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Abstract — An iterative approach for minimum discrimination informa-
tion (MDI) hidden Markov modeling of information sources is proposed.
The approach is developed for sources characterized by a given set of
partial covariance matrices and for hidden Markov models (HMM’s) with
Gaussian autoregressive output probability distributions (PD’s). The pro-
posed approach aims at estimating the HMM which yields MDI with
respect to all sources that could have produced the given set of partial
covariance matrices. Each iteration of the MDI algorithm generates a new
HMM as follows. First, a PD for the source is estimated by minimizing
the discrimination information measure with respect to the old model over
all PD’s which satisfy the given set of partial covariance matrices. Then, a
new model that decreases the discrimination information measure between
the estimated PD of the source and the PD of the old model is developed.
The problem of estimating the PD of the source is formulated as a
standard constrained minimization problem in the Euclid: space. The
estimation of a new model given the PD of the source is done by a
procedure that generalizes the Baum algorithm. The MDI approach is
shown to be a descent algorithm for the discrimination information mea-
sure and its local convergence is proved.

I. INTRODUCTION

N MANY statistical signal processing problems, the

probability distributions (PD’s) of the sources being
processed are not known, yet the application of optimal
procedures requires a priori knowledge of such PD’s. For
example, optimal detection theory (see, e.g., [1]) could be
applied to speech recognition if the probability of any
word in the recognizer’s vocabulary and the PD of the
corresponding acoustic signal were known. Similarly, opti-
mal minimum average distortion estimation approaches
could be successfully applied for enhancing noisy speech if
the PD’s of the speech signal and the noise process were
known [2], [3]. A common practice is, therefore, that of
replacing each unknown PD by its estimate obtained from
a long training sequence from the source. The estimation
of the PD of the source is usually done by attributing to
the source a parametric PD and estimating the parameters
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of this PD from the given training sequence. Thus a
parametric estimation problem results. This problem, how-
ever, is not a standard parametric estimation problem,
since the PD of the source producing the training sequence
is not necessarily that of the assumed parametric form. A
better formulation of this estimation problem is given in
terms of modeling of the original source, or of its PD, by a
parametric PD which constitutes the model.

A useful class of models is that of Markov sources, also
called probabilistic functions of Markov chains or hidden
Markov models (HMM’s) [4], [S, pp- 63-70], [6], which
have been proven successful in speech recognition (see,
e.g., [7], [8]) and speech enhancement [3] applications. The
parameters of these models are usually estimated by a
maximum likelihood (ML) approach developed by Baum
et al. [9], [10], and extended in [11]-[13]. Recently, an
alternative method for estimating the parameters of
HMM’s by a maximum mutual information (MMI) ap-
proach [14, p. 262] was proposed by Bahl ez al. [15], [16].
The ML estimate is obtained by maximizing the logarithm
of the probability density function (pdf) of the HMM over
its parameter set for the given training sequence from the
source. This is done by an iterative estimation-maximiza-
tion (EM) procedure which converges locally {9], [17], [18].
The MMI estimate is obtained by maximizing the average
mutual information between two dependent sources, the
first of which has an HMM PD conditioned on the second
source, and the second an assumed known PD. The aver-
age of the mutual information is calculated using the
empirical conditional distribution of the first source as
obtained from given training sequences from that source.
In speech recognition applications which motivated the
MMI hidden Markov modeling approach, the first source
is the acoustic signal from a given word and the second
source represents the words in the vocabulary. An MMI
estimate is obtained using any standard optimization pro-
cedure, e.g., the steepest-descent method [15].

The ML and the MMI modeling approaches can be
justified as being standard ML and MMI estimation ap-
proaches only if the source producing the training se-
quences is itself a Markov source. In this case, the ML
estimation may have under certain conditions, asymptoti-
cally (large-sample) optimal properties (see, €.g., [49], [50]).
Otherwise, the theoretical justification for these ap-
proaches can only be given on the basis of a model
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correctness assumption according to which the PD of the
source is assumed to be that of the model. A less conserva-
tive interpretation for the ML approach, which can also be
adopted for the MMI approach [19], was proposed by
Csiszar and Tusnady [20]. They showed that the ML
estimate results from minimizing the discrimination infor-
mation measure! between a PD concentrated in the train-
ing sequence from the source and the PD of the model. In
this interpretation, the source being modeled and the model
itself are treated as independent entities and hence no
model correctness assumption is needed. This interpreta-
tion, however, implies that the ML and MMI modeling
approaches might be sensitive to the specific training se-
quences from the source which are used for performing the
modeling.

