to seven digits can
be recognized. Since the computation wavefront pro-
gresses on a frame-by-frame basis, we only need to save
path information up to the current frame. The feature ex-
traction module and the local likelihood computation
module are basically the same as the ones used in any
model-based recognition algorithm, in which the com-
plexity of FE and LL modules depend on the feature vec-
tor used and the observation densities selected. Postpro-
cessor and backtracking modules are also similar. We now
focus on the storage requirements and the memory man-
agement issues for the remaining modules of the algo-
rithm.

A. Computational Considerations

As described in Section III-A, since the modified Vi-
terbi decoding algorithm performs intraword best path
search at each frame for all nodes in the grammar, all the
best information about the best path has to be saved. The
DP search operations involve only additions and compar-
isons, where additions are used to include transition costs
and local likelihoods and to accumulate path likelihoods
and optimal path information, while the comparisons are
used to perform intraword path merging at the internal
nodes. Since the intraword network connection is often
sparse, the additions and comparisons generally involve
very little computational cost. However, because they lie
in the innermost loop of the algorithm, they will have to
be performed at every frame, for every model, at every
grammar node. For the connected digit grammar shown
in Fig. 3(a), if we use 11 words at every grammar arc,
use 3 models per word, and 10 states per model to char-
acterize the whole word models, then there are 33 gram-
mar arcs and a total of 330 internal nodes between every
connecting pair of grammar nodes. Assuming left-to-right

LEE AND RABINER: FRAME-SYNCHRONOUS NETWORK SEARCH ALGORITHM

HMM’s with no double jumps are used (e.g., Fig. 1),
then there are 2310 comparisons and at least 6930 addi-
tions required at every frame. As for the storage require-
ment, there is no need to save all the computed local like-
lihoods; only those of the current frame are needed in Step
3 of the algorithm to update the path likelihoods. How-
ever, since all path information is required at any time for
all nodes, we will need 2310 longwords to save the path
likelihood at all internal nodes. We will also need 2310
bytes to store path elapse times, and an optional 23 100
bytes to store the state dwell times for the optimal paths.
By way of comparison, for a standard level building al-
gorithm implementation, the storage for one level can be
released for higher levels, and therefore local storage is
reduced. However, the local likelihoods for all states at
all times need to be stored. This requires about 330 long-
words per frame, or a total of 99 000 longwords for 300
frames of input speech, which is considerably more stor-
age than required for the frame synchronous implemen-
tation.

As for the path merging algorithm described in Section
II1-B, only comparisons are required to prune nonoptimal
paths. For tasks that involve merging many paths at a
grammar node, a fast sorting procedure might be required
to obtain multiple candidate paths. The memory require-
ments for the connected digit grammar discussed above
are as follows. There are 7 longwords needed at each
frame, or a total of 2100 longwords to store the accumu-
lated likelihoods for a 300-frame speech input. In addi-
tion, 2100 words are needed to store the word identifica-
tion array and 2100 words are needed to store the
backpointer array used in the traceback. The node back-
pointer array is not needed for a connected digit grammar,
because there is only one fixed predecessor node associ-
ated with each grammar node in the network. If postpro-
cessing is required, then an additional array of 2100 long-
words are required to save the local duration penalties for
each grammar node, at every frame, so that the penalties
can be retrieved without recomputing path information in
order to use them in postprocessing.

B. Computational Reduction

We mentioned in Section II that, for some applications,
the amount of computation can be reduced by using an
alternative syntax network. For example, the grammar
networks in Fig. 3(b) and (c) can be used to replace the
seven digit grammar in Fig. 3(a). Path pruning strategies
(e.g., the beam search in [5]) can also be imposed by elim-
inating paths that fall below some likelihood threshold.
The path pruning can be performed on both grammar
nodes and arcs. We can also reduce the amount of state
dwell time storage by accumulating incremental state du-
ration penalties so that the intraword duration information
is no longer needed. However, if state duration penalties
are imposed based on normalized intraword state duration
proportions, then the dwell time storage cannot be elimi-
nated. Partial traceback [15] can also be used to find op-
timal partial paths that form the beginning segment of a

1657

complete path, so that the search is focused on a smaller
subnetwork.

