S8.5

HMM Clustering for Connected Word Recognition

L. R. Rabiner, C. H. Lee, B. H. Juang, and J. G. Wilpon

AT&T Belt Laboratories
Murray Hill, New Jersey 07974

Abstract. It has been shown that when there are a sufficiently large
number of training tokens of a given speech recognition unit (e.g.,
words, phones, syllables, etc.), it is generally worthwhile clustering the
training tokens into two or more clusters and then creating ecither
templates or statistical models from each individual cluster. Such
techniques have been used successfully for isolated and connected word
recognition for a number of years. Almost all of the clustering
techniques, to date, have been based on conventional template-based
techniques whereby a training set is broken into clusters on the basis of
time aligned, pairwise distance scores between each pair of tokens in
the training set. Because of the recent preponderance of recognizers
based on statistical models (Hidden Markov Models), it was felt that
an HMM clustering procedure would be more effective than a
template-based approach — especially in the sense that it could be
integrated directly into the HMM parameter estimation procedure.
This paper describes such an HMM clustering procedure and discusses
its application to connected word systems and to large vocabulary
recognition based on phone-like units. It is shown that the
conventional approach of maximizing likelihood is easily implemented
but does not work well in practice as it tends to give improved models
of tokens for which the initial model was generally quite good, but does
not lead to improvements for tokens which are poorly represented by
the initial model. As such we have developed a splitting procedure
which initializes each new cluster (statistical model) by splitting off all
tokens in the training set which were poorly represented (in the
likelihood sense) by the current set of models. This procedure is shown
to be highly efficient and gives excellent recognition performance in
connected word tasks. In particular, for speaker independent
connected digit recognition, using 2 HMM-clustered models, on the T1
database, the recognition performance is as good as or better than
previous results using from 4-6 models/digit obtained from template-
based clustering.

I. Introduction

It has been shown that when a large amount of training data is
available, for creating either templates or statistical models,
performance of speech recognizers generally improves when more than
one template or model is created for each of the recognition units
[1,2]. As such, a wide range of methods for clustering a set of
training data into 2 or more clusters have been proposed and studied
[3-5). Most of the clustering methods, used for speech recognition,
have been oriented towards the creation of multiple templates from a
given set of word training data. For systems based on word templates,
such procedures are both acceptable and have been shown to be
capable of providing good representations of the variants in word
pronunciation across talkers of the training set. Most recently,
however, speech recognition systems based on statistical models have
proliferated [6-8]. Although the clustering techniques used for
template-based recognizers can be (and have been) successfully applied
to the design of multiple statistical models for each vocabulary word, it
seemed likely that a model-based clustering procedure would be more
efficient than a template-based approach. The purpose of this paper is
to describe such a clustering procedure, based on the use of hidden
Markov models (HMM), and discuss its performance on the task of
recognizing a string of digits in a speaker independent manner.

In the following sections we first briefly review the structure of an
HMM-based recognizer which uses whole word models for recognition.
Next we describe the training procedure, i.e. the way in which we first
obtain representative tokens of whole words from continuous speech,
and then the way in which we estimate sets of model parameters.
Next we describe the template-based approach to creating multiple
models of each vocabulary word. Finally we discuss the two methods
we have investigated for direct HMM clustering of the data. We
illustrate the potential gains in efficiency by comparing the recognition
results on a speaker independent connected digit recognition task.

405

II. Overview of HMM Recognizer

A block diagram of the overall HMM recognizer is shown in
Figure 1. There are essentially three steps in the recognition
algorithm, namely:

1. Spectral analysis — the speech signal is converted to a set of LPC
derived cepstral (weighted) and delta-cepstral (weighted)
vectors.

2. HMM pattern matching — the sequence of spectral vectors of the
unknown speech signal is matched against a set of whole word
patterns (hidden Markov models) using a frame-synchronous
Viterbi alignment procedure and a word grammar (generally
realized as a finite state network) which specifies which word
combinations can occur for valid sentences in the language. The
output of the HMM pattern matcher is a set of candidate
sentences (word strings), generally of different lengths (number
of words in the string), ordered by likelihood score.