We propose an alternative approach for hidden Markov
modeling which is based on the minimum discrimination
information (MDI) modeling approach proposed by Kull-
back [21, chs. 3, 5] and Kupperman [22]. This approach
assumes knowledge of a partial set of moments for each
vector in the training sequence from the source and aims at
estimating the parameter set of the model which yields
MDI with respect to all PD’s which satisfy the given
moments. The MDI modeling approach was proven by
Shore and Johnson [23] to be the only correct inference
approach, when the source is characterized by moment
constraints, in the sense of satisfying a set of consistency
axioms. Any other inference approach will either provide
the same estimate as the MDI approach or will lead to
inconsistency. It can also be argued that the MDI ap-
proach should be more robust than the ML and the MMI
modeling approaches, since here we do not attribute to the
source any specific PD but rather consider all PD’s which
satisfy the given set of moments.

The MDI approach was applied in [21, p. 83], [22], [24]
to classification problems of sources characterized by a
given set of moments and models (or hypotheses) that
comprise an exponential family of PD’s. Using appropriate
sample average estimates for the moments being specified,
it was shown that the MDI approach results in the same
classification rule as the traditional ML approach. A simi-
lar relation between the MDI and the ML modeling ap-
proaches was found in [25], {26] for the particular case of
sources characterized by given partial covariance matrices
and Gaussian models, e.g., autoregressive (AR) and au-
toregressive moving average (ARMA) sources. It was shown
that asymptotic MDI modeling (as the frame length
approaches infinity) is equivalent to asymptotic ML mod-
eling [27, ch. 1], [28], achieved by minimizing the
Itakura—Saito distortion measure [29, p. 134], [30] between
the power spectral densities of the source and the model.
For HMM'’s with Guassian output PD’s and sources char-
acterized by a given set of partial covariance matrices, it is
shown here that the MDI modeling approach approxi-
mately becomes an ML modeling approach when the MDI

"The discrimination information measure is also known as the cross
entropy, relative entropy, directed divergence, I-divergence, and
Kullback~Leibler number.
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measure is assumed to be concentrated in a single se-
quence of states of the model.

The general approach for MDI modeling is first to
minimize the discrimination information measure, between
the PD of the source and the PD of the model, over all
source PD’s which satisfy the given set of moments. This
results in an estimate of the PD of the source, called the
MDI PD with respect to the model or the I-projection of
the model on the set of PD’s that satisfy the given mo-
ments. The MDI PD depends on the parameter set of the
model and the given moments of the source. The discrimi-
nation information measure between the MDI PD and the
PD of the model is called the MDI measure with respect to
the model. The modeling is achieved by minimizing the
MDI measure over all parameter sets of the model. Unfor-
tunately, hidden Markov modeling cannot be done in this
way since no explicit expression for the MDI PD, and
hence also for the MDI measure, in terms of the given
moments and the parameter set of the model, is known.
The MDI PD depends on a set of Lagrange multipliers
which must be chosen so that the given moments from the
source are satisfied. MDI hidden Markov modeling can,
however, be iteratively performed by alternating minimiza-
tion of the discrimination information measure once over
all PD’s which satisfy the given set of moments assuming
that an HMM is given, and then over all HMM’s assuming
that the MDI PD with respect to the old model is given. If
each iteration comprises the estimation of the MDI PD for
a given model and the estimation of a new model for the
MDI PD with respect to the old model, then the algorithm
effectively generates a sequence of HMM’s with nonin-
creasing values of the MDI measure. Note that the dis-
crimination information measure need not be strictly mini-
mized in each step of the iterative algorithm, since any
procedure which alternatively reduces the value of this
measure can be used without affecting the descent nature
of the algorithm.