C. Modularized Architecture for Hardware
Implementation

The frame-synchronous network search algorithm dis-
cussed in Section III has a highly modularized architec-
ture in that most of the computation in the algorithm can
be localized so that intermodule communication is mini-
mized. The individual modules have different computa-
tional demands so that a special purpose processor can be
designed to satisfy the computational needs of each mod-
ule. For example, the FE and LL modules require a large
number of multiplications and additions and therefore re-
quire a general purpose digital signal processor. For the
DP1 module, a lot of storage is required; however, the
search can be accomplished with only additions and com-
parisons, and therefore a special purpose processor with
graph search ability and ample local storage, such as the
GSM [13] chip, can be used. For simple applications,
module DP2 can also be implemented on general purpose
microprocessors or on special purpose processors like the
GSM. Finally, modules PP and BT are usually performed
on a general purpose microprocessor because the amount
of computation is minimal.

The algorithm is also very regular in the sense that the
computational requirement is about the same at every time
frame. Since the computation is basically repeating a word
model loop and a grammar node loop within the frame
loop, it can easily be distributed among multiple special
purpose, parallel processors. Pipelining the algorithm is
also easy, in that different modules can be running in par-
allel, such that some modules are processing one part of
the algorithm and some modules are processing another
part. Finally, depending on different application require-
ments, various modular configurations can be used to im-
plement the task. For example, for speaker-independent,
connected digit recognition [18], most of the computation
is devoted to evaluating the local likelihoods of a mixture
Gaussian density, and more LL modules (relative to DP1
and DP2 modules) are required. Whereas for speaker-de-
pendent, isolated word recognition of a large vocabulary,
based on a small number of subword segment models [22],
most of the computation will be focused on the intraword
search and therefore more DP1 modules than LL modules
are needed to implement this task.

VII. CoNCLUSION

In this paper, we have described a frame-synchronous
network search algorithm for connected word recogni-
tion. The algorithm is based on well-known techniques,
but has a couple of features that distinguish it from pr:
vious implementations, namely: 1) the algorithm .;
highly regular, which makes it easy to implement on a
general or special purpose hardware; 2) the algorithm is
highly modularized so that the local likelihood computa-
tion and the local Viterbi decoding for each word model
can be performed in parallel, which makes it attractive for

1658

distributed computation among multiple special-purpose
processors; 3) for decoding a given finite state grammar
network, at time ¢, the algorithm uses only the informa-
tion about the optimal paths at time (¢t — 1) plus the ob-
servation vector at time 7 to search for the optimal paths
and to update the accumulated path likelihood so that the
memory requirement is greatly reduced; and 4) multiple
candidate strings, e.g., the word sequence corresponding
to the second best path can be obtained easily even for a
very complicated grammar network. In addition to the
simplified search strategy, the algorithm also has the flex-
ibility that a variety of word and state duration scoring
techniques can be implemented simply, efficiently, and
directly in the forward search. Word transition rules, such
as a language model, can also be easily incorporated in
the forward search of the algorithm.

ACKNOWLEDGMENT

The authors would like to acknowledge the work of D.
Roe, on a real-time implementation of an algorithm,
which is very similar to the one described in this paper.
This implementation has been applied to the problem of
speaker-independent connected digit recognition, using a
special purpose processor and a PC.

REFERENCES

[11 R. Bellman, Dynamic Programming.
versity Press, 1957.

[2] T. K. Vintsyuk, ‘‘Element-wise recognition of continuous speech
composed of words from a specified dictionary,” Kibernetika, vol.
7, pp. 133-143, Mar.-Apr. 1971.

[3] J. K. Baker, ‘‘The dragon system-An overview,”” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-23, pp. 24-29, Feb.

Princeton, NJ: Princeton Uni-

1975.

[14] —, “*Stochastic modeling for automatic speech understanding,”’ in
Speech Recognition, D. R. Reddy, Ed. New York: Academic, 1975,
pp. 521-542.

[5] B. Lowerre and R. Reddy, ‘‘The HARPY speech understanding sys-
tem,”” in Trends in Speech Recognition, W. Lea, Ed. Englewood
Cliffs, NJ: Prentice-Hall, 1980, pp. 340-346.

L. R. Bahl er al., ‘*Automatic recognition of continuously spoken

sentences from a finite state grammar,”’ in Proc. ICASSP 82, Tulsa,

OK, Apr. 1978, pp. 418-421.