3. Postprocessor — The output candidate strings are subjected to
further validity tests, e.g. word and/or state duration penalties
are assessed, to eliminate (penalize) strings that are unreasonable
with respect to duration constraints etc. The postprocessor
chooses the most likely word string from the valid candidate

strings.
WORD
HMM's
NECOGNIZED
HMM PATYERN WORD
SPEECH MATCHING Po: nl__STAING
{VITERBI ALIGNMENT)
WORD
GRAMMAR

Figure | — Block Diagram of Continuous Speech Recognizer Based on
Word HMM’s.

I1.1 HMM Characterization of Words

Figure 2 shows the form of the HMM used to characterize
individual words. (Transitions between words are handled by a switch
mode from the last state of one word model to the first state of another
word model. This is equivalent to a null transition between word
models.) The models are first order, left-to-right, Markov models.
The features of the models include:

on Oz2 O3 Q44 dgs*
ICCEEDING
Fmml.é’\.l‘ |‘.“m"s 912 023 34 043 o sl‘.jEVEL
—— -
o = ~o
1 2 3 4 NeS
' ' ' Y '
i l H | i
' : ' i !
OBSERVATION by (0} bz (0} by bat0) ba(0)
DENSITY
ENERGY Py{E) PolE) P3lE} (X3} PslE)
PROBABILITY
STATE Byt Bytrd By Bym Batr)
DURATION
PROBABILITY

Figure 2 — Form of HMM Used to Characterize Individual Words.

~— Variable number of models per word (designed via the clustering
methods to be discussed later)

CH2673-2/89/0000-0405 $1.00 © 1989 IEEE

= Variable number of states per model (typically from 5 to 10 states
per word model has proven adequate for most applications)

— Variable number of mixtures per state (typically from 2 to 9
mixtures per state have been used).

The spectral density in each state is characterized by a mixture of

Gaussian densities. Log energy is characterized , in each state, by an

empirically measured histogram; similarly state duration s

characterized by an empirically measured histogram. Word duration

is assumed to be Gaussian distributed.

IL.2 Training the HMM’s

In order to build (multiplc) word models from a training set of
labelled continuous speech, the first step is to optimally segment the
continuous speech into individual words. For this task, a segmental -
means training procedure has been shown to be an effective way of
converging at the optimum segmentation into words [9]. A block
diagram of the segmentation procedure is given in Figure 3.

3 LEVEL
BUILDING
WORD
SEGMENTATION|
3
WORD 1
TOKENS
)
WORD 2 WORD
TOKENS PATTERN
= . * BUILDING
. ALGORITHM
.
<
WORD vV
TOKENS Y
TEST FOR
CONVERGENCE

b,

Figure 3 — Block Diagram of the Segmental K-Means Training
Procedure.

We assume an initial set of word models is available. This initial
set of models can be from a different talker or set of talkers, or can be
from an iteration of the training loop. If no initial word models are
available, the procedure can be bootstrapped from a set of isolated
word occurrences of the vocabulary, or it can even be bootstrapped by
assuming a uniform initial segmentation of the continuous speech into
words.

Given the initial word model files, and the training files (which
consist of continuous sentences of different lengths), an HMM pattern
matching procedure is used to optimally segment the training strings
into individual word tokens which are stored in word token files. A
word model building algorithm (i.e. an estimation procedure for
determining parameters of the word HMM’s) is used to give an
updated set of word models. (The word model building algorithm is
itself a segmental k-means training procedure.) The above procedure
is iterated until the difference in likelihood scores of the word models,
in consecutive iterations, is sufficiently small.

II. Building Multiple Models Per Word

One by-product of the training procedure described in the previous
section is an optimal segmentation of continuous speech into words. In
cases where there is a large amount of training data (typically for
speaker independent recognition), it has traditionally been found that
the creation of multiple patterns (typicaily these have been templates)

for each word improves recognition performance significantly. This
has also been shown to be the case for statistical models for the task of
connected digit recognition of a large, speaker independent, database
[2].

The way in which multiple models have traditionally been designed
is via a clustering procedure in which all the tokens for a single word
are clustered into 2 or more sets, and a single model (or template) is
designed for all the tokens within each cluster set. This procedure,
although quite reasonable, is not consistent with the HMM
methodology because the clustering procedures have all been based on
some type of vector quantization or matrix quantization procedure,
which in turn is based on measuring accumulated distance along a
dynamic time alignment path. In an effort to increase the efficiency
of the clustering we proposed and studied two HMM-based clustering
procedures. We call the two procedures likelihood clustering and
threshold clustering. We now describe the methods.