The alternating minimization of the discrimination in-
formation measure was first proposed by Csiszar and
Tusnady {20]. They considered the general problem of
minimizing the discrimination information measure over
two sets of PD’s and gave geometric conditions for global
convergence of the iterative procedure. Furthermore, they
showed that these conditions are satisfied if the two sets of
PD’s are convex sets of measures. In our case the set of
PD’s satisfying the given moments is convex, but the set of
HMM PD’s is not. Since the geometric conditions are
difficult to verify when either of the two sets of PD’s is not
convex, we shall prove here only local convergence using a
variant of the convergence theorem from [31, p. 187] given
in [32, lemma 1].

We develop the iterative algorithm and prove its conver-
gence for MDI modeling of sources characterized by a
given set of partial covariance matrices and HMM'’s with
zero mean Guassian output PD’s. Such models will be
referred to as zero mean Gaussian HMM’s. In addition, we
shall be focusing on the subset of AR processes of this
class, which have been shown to be useful in speech
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recognition (see, e.g., [8], [12]) and speech enhancement [3]
applications. These models will be referred to as zero mean
Guassian AR HMM’s. We show that the estimation of the
MDI PD with respect to a given HMM can be formulated
as a unimodal minimization problem in a subset of the
Euclidean space, which can be solved by any standard
constrained optimization procedure. Furthermore, a new
model that decreases (or keeps constant) the discrimina-
tion information measure between the MDI PD with re-
spect to the old model and the PD of the old model can be
efficiently estimated by a procedure which generalizes the
Baum reestimation algorithm using “forward—backward”
formulas [9], [10].

The proposed algorithm has the intuitive interpretation
that in each iteration it first removes the existing *mis-
match” between the source (as characterized by the given
partial covariance matrices) and the current estimate of the
model, and then it improves the modeling. Thus this
modeling approach continuously improves the estimation
of the PD of the source and the PD of the model. Note
that the MDI modeling approach used here is different
from the statistical inference philosophy of Shore and
Johnson (see, e.g., [33], [34]). In their work, the model is
treated as given prior information about the source, and as
such, it is not changed during the inference process. Hence,
Shore and Johnson’s approach constitutes only one itera-
tion in our algorithm. For the priors used in Shore and
Johnsons’ work, however, further iterations are not useful
since it can be shown that the algorithm reaches a fixed
point after the first iteration.

In Section II we derive the iteration algorithm for per-
forming the MDI modeling. In Section III we prove local
convergence of the algorithm. In Section IV we establish a
relation between the MDI and ML modeling approaches.
In Section V we consider principal implementation aspects
of the MDI modeling approach. All proofs of theorems,
corollaries, and lemmas are given in the Appendix.

1I. DESCENT ALGORITHM FOR MDI HiDDEN
MARKOV MODELING

A. Problem Formulation

Let y £ {y,, 1" -, ¥y} be a set of zero mean observa-
tions, y, € R", where R" is the N-dimensional Euclidean
space. Let Ri2 Ey{yy”}, where # denotes vector
transpose and Ot is the true PD of the source, be the full
covariance matrix of y, Assume that for each ¢ we are
given an N X N matrix R, whose elements within some
given symmetric band, say B, are the elements of Rf. Such
a matrix will be referred to as a partial covariance matrix
of y,. The band B can, for example, be an upper left block
or the main diagonal along with some off diagonals of the
full covariance matrix. In practice, we may need to esti-
mate the partial covariance matrix R, from y,. In this case
the estimate will be treated as if it were the true partial
covariance matrix. If the source is stationary and ergodic,
and the frame length is large enough, then a good estimate
of the true partial covariance matrix results. Alternatively,
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for any value of N, we can consider any given estimate of
the partial covariance matrix of the source as being the
characterization of the source, regardless of how well it
estimates the true partial covariance matrix. In either case,
we assume that the partial covariance matrix R,, given or
estimated, is consistent with some valid N X N covariance
matrix called an extension of R,. If this extension is
positive definite, then it is called a positive definite exten-
sion.

