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ABSTRACT — Algorithms for connected word recognition based on
whole word reference patterns have become increasingly sophisticated
and “have been shown capable of achieving high recognition
performance for small or syntax-constrained, moderate size

. vocabularies in a speaker trained mode. In this paper we use an
enhanced analysis feature set consisting of both instantaneous and
transitional spectral information and test the HMM-based connected
digit’ ‘recognizer in speaker trained, multi-speaker, and speaker
independent modes. The performance that we achieved was 0.35, 1.65
and 1.75% string error rates for known length strings, for speaker
trained, multi-speaker and speaker independent modes, respectively,
and 0.78, 2.85 and 2.94% string error rate for unknown length strings
for the 3 modes.

I Introduction

The problem of recognizing strings of connected digits is crucial to
a number of applications such as voice dialing of telephone numbers,
and automatic. credit card entry. In the last several years, several
highly. 'successful algorithms for recognizing spoken connected word
‘strings’ from word prototypes have evolved [1-2]. These algorithms,
all based on statistical pattern recognition methods, have achieved
great ‘success when applied to the problem of connected digit
recognition. The reasons for this success are twofold; namely the fact
that the recognition algorithms are optimal in the sense that they find
the string of digit reference patterns that best (in some objective
sense) matches the spoken digit string, and the development of highly
successful training procedures which derive the digit reference
patterns from a training set of fluent, connected, digit strings [3].

Earlier investigations showed that when a reasonable size training
set was available for deriving the digit reference patterns, a fairly
good ' recognizer: could ‘be implemented. : The highest performance
scores were achieved in a speaker trained mode; however performance
was found to degrade seriously in either a’ multi-speaker or a speaker
independent ~mode. Bush -and Kopec found that by combining
traditional pattern recognition techniques with acoustic-phonetic based
rules, improved performance on speaker independent, connected digit
recognition resulted [2].

In an “effort- to improve - performance of the fully automatic
connected - digit recognition-algorithms a major change was made in
the front:end spectral analysis, The analysis feature vector used for
recognition, nominally an extended cepstral vector derived from LPC
analysis, was augmented by the so-called delta cepstrum information

[4].

The new. analysis feature set was tested in the HMM-based
connected - digit recognizer in speaker trained, multi-speaker, and
speaker independent modes, and was found to effectively reduce the
string error rates by factors of 2 or more, often with considerably less
computation than used previously. In particular, digit string error
rates of 0.78%; 2.85%, and 2.94% were obtained for unknown length
(UL) “strings = for speaker trained, multi-speaker and speaker
independent tests, respectively. - Comparable rates for known length
(KL)" strings were 0.35%, .1:65%, and 1.75%, respectively.

IL Review of HMM Connected Digit Recognizer

A block diagram of the overall level building, connected-digit
recognizer is shown in Figure 1. There are essentially three steps in
the recognition algorithm, namely:

(1) Spectral analysis — The speech signal, s (n), is converted to a
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Figure 1 — Block diagram of connected digit recognizer.

set of LPC derived  cepstral  (weighted) and delta-cepstral
(weighted) vectors.

Level building pattern matching — The sequence of spectral
vectors of the unknown speech signal is matched against a set of
stored single-digit- patterns (hidden Markov models) using the
level building algorithm with Viterbi matching within levels.
The output of this process is a set of candidate digit strings,
generally of different lengths (ie. different number of digits per
string). :

()]

(3) Postprocessor — The -output - candidate strings from level
building are subjected. ‘to -further validity tests, e.g. state
duration, to eliminate unreasonable candidates.  The
postprocessor chooses.the - most likely digit string from the

remaining (valid) candidate strings.

In the remainder of this section we expand further on the LPC
spectral analysis,-and ‘on the form of the HMM’s. All other signal
processing in the recognizer is essentially identical to that described in
Reference 1. : :

IL1 LPC Spectral Analysis -

The LPC front-end = processing’ for recognition is shown in .
Figure 2. The overall system is'a block processing model in which a
frame of N samples is processed and a vector of features is computed.
(Strictly speaking, as we will see below, this is not correct since the
system uses a 5 frame window to compute the delta cepstrum vector.)
The steps in the processing are as follows:

(1)  Preemphasis — the digitized (at a 6.67 kHz rate) speech signal
is processed by ‘a first order digital network in order to

spectrally flatten the signal.
0)

Blocking into frames - sections of N consecutive speech
samples (we use N = 300 corresponding to 45 msec of signal)
are used 4s a single frame. Consecutive frames are spaced M
samples apart (we use” M = 100 corresponding to 15 msec

frame spacing, or 30 msec-frame overlap).

Frame windowing — ‘each frame is multiplied by an N-sample
window (we use a Hamming window) so as to minimize the
adverse ‘effects of ‘chopping an N-sample section out of the
speech signal.