I11.1 HMM Likelihood Clustering

The objective of maximum likelihood model training is to estimate
the set of model parameters which gives the maximum likelihood based
on the given set of training data. In creating multiple HMM’s for the
training set, the maximum likelihood objective can easily be extended
in a straightforward manner. However the resulting set of models does
not ily minimize the r error when tested on an
independent set of test data. The standard assumption is that if a
given model (or set of models) provides a better fit (in a maximum
likelihood sense) to a training set of words than alternative models, it
would then provide better fits to an independent test set of the words,
and hence improve recognition performance.

The way in which we do likelihood clustering, based on HMM’s, is
as follows. Assume, for the v" word in the vocabulary, we have
designed the best (maximum likelihood) model, called A,. Further
assume that for word v there is a set of 0, word tokens in the training
set. We denote this set as 7% = (T3, 7%, ..., TVQv] and associated with
each token 77 is the likelihood score, AT?), based on the current
model (or set of models).

The basic idea of likelihood clustering is to split the model, \,, into
two models, namely A} and A; by keeping all parameters of the
models fixed except the spectral means for each component of each
mixture in each state. The spectral means of each mixture are
determined as

pid) = u, (DU + (1) (1a)
ay (@) = 1, (DA = (-1)79 (1b)

where p,(d) is the spectral mean of the @'" component of the original
model, ¢ is a small number (typically 0.005 to 0.01) and q is a random
variable whose value is either 0 or 1. Essentially the splitting of
Eq. (1) is similar to the vector quantization splitting algorithm {10],
except that it is applied to each dimension of each spectral vector
independently. The result of the splitting procedure is a pair of models
that are differentially different in the spectral component means.

The motivation behind the use of Eq. (1) is to avoid the influence
of the observation vector length in the splitting (perturbation) process.
Since the observation vector consists of LPC cepstral components
whose length is directly related to the degree of spectral flatness rather
than the spectrum itself, it is susceptible to many sources of distortions.
A splitting procedure of the type used in Eq. (1) will minimize the
effects of the various sources of distortions.

Once the model has been split, the segmental k-means procedure is
reiterated on the pair of models until convergence is achieved. This
procedure can be iterated to go from 2 to 3 models, for example, by
determining the model with either the most tokens assigned to it, or by
determining the model with the greatest total likelihood (sum of token
likelihoods) and splitting that model.

1IL2 HMM Threshold Clustering

A second way of clustering tokens, based on likelihoods obtained
from HMMs, is to separate out from the set 7%, those tokens whose
likelihood scores fall below some fixed or relative threshold, i.e.
separate out all tokens with poor likelihood scores and try to create a
new model out of the “outliers.” The idea here is that improving

likelihood for tokens with high likclihood scores is unlikely to lead to
significant performance improvements in recognition; however if some
structure could be found from tokens whose likelihood scores, using the
current set of modcls, is low, then p ially significant impr

in performance could result. The downside risk of threshold clustering
is that some of thc tokens assigned to the new model could be seriously
flawed (c.g. crrors in speaking etc.) and could adversely affect the
resulting model. The other problem with threshold clustering is
determination of a proper or suitable threshold for separating the
training set into clusters. The choice of this threshold is generally a
matter of guesswork and performance could be very sensitive to this
parameter.

As in the case of likelihood clustering, once the tokens have been
clustered, the segmental k-means training algorithm is used to give the
optimal set of parameters for each of the models. Furthermore the
procedure of threshold clustering is equally amenable to creating a new
model from # initial models per word as it is from 1 model per word.
However, experience indicates that the threshold parameter should get
smaller as the number of models per word increases.

It should be clear that likelihood clustering leads to higher overall
word likelihood scores than threshold clustering since the modelling of
the vast majority of word tokens is improved by likelihood clustering
whereas only a small number of word tokens get significantly improved
likelihood scores with threshold clustering. However we will see in the
next section that the performance improvement from threshold
clustering is significantly higher than that obtained from likelihood
clustering.

IV. Experimental Evaluation

To study the efforts on recognition performance of the proposed
HMM clustering procedures, and to compare these results to those
obtained from matrix quantization clustering, we used the TI
connected digit database which consisted of 112 adult test talkers
speaking a total of 8565 strings of digits (variable in length with from
1 to 7 digits per string), and an independent set of 113 adult talkers
speaking 8578 digit strings [I11]. Details of the database
characteristics are given elsewhere [11].