Let P, be the PD of an M state zero mean Gaussian
HMM, where A is the parameter set of the model. A £
(7, A,S), where = 4 (m,m,- -+, my,) is the initial state
probability vector, 4 & {agp @ B=1,---, M} is the state
transition probability matrix, and S £ {S,, B=1,---, M}
is the set of positive definite covariance matrices of the
output processes from the different states. The pdf corre-
sponding to P, is given by

() =X 1la, byx) 1)

(=0

exp( - %yt#sﬁv 1yr)
(2m)"* det'/2(S;)

where x £ {xg, x,," -, xr} is a sequence of states and
x,€{1,2,--+, M}, a,_, isthe transition probability from
the state x,_; (at time 7 —1) to the state x, (at time ¢),
a, .=, is the probability of the initial state x,, and
b(y,|x,) is the output pdf on R" corresponding to the state
x

b(ylx,=B) =

B=1a2,."aM

-

Let R& {Ry, Ry, -+, Ry} be the set of given partial
covariance matrices. Let Q(R) be the set of all PD’s Q
which satisfy

R,=Ey{yy*} within the band B (2)

for all 0 <7 <T. The general MDI modeling problem is
that of finding the parameter set A which minimizes the
MDI measure defined as ‘

Y(R.P)E inf DQIP), )

where D(Q|| P,) is the discrimination information measure
between Q and P,. The discrimination measure between
two PD’s Q and P can be evaluated as

fQPlnIIPdP»

+ o0,

fQ<«P

>

D(Q||P) (4a)

otherwise

where ¢, is the Radon-Nikodym derivative of Q with
respect to P, and Q < P means that Q is absolutely
continuous with respect to P. If P and Q are absolutely
continuous with respect to the Lebesgue measure, then
their pdf’s p and g, respectively, exist and

D(QIIP) = [a(»)In(q(»)/p(»)) dv

with the convention that In0 = — o0, In(¢/0) = co, where ¢
is any positive number, and 0In0 = 0.

(4b)
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As explained in Section I, the implementation of the
MDI approach for hidden Markov modeling must be
performed iteratively since no explicit expression for the
MDI measure »(R, P,) is known. Each iteration of the
proposed MDI algorithm comprises the following two
steps. Starting from a given HMM P,, the MDI PD Q,
with respect to P, is first estimated by

inf  D(Q|Py).
L (Qnr,)

(52)

It is shown in the second part of this section that, under
certain conditions, the MDI PD Q, exists and hence the
infimum in (5a) is a minimum. In this case, the resulting
discrimination information measure is the MDI measure
with respect to P, given by »(R, P,) = D(Q,}|P,). Given
the MDI PD Q,, a new model P,. which decreases the
discrimination information D(Q,}|P,) or at least keeps its
value constant, is estimated. Thus

D(Q,IPy) < D(Q\IIPy). (5b)
Such a model is often easier to calculate than a model that
minimizes D(Q,||Py) over all possible P,, as is demon-
strated in the third part of this section for HMM’s. The
fact that we only calculate a model that decreases the
discrimination information, rather than minimizing it, does
not affect the descent nature of the algorithm but it may
slow its convergence. The proposed MDI algorithm iter-
ates the two steps described in (5a) and (5b) until some
convergence criterion is satisfied. For example, the algo-
rithm can be stopped if the difference in values of the
MDI measure (5a) in two consecutive iterations is smaller
than or equal to a given threshold, say 1e., if

(R, P,)—»(R, P,) <¢

stop?
(5¢)

The implementation of (5a) and (5b) is discussed in parts
B and C of this section, respectively. Local convergence of
the proposed algorithm is proved in Section III.

stop*

B. Source MDI PD Estimation

The estimation of the MDI PD in (5a) incorporates an
infimum rather than a minimum, since the minimum may
not exist. The following theorem, however, provides condi-
tions for the existence and uniqueness of this MDI PD.
The theorem and its proof are a straightforward extension
of the results derived by Csiszar [35] and developed by
Gray et al. [25] for the case where the model is a single
Gaussian process.