3

Autocorrelation. ‘analysis - — each windowed set of speech
samples is autocorrelated to give a set of (p+1) coefficients,
where p is the. order of the desired LPC analysis (we use
p=28).

LPC/cepstral analysis — for each frame, vectors of LPC

coefficients are computed from the autocorrelation vector using
a Levinson or a Durbin’ recursion method. The LPC derived

cepstral vector is ‘then computed up to the Q™ component,

where Q > p, and.Q =12 in our implementation.

4

(5)

(6) Cepstral weighting — the Q-coefficient cepstral vector, ¢, (m),
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Figure 2 - Block diagram of improved front end LPC analysis
incorporating instantaneous and transitional cepstral
information.

at time frame ¢ is weighted by the window, W,(m), of the
form [12,13]:

W.(m) = |1+ -g-sin %H 1<m<Q W

to give:
Eom) = c,(m)-W.(m) )
(7} Delta cepstrum — the time derivative of the sequence of

weighted cepstral vectors is approximated by a first order
orthogonal polynomial over a finite length window of (2K +1)
frames, centered around the current vector. (K =2 in our
implementation; hence the derivative is computed from a 5
frame window.) The cepstral derivative (ie. the delta
cepstrum vector) is computed as
K

> képy(m) 3)

-—K

Aég(m)=[ ‘G, 1<m<KQ
k

where G is a gain term so that the variances of ¢,(m) and
AZ,(m) are about the same. (For our system the value of G
was 0.375.)

The overall observation vector, Oy, used for scoring the HMM’s is
the concatenation of the weighted cepstral vector, and the
corresponding weighted delta cepstrum vector, i.e.

0, = {Eg(m), Aé,(m)J» @

and consists of 24 coefficients per vector.
IL.2 Hidden Markov Model Characterization of Words

Figure 3 shows the form of the HMM used to characterize
individual digits. (Transitions between words are handled by a switch
mode from the last state of one word model, to the first state of
another word model, in the level building implementation.) The
models are first order, left-to-right, Markov models with N states.
(We have used values of N from 5 to 10.) Each state, J, is
characterized by the following:

(1) A state transition vector, a;.

(2) A state observation density, ;(0), which is a continuous
mixture density.

(3)  Energy probability, p;(&), where ¢ is the dynamically
normalized frame energy, and p; is a non-parametric discrete
density of energy values in state j obtained empirically from
training data.

(4)  State duration probability, p;(7), where 7 is the number of

frames spent in state j, and p; is an empirically measured,
discrete density of duration values in state j.

In addition to the observation density, energy probability and
state-duration probability, each HMM (for each word, v) is also
characterized by an overall Gaussian word-duration density, p, (D).
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Figure 3 - Form of word HMM used to characterize individual

digits.

III. Experimental Evaluation and Results

To evaluate the performance of the connected-digit recognizer, in
speaker trained, multi-speaker, and speaker independent modes, two
databases were used. The first database consisted of 50 talkers (25
male, 25 female) drawn from the local, non-technical, population (i.e.
all talkers were native New Jersey residents). Each talker recorded
1200 connected-digit strings in about five sessions, during a 1-week
period, over local dialed-up telephone lines. A new line was used for
each recording session. The digits vocabulary consisted of the 10
digits (zero to nine); the word “oh” was excluded. Each talker
recorded an equal number of strings with from 1 to 7 digits. Within
each string the digits were selected at random; however during the
test there was a constraint that there be an equal number of
occurrences of each digit. All recordings were made in a reasonably
quiet environment; however because of line variations and talker
loudness variations, some recordings had very bad signal-to-noise
ratios (i.e. on the order of 10-20 dB). A check was made on each
recorded string to guarantee that the correct string was spoken.
Because of the inexperience of the S0 talkers, a rather large number
of the spoken strings were unusable (generally because of gross
speaking errors in which only partial or incomplete strings were
spoken), and about 21% of the 60,000 recorded strings (i.e. 12,600
strings) were eliminated. The talker with the most difficulty had
about 50% of his strings (604 of 1200) eliminated; the talker with the
least difficulty had only 47 of 1200 strings eliminated. Overall there
remained 47,336 strings in the database. We denote the 50-talker
database as DB50 in tables and in the text. This database was used
in the speaker trained, and multi-speaker evaluations.