Using the isolated digit occurrences as a bootstrap, the segmental
k-means procedure was used 1o generate the best single model per digit
for each of the 11 digits (the zero-nine and oh). We then used the
likelihood and threshold clustering algorithms to generate a 2-model
per digit set. In order to choose the threshold for the threshold
clustering algorithm, several statistics of the training tokens based on a
single model per digit were measured and shown in Table 1. Shown in
this table, for each of the digits, is the count, maximum likelihood,
minimum likelihood, 20% threshold and 10% threshold likelihood over
the training tokens, where the o percentage threshold is defined as the
likelihood score where a% of the tokens have likelihoods below this
threshold.

Word Count HByax LBuan Dos Lox
Zero 2573 21.5 1.9 11.6 10.3
One 2572 22.0 —0.6 133 11.8
Two 2565 21.8 ~1.1 129 11.2
Three 2563 227 =51 13.1 11.7

Four 2567 22.7 -0.2 14.2 12.7

Five 2522 24.2 39 156 141
Six 2570 236 3.0 144 130
Seven 2559 22.1 29 14.3 12.8
Eight 2552 233 -3.7 134 117

Nine 2529 223 42 142 128
Oh 2553 22.7 =13 11.7 100

Table 1
Likelihood Scores for Speaker Independent
Digit Tokens Using 1 Model Per Digit

It can be seen that although there is very little variability in Hgax
for the digits, there is considerable variability in %y ranging from
—7.3 to 3.9. Based on some preliminary experimentation it was
decided to set the threshold to %y so as to initially include the tokens
with the lowest 20% of the scores to define the new model. After
iteration, the ber of tokens d to the new model generally
increased (typically to about 35% of the training tokens).

IV.1 Results

The recognition results on the independent testing set of connected
digits are given in Table 2 and plotted in Figure 4. Table 2 shows
string error rates on both the training and testing sets, for both
unknown length (UL) and known length (KL) strings. The top part of
the table is the results based on matrix quantization clustering; the
middle part is the results based on likelihood clustering; the bottom
part is the results based on threshold clustering.

Number | Training Set | Testing Set

Clustering of Models
Procedure Per Digit UL KL UL KL
1 284 1.19 | 435 | 2.15
2 190 | 0.71 3.64 | 1.88
Matrix 3 1.52] 0.53 | 3.10 | 1.67
Quantization 4 1.24 | 0.36 | 294 | 1.75
5 1.13 | 0.34 | 3.01 | 1.89
6 1.05 | 035 | 3.01 | 1.90
" 1 245 1.09 | 4.02 | 2.38
Likelihood 2 176 | 071 | 3.98 | 2.39
1 2.04 1.06 | 3.59 | 231
Threshold 2 1.04 | 037 | 2.84 | 1.60
3 107 | 040 | 293 | 1.61

Table 2
Digit String Error Rates (%) for 3 Clustering Procedures

T T T T T

{a) TRAINING SET MATRIX QUANTIZATION — UL

Iy
o

g
w L
:
€ o
-]
-
I+ T T T
@ 5 X QUANTIZATION — UL
4 © LIKELINOOO CLUSTERING — UL
& r A 0 - .
= * TION — KL
1) \ OLIKELIHOOD iumulm -
- . —— —
{~ () TESTING SET T
of | | 1 1
1 ? 3 4 5
NUMBER OF MODELS/WORD

Figure 4 — Plots of String Error Rate Versus Number of Models Per
Digit for the Different Clustering Procedures for the
Training Set Data (Parta) and the Testing Set Data
(Part b).

Unfortunately it is difficult to compare the results of the 3
clustering procedures against each other since several improvements to
the HMM recognizer were incorporated between the time the matrix
quantization results were obtained, and the time the threshold
clustering techniques were obtained. However several observations can
be made about the results, namely:

— the matrix quantization clustering requires 3-4 models per digit to
give the best performance on the test set; however performance
steadily gets better on the training set with up to 6 models per digit

— the likelihood clustering procedure does not improve performance at
all on the testing set; however it does give substantial improvement
on the training set when 2 models per digit are used. This again
points out the obvious result that merely increasing likelihood of
the training data is insufficient to guarantee improved performance
on an independent test set.