Theorem 1: Let P, be a zero mean Gaussian HMM as
in (1), and let R={R,, t=0,---,T} be the sequence of
given partial covariance matrices, specified within a band
B, for a zero mean source. Let (R) be the set of all PD’s
Q which- satisfy (2). Let ¥={¥, t=0,---,T} be a
sequence of real symmetric matrices which vanish outside
the band B. Let BPXé {¥: S; '+ ¥, is positive definite for
each r=0,---,T and B=1,---, M}.

a) If for some ¢, R, does not have any positive definite
extension, then D(Q||P,) = oo for all Q € Q(R) and hence
(R, P,) = 0.
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b) If each R, has any positive definite extension, then a
unique PD Q, exists that minimizes D(Q||P,) over Q €
£2(R). The pdf of Q, is given by

1 T
a(y) = Cpx(y)exp(— 3 )y yfA,yT)
=0

T
[la, det '2(1+S.A,)
=0

Y Ila, .det™2(1+5,A,)

T CXP(— %yf(S;,WA,)yT)

oo (27)"det™2 (S, 1+ A,)

(6)

where C is a finite normalization factor which makes
Jdyq\(y)=1and A €4, is a sequence of Lagrange mul-
tiplier matrices corresponding to the covariance con-
straints R. The PD Q, is the MDI PD with respect to P,,
or the I projection of P, on Q(R) [35], and it yields a
finite MDI measure given by

v(R, P,) = D(Q,lIP,)

T
=-In|} [la,_,det">(I+5.A,)

x 7=0

1 T
-t ‘t‘O(R,A,). (7)

Note that, for each 0 <t < T, the trace of R,A, in (7)
depends only on the elements of R, which are within the
band B, since A, vanishes outside this band.

Using (6), it is easy to see that the Lagrange multiplier
matrices must be chosen to satisfy the following set of
equations:

R*2E,{yy*}

M -1
= Bglqt(ﬁ)(sp_l"' AI)

= R, within theband B, 0<t<T (8)

where R} is called the MDI extension of R, with respect
to P, and

T
[la, . det"'2(1+S.A,)
x:x,=B}y7=0
Qr(B) & M( )
Y [la, ,det™2(I+S.A,)

B=1{x:x,=B}7=0

(9)
is the probability, induced by the MDI pdf (6), of being in
state B at time 7 (see (20) and the discussion after (27)).
Kullback [21, p. 38] and Csiszar [35, secs. 1, 3] have shown
that if 0, € Q(R) with pdf ¢, as in (6) exists, then it is the
unique I projection of P, on Q(R). This means that the
set of (8) must have a unique solution for A within & P, fOT
if not, we could find two sets of solutions, say A and A’,
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and construct by (6) two I projections for P, on Q(R).
Equations (8), however, are difficult to solve in any
straightforward manner. The following corollary of Theo-
rem 1 provides an alternative way to estimate the Lagrange
multiplier matrices by replacing the algebraic problem in
(8) by a constrained minimization problem in the Eu-
clidean space. A similar approach was suggested in [25],
[36].

Corollary 1: Let P,, R, ¥, and 8,,) be as in Theorem 1.
Define

T
2 a, det V2 (I+5.¥,)
=0

T
w Y (x (10

d(R;¥,\)2In|Y

Nlb—-‘

If each R, has any positive definite extension, then
d(R; ¥, A) is a unimodal function of ¥ on 813’ and

v(R,P) == d(R;A,\) =~ min d(R;¥A). (11)

Note that, due to the unimodality of d(R; ¥, A) on 8.,
the minimization in (11) can be done by any standard
constrained optimization procedure in the Euclidean space.