The second database, which was used to evaluate the connected
digit recognizer in a speaker independent mode, was the TI connected
digits database [5], as distributed by the National Bureau of
Standards. This database contained connected digit strings from 225
adult talkers (equally distributed among male and female talkers),
and was conveniently divided into training and testing sets, for
consistency of comparison of results among the different researchers
using this database. This database was dialectically balanced with an
equal mix of talkers from 22 dialectical regions. At least 10 talkers
(5 male, S female) from each dialectical region were included in the
database. The vocabulary consisted of eleven words, namely the 10
digits and oh. Each talker spoke seventy-seven sequences of these
digits, consisting of two tokens of each of the eleven digits in isolation,
and 11 sequences of each of 2,3,4,5 and 7 digits (.e. no 6-digit
sequences were spoken). Digits were selected at random without
replacement with one exception, namely the digits zero and oh never
occurred in the same string. The digit strings were recorded in an
acoustically treated sound room using a high quality microphone
(Electro Voice RE-16 Dynamic Cardiod). All recorded strings were
verified by a team of listeners at TI [5]. We refer to this database as
DBTI in figures and in tables.

As provided by the National Bureau of Standards, the digitized
strings were sampled at a 20 kHz rate. For consistency with the
telephone bandwidth of the strings of DB50, all strings were digitally
filtered to a 3.2 kHz bandwidth, and downsampled to a 6.67 kHz rate.



A'total of 8568 training strings and 8578 testing strings were used (a
small number of the strings on the digital tapes were unreadable). It
should be noted that many of the strings had distinct silence gaps
between groups of digits. Although it would have been possible to
account for these silence gaps either by explicit methods (i.e.
reendpoint the recorded strings) or by creating a silence model,
neither of these procedures was actually used.

Database DB50 was split (at random) into a training set and a
testing- set, each consisting of roughly half the utterances for each
talker and for cach string length in the database. The training and
testing sets for DBTI were specified by TI as an integral part of the
database... The training sets were used to derive individual word
HMM’s; the independent test sets were used to measure system
petformance. The segmental k-means training procedure was always
bootstrapped from word models derived from the isolated digits within

* the database [3].

1111 . Speaker Trained Mode Results

) For the speaker trained case, an HMM with 8 states and 5
mixtures per state was used. The results of the recognition runs are
given in Table 1. Table la gives string error rates (in %) for
unknown length (UL) and known length (KL) strings, for both the

_training set and the independent testing set. Table Ib gives a

~“breakdown of the string error rates for unknown length strings as a
~ function of the number of digits in the string.

Testing Set
UL | KL

Training Set
UL KL

HMM

8 states, S mixtures/state | 0.39 | 0.16 | 0.78 | 0.35

Number of Digits in String

HMM 1 2 (3|4 |56 |7
8 states, 5 mixtures/state|0.110.28 [0.50{0.59{1.51[1.43|1.21
TABLE 1

The résults show the following:

1. String‘ error rates on the testing set are about twice as large as
on"the training set, although the absolute differences in error
rates ‘are still small.

2. ‘String error rates for KL strings are about half those of UL
' strings for both the training and testing sets.

3. UL string error rates increase uniformly with the number of
digits in the string, up to about 4 digits per string; for longer
strings the error rates are much larger (around 1.4%), and are
relatively insensitive to the number of digits in the string.

1IL.2 Multi-Speaker Mode Results

For the multi-speaker mode, using the training set of DBS50,
recognition systems were studied with from 1 to 6 models for each
digit. The way in which multiple models were created was as follows.
First, all the training strings were used to create a set of digit
HMMs. - (Two things should be noted here; first only one-fourth of
the set of training strings were used, i.e. about 6000 strings, because
of computational constraints in the clustering algorithms; second we
only considered models with N =10 states, M =9 mixtures per
state). Using a single model per digit set, (designed using standard

- ‘methods), the 6000 training strings were optimally segmented into
individual digits, and these digit tokens were clustered into from 1 to
6 clusters for each of the 10 digits. An individual HMM was
designed for each of the clusterings, thereby leading to sets of HMM’s

. with from 1 to 6 models per digit.

: The results of the recognition tests in the multi-speaker mode are
givenin- Figure 4 which shows string error rate for training and
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Figure 4 — String error rates as'a funétion of the number of models

per digit, multi-speaker: case, for UL and KL strings,
using both training and testing strings.

testing sets, as a function of the number of models per digit. The
results show the following:

1. String error rates are significantly reduced by using more than 1
model per digit. For the training set, string error rates are
reduced by a-factor-of about 2.5 as the number of models per
digit goes from 1 to 6; for the testing set the reduction is about
1.7t0 1.

2. String error rates for. training and testing sets are considerably
closer than they were for the speaker trained case of Table 1.

3. For the case of 6 models per digit, the resulting string error
rates on the independent test set were 2.85% for unknown length
strings and 1.65% for known length strings.

4. The error rates for isolated ‘digits are very low (0.22% for 6
models per digit); the string error rates rise uniformly for 2 to 5
digit strings, than even at a rate of about 4.5%.