= the threshold clustering procedure gives a significant improvement
in performance, on both the test and training sets, when going from
1 to 2 models per digit; further increases to 3 models per digit do

not lead to any further performance gains.

It can also be seen from Figure 4 that both the matrix quantization
clustering with 4 models/digit and threshold clustering with 2
models/digit yield almost the same performance scores on both the
training and testing sets. It can also be seen in Figure 4 that
increasing the number of models per digit has almost no effect on the
performance of the recognizer. To determine whether this bottoming
off was inherent to the digits vocabulary or was due to the amount of
training data, a final experiment was performed in which all the
connected digit data from the 225 talkers was used to train a single
model per digit system. The resulting set of single digit models was
then used to evaluate the performance on the original training set and
on the original test set (which was now part of the new training set).
The resulting string error rates are shown in Table 3.

Number Training Set | Testing Set

Of Models
Per Digit | UL KL | UL KL
1 210 120 | 239 1.34

Table 3
Digit String Errors Rates (%) for Combined
Training and Testing Sets

It can be seen that the UL string error rate is between 2.10 and 2.39%
and the KL string error rate is between 1.20 and 1.34%. Hence the
results using 2 models per digit from threshold clustering are within
about 0.5% for UL strings and 0.3% for KL strings. These results
indicate an inherent vocabulary error of about 1.3 to 2.3% for this
recognizer, and show that the amount of training is probably sufficient
for obtaining the best performance based on the current recognition
algorithm.

V. Summary

We have shown that it is possible to create a set of multiple
statistical whole word models for each word in the vocabulary of a
continuous speech recognizer using HMM clustering techniques, in
much the same way as conventional distance based clustering was used
previously. We proposed two such clustering procedures, one based on
globally increasing likelihood of the entire training set of word tokens,
the other based on locally increasing likelihood for a small set of the
tokens whose likelihood scores were the poorest in the training set. We
showed that the threshold clustering led to significant performance
improvements for the task of speaker independent, connected digit
recognition whereas the likelihood clustering didn’t improve recognition
performance at all.

408

REFERENCES

I.

L. R. Rabiner, S. E. Levinsion, A. E. Rosenberg and J. G.
Wilpon, “Speaker Independent Recognition of Isolated Words
Using Clustering Techniques,” IEEE Trans. Acoust., Speech,
and Signal Processing, Vol. ASSP-27, No. 4, pp. 336-349,
Aug. 1979.

L. R. Rabiner, J. G. Wilpon and F.K. Soong, “High
Performance Connected Digit Recognition Using Hidden Markov
Models,” IEEE Trans. Acoust., Speech, and Signal Processing,
(to appear).

S. E. Levinson, L. R. Rabiner, A. E. Rosenberg and J. G.
Wilpon, “Interactive Clustering Techniques for Selecting
Speaker Independ Refe Templ for Isolated Word
Recognition,” IEEE Trans. on Acoust., Speech, and Signal
Processing, Vol. ASSP-27, No. 2, pp. 134-141, Apr. 1979.

H. Spath, Cluster Analysis Algorithms, Ellis Harwood Ltd.,
Chichester, 1980.

J. G. Wilpon and L.R. Rabiner, “A Modified &-Means
Clustering Algorithm for Use in Speaker Independent Isolated
Word Recognition,” IEEE Trans. Acoust., Speech, and Signal
Processing, Vol. ASSP-33, No. 3, pp. 587-594, June 1985.

F. Jelinek, “Continuous Speech Recognition by Statistical
Methods,” Proc. IEEE, Vol. 64, No. 4, pp. 532-556, April 1976.

K. F. Lee, “Large Vocabulary Speaker Independent Continuous
Speech Recognition: The SPHINX System,” Ph.D. Thesis,
Carnegie Mellon Univ., Pitisburgh, PA, 1988.

L. R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proc. IEEE, (to
appear).

L. R. Rabiner, J. G. Wilpon and B. H. Juang, “A Segmental K-
Means Training Procedure for Connected Word Recognition,”
AT&T Tech. J., Vol. 65, No. 3, pp. 21-31, May-June 1986.

Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vector
Quantization,” IEEE Trans. on Comm., Vol. COM-28, No. 1,
pp. 84-95, Jan. 1980.

R. G. Leonard, “A Database for Speaker Independent Digit
Recognition,” Proc. 1984 ICASSP, pp. 42.11.1-4, March 1934,