C. HMM Estimation

Assume that Q,, the MDI PD with respect to P,, is
given. We now show how a new HMM P,, which reduces
D(Q,||P,), or at least keeps it constant, is estimated. Let

T
P)\(xa y) £ l—loax,Alx,b(yllxt) (12)
f=

and

1 T
q)\(x’ y)écp)\(x7y)exp(_5 Zyt#AtyI) (13)
t=0

be, respectively, the joint pdf’s of states and observations
sequences for the old model P, and the corresponding
MDI PD Q,. Using Jensen’s inequality, (6), (12), and (13),
we have that

D(QxlIPy) =~ D(QilIPy)
=qu(y)ln[2px(x,y)/px(y) dy

_ Px(X,J’) Px(x’)’)
= Jam T

=% [ ‘“”; (%, 7)n k’l’, ((j)) d

=L fax y)lnpi((x y)) @

2o(N)—9(X) (14)
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where

o) 2L [a(e ) py(xp)dr. (15)

Equality in (14) holds if and only if p,.(x, y) = p\(x, »)
almost everywhere with respect to ¢,(x, y) (a.e. Qy). Oth-
erwise, if ¢(A)>¢(A), then D(Q,[IPy) < D(Q,]IPy).
Hence a new model which decreases the MDI measure, or
at least keeps its value constant, can be found by maximiz-
ing ¢(A’) over all feasible parameter sets A’

This approach for estimating a new model through
maximization of the auxiliary function ¢(X’) is a general-
ization of the Baum algorithm for ML hidden Markov
modeling [9]. In the latter case, the auxiliary function
which must be maximized so that the likelihood associated
with the new model is equal to or greater than that
associated with the old model is given by

2 oa(x[y)Inpy(x, y) (16)

where y are the observations from the source. Formal
comparison of (15) and (16) shows that the MDI and the
ML hidden Markov modeling approaches result in the
same model estimate, when starting from the same initial
model, if

(17)

where 8(-) is a Dirac function. This condition, however,
cannot be satisfied by the MDI modeling algorithm, since
the MDI pdf (13) does not approach the pdf in (17) for
any value of the Lagrange multipliers A. Further discus-
sion on the relation between MDI and ML hidden Markov
modeling will be given in Section IV.

The above procedure for estimating a new model resem-
bles a single iteration of the EM algorithm [17], where the
evaluation of ¢(-) corresponds to the E-step and the
maximization of ¢(-) corresponds to the M-step of this
algorithm. This procedure results in the so-called reestima-
tion formulas since the new set of parameters is given in
terms of the old set of parameters.

The maximization of (15) over A’ is done as follows. On
substituting p,.(x, y) from (12) into (15) the reestimation
problem becomes

a\(x,2) = pa(x12) 8(z - y)

max { Z_lnmioqu(x, y)dy

+2 Z lna,leth(x y)dy

x t=1

-—trZ > S fan(x, y)y® dy

x =0

1 T
+§Z z lndetS;"qu(x,y)dy} (18)

1=0
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or, equivalently,

max Zang )y qu(x y)dy

B=1 {x: xo=8}

+ f Inay Y by _/‘Ix(x,)’)dy

a,f=1 t=1 X, 1=a
{x: x,sB}
1 M
st YS! ¥ ¥ qu(x »)yy dy
B=1 t=0{x: x,=
1 M
E Y IndetS;~ 12 Yy fq)\(x y)dy ).
g=1 t=0{x:x,=

(19)

From (12), (13), and (9), it can be shown that

(B)= ¥ qu(xydy, 0<t<T
(x:x, =)
q,(a,B) £ Xz Jar(x, y) &y
{x:x,,,=ax,=ﬂ}

> I—[axr o det™ 2 (I+5, A,)
{(x" 228
M
X X
B

=1 X,_1=a
{ Cox= B}

and clearly ¢,(8)=XM

X B}qu(x Vvt dy=q(B)(S5+A,)
(x: -

s

xdet V2(I+S AL

Ha,
0<t<T (20)

" 14,(a, B) for 0 <t < T. Similarly,

1

£ R,(B).