II1.3 Speaker Independent Mode Resﬁlts

For the speaker independent .tests of the recognizer, database
DBTI was used. The specified training set was used to create from 1
to 6 models per digit, in a manner similar to the one used in the
multi-speaker case. All 8565 training strings were used to create each
set of models. The complete set of 8578 testing strings was used to
evaluate the recognizer performance on the testing set.

The results of the speaker independent recognition tests are plotted
in Figure 5-and show the following:

1. For the training set there is a reduction in string error rate of
about 3 to 1 as'the number of models per digit increases from 1
to 6; for the independent testing set the reduction in string error
rate is only a factor of 1.5 for UL strings and 1.2 for KL
strings. LR

2. A very large difference in performance exists between the
training and testing sets, -both for UL and KL strings. For
example, for 6 models per digit, the string error rate for UL
strings is a factor of 3 smaller; for KL strings the error rates
differ by a factor of 5.5.

3. The string error rates on the tésting set level off at about 3-4
models per digit; for 4 models per digit the UL string error rate
is 2.94%, the KL string error rate is 1.75%.
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Figure 5 — String error rates as a function of the number of models

per digit, speaker independent case, for UL and KL
strings, using both training and testing strings.

4. The isolated digit error rate for 6 models per digit is 0.73%;
string error rates for UL strings increase uniformly from 2 to §
digits per string. For 7 digit strings, the string error rate is
essentially equal to that of 5 digit strings since no possibility of
digit insertions existed.

IV. Discussion

In this paper we have presented results that demonstrate major
improvements in our ability to recognize unconstrained strings of
connected digits. We have shown that by incorporating information
about the time derivatives of the cepstral coefficients, along with
instantaneous cepstral coefficients, we can significantly enhance
recognizer performance. A summary of the recognizer performance,
in each of the 3 modes in which it was tested, is given in Table 2.
Overall string error rates of less than 3% for unknown length strings
and less than 2% for known length strings were obtained on
independent testing sets of data for both speaker independent and
multi-speaker modes. String error rates of less than 1% for unknown
length strings and less than 0.5% for known length strings were
obtained in the speaker trained case.

Training Set | Testing Set

Recognition Mode Database | UL KL | UL | KL

Speaker Trained DB50 039 | 0.16 | 0.78 | 0.35

Multi-speaker DB50 1.74 | 0.98 | 2.85 | 1.65
(6 Models Per Digit)

Speaker Independent DBTI 1.24 | 036 | 294 | 1.75
(4 Models Per Digit)

TABLE 2

Summary of String Error Rates for the Three Recognition Modes

These results show that the transitional cepstral information made
the recognizer relatively robust to talkers. In independent work we
have shown that the addition of the delta cepstrum analysis
significantly improves performance with other vocabularies (e.g. the
alphabet) in isolated word recognition tasks.
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To see how much progress has been made, it is worthwhile
contrasting the results presented here with those of earlier studies. In
earlier work, using the same databases and recognizer, but with a
standard instantaneous cepstral analysis (i.e. without the transitional
cepstral information), Rabiner ez al. reported testing set string error
rates of 1.83% (UL), and 0.81% (KL) in the speaker trained mode,
and 6.0% (UL) and 3.4% (KL) in the multi-speaker mode (using 10
models per digit as opposed to 6 models per digit here). The string
error rates reported here are lower by a factor of 2 or more!
Furthermore, in the speaker independent mode the results (reported at
ICASSP 87 in Dallas) were testing string error rates of 7.9% (UL)
and 5.2% (KL), again using 10 models per digit. Here the string
error rates are lower by a factor of about 3 to 1, based on 4 models
per digit. These comparisons strongly point out the advantages of the
transitional cepstral information for recognition.

The only other comparison worth making is with the work of Bush
and Kopec [2] who also used the TI database for their recognition
tests. The best performance results on the testing set, obtained by
Bush and Kopec, were 4% (UL) and 3% (KL) string error rates. The
Bush and Kopec results were based on manually derived digit models
(based on extensive manual analysis of the training set), using a wider
bandwidth spectral analysis, with a network representation that
handled difficult cases (e.g. prepausal oh or eight), and with an
explicit background silence model. The results given here were
obtained fully automatically, using telephone bandwidth data, with no
explicit silence model, and with no rules or corrections for difficult
digit sequences. All the techniques used here have been applied to
several different recognition systems (different vocabularies, syntax
etc.) with no modification whatsoever. This is almost as important
and as impressive as the performance which has been demonstrated in
this paper.

V. Summary

In this paper we have shown that a very high performance
connected digit recognition system can be implemented automatically
based on our current understanding. The key to the improvement in
performance over earlier implementations was the use of an analysis
that included both instantaneous and transitional (time derivative)
spectral information. The system was tested in three modes, namely
speaker trained, multispeaker, and speaker independent, and shown to
be capable of recognizing digit strings with greater than 97% accuracy
in all cases.
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