[7] L. R. Bahl, F. Jelinek and R. L. Mercer, **A maximum likelihood
approach to continuous speech recognition,’” IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-5, pp. 179-190, Mar. 1983.

[8] H. Sakoe, ‘‘Two-level DP-matching—A dynamic programming-based
pattern matching algorithm for connected word recognition,”’ /EEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-27, pp. 588-
595, Dec. 1979.

[9] C. S. Myers and L. R. Rabiner, “‘A level building dynamic time
warping algorithm for connected word recognition,”” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-29, pp. 284-297, Apr.
1981.

[6

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37, NO. Il, NOVEMBER 1989

[10] J. S. Bridle, M. D. Brown, and R. M. Chamberlain, *‘An algorithm
for connected word recognition,’” in Proc. ICASSP 82, Paris, May
1982, pp. 899-902.

[11] H. Ney, ‘‘The use of a one-stage dynamic programming algorithm
for connected word recognition,”” IEEE Trans. Acoust., Speech, Sig-
nal Processing, vol. ASSP-32, pp. 263-271, Apr. 1984.

[12] C. S. Myers and S. E. Levinson, ‘‘Speaker-independent connected
word recognition using a syntax-directed dynamic programming pro-
cedure,”” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-30, pp. 561-565, Aug. 1982.

[13] S. Glinski ez al., ““The graph search machine (GSM): A program-
mable processor for connected word recognition and other applica-
tions,”” in Proc. ICASSP 87, Dallas, 1987, pp. 519-522.

[14] F. Jelinek, *‘A fast sequential decoding algorithm using a stack,’

. IBM J. Res. Develop., vol. 13, pp. 675-685, Nov. 1969.

[15] P. F. Brown, J. C. Spohrer, P. H. Hochschild, and J. K. Baker, *‘Par-
tial traceback and dynamic programming,* in Proc. ICASSP 82, Paris,
May 1982, pp. 1629-1632.

[16] L. R. Rabiner and B.-H. Juang, **An introduction to hidden Markov
models.”” IEEE ASSP Mag., vol. 3. pp. 4-16. Jan. 1986.

[17] L. R. Rabiner, J. G. Wilpon, and B.-H. Juang, ‘‘A performance eval-
uation of a connected digit recognizer,”” in Proc. ICASSP 87, Dallas,
1987, pp. 101-104.

[18] —, **A model-based connected-digit recognition system using either
hidden Markov models or templates,’* Comput., Speech, Language,
vol. 1, no. 2, pp. 167-197, Dec. 1986.

[19]1 J. D. Ferguson, ‘‘Variable duration models for speech,” in Proc.
Symp. Appl. Hidden Markov Models to Text and Speech, J. D. Fer-
guson, Ed., IDA-CRD, Princeton, NJ, Oct. 1980, pp. 143-179.

[20] S. E. Levinson, ‘‘Continuously variable duration hidden Markov
models for automatic speech recognition,”” Comput., Speech, Lan-
guage, vol. 1, no. 1, pp. 29-45, Mar. 1986.

[21] M. J. Russell and A. E. Cook, ‘‘Experimental evaluation of duration
modeling techniques for automatic speech recognition,” in Proc.
ICASSP 87, Dallas, 1987, pp. 101-104.

[22] C.-H. Lee, F. K. Soong, and B.-H. Juang, ‘‘A segment model based
approach to speech recognition,’” in Proc. ICASSP 88, New York,
Apr. 1988, pp. 501-504.

Chin-Hui Lee (S'79-M’81) was born in July
1951. He received the B.S. degree from National
Taiwan University, Taipei, in 1973, the M.S. de-
gree from Yale University, New Haven, CT, in
1977, and the Ph.D. degree from University of
Washington, Seattle, in 1981, all in electrical en-
gineering.

In 1981 he joined Verbex Corporation, Bed-
ford, MA, and was involved in research work on
connected word recognition. In 1984 he became
affiliated with Digital Sound Corporation, Santa
Barbara, CA. where he engaged in research work in speech coding, speech
recognition, and signal processing for the development of the DSC-2000
Voice Server. Since 1986 he has been with AT&T Bell Laboratories, Mur-
ray Hill, NJ. His current research interests include speech modeling, speech
recognition, and signal processing.

Lawrence R. Rabiner (S'62-M’67-SM'75-F75), for a photograph and
biography, see p. 1225 of the August 1989 issue of this TRANSACTIONS.