Hence, using (20) and (21) we can rewrite (19) as

0<r<T. (21)

M
ax{ E Inmg 9(B)
B=1

M T
+ z lna;ﬂzqr(a’ﬂ)
t=1

a, =1

> [tr(S,;“ ¥ R,(B))
B=1 =0

T
—Indet Sé_l Z a,(B)

=0

}. (22)

The maximization problem can now be summarized as
follows. The initial state probability vector of the Markov
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chain is obtained from
M
max ) lnmggo(B)
L. B =1

M
subject to ) m=1
WI;ZO’ B:l,...,M. (23)

The state transition probability matrix of the Markov
chain is obtained from

max ): lnaaEZQ,(a B)

a’ a f=1 t=
M
subjectto ) ajg=1, a=1,--,M
B=1
aB-O (24)

The covariance matrices of the output processes corre-
sponding to the different states of the Markov chain are
obtained from

T
rmn{tr(S‘é‘l Y R(B)
S t=0

T
—Indet ;7' ). ¢,(B)
t=0

subject to Sy is positive definite, B=1,--- M
(25)
The maximization in (23) results in
'”ﬁ=q0(ﬁ)’ B=1,--, M. (26)
Similarly, the maximization in (24) results in
T
Y q.(a,B)
a;3=——, a,B=1,---,M, (27)

M T
Z Z (e, B)
provided that

% i qr(a7B) >0.

B=11t=1

If not, then £/_,q,(a, B) =0, and any a/,, that satisfies the
constraints in (24) can be chosen without affecting the
value of (24). Note that 7_,g,(a, 8) =0 if and only if
q,(a, B) =0 for all 0 <t <T. From (20), however, ¢,(a, 8)
is the joint probability, under ¢,(x, y), of being in state a
at time ¢ —1 and in state B at time ¢. Hence ag is
arbitrarily chosen, up to the constraints in (24), for the
forbidden states a and B.

The minimization in (25) is considered for zero mean
Gaussian AR HMM’s. Suppose first that ©7_,q,(8) > 0.
The problem then becomes

rr;l;}n{tr(R(,B)Sé‘

)-Indets;™'},  B=1,2,-,M

(28)
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where R(B) is a positive definite covariance matrix de-
fined by

T T
R(B)é ;()Rt(ﬂ) ; qt(ﬂ)’ B=1,---, M. (29)

This is exactly the problem that arises in ML estimation of
structured covariance matrices given a measured covari-
ance matrix [37)], [38]. In our case we are interested in
estimating the covariance matrix Sg of an rth-order AR
process given R(B). S; is given by S=o07(LFLs)™",
where aﬁ2 is a gain constant and Lg is an N X N lower
triangular matrix whose i, jth element is given by

lﬁ(i,j)={fp(i—j), 0<i-j<r

0, otherwise,

f3(0) =1, and fg(i), i=1,---,r, are the coefficients of the
AR process. Since R(p) is positive definite, the set of all
AR covariance matrices S; is a closed subset of the set of
positive semidefinite symmetric matrices, and the set of all
inverses of AR covariance matrices with 032 > 0'is convex,
there exists a unique positive definite matrix S; that mini-
mizes (28) [38, theorem 2}. Since det(Lg) =1, the coeffi-
cients fp(-) are obtained from the minimization of
tr(R(B)LZLp). From [25, corollary 2], this is done by
minimizing the quadratic form

1 N-1

Y rg(k—n,k—m)
N k = max(n,m)

el z Y f(n)f(m)

n=0m=0
(30)

where 7(-, -) are the elements of R(B). This results in a
set of linear equations similar to that obtained in the
“covariance method” for linear prediction analysis [29, p.
14]. The gain constant oﬂ2 which minimizes (28) equals the
minimal value of € in (30).

If £7_,q,( B) in (25) equals zero, then ¢,(8) = 0 for all ¢,
and from (21) R,(B) = 0. Hence any positive definite AR
covariance matrix S; can be chosen since its value does not
affect (25).

We now show how g¢,(a,B) and ¢,(B) in (20) and
d(R; ¥, \) in (10) can be efficiently calculated using the
forward—backward formulas. Define

t

[ 2, det™*2(1+S,A,) (31)

F(e)®2 X

Xou X\ 7T
X, =a

T
B(B):2 L IT a, . det” 2 (1+5.A,)
Npereoxp) T ]
(")

(32)

1007
B,(B)£1, and note that
Fy(a) = m,det ™2 (1+S,Aq)
M
Fa)= X F_y(v)a,det” 2 (I+S,A,),
-1
0<t<T, (33)
M
B(B)= X B \(¥)ag,det™ 2 (I+S,A,.,),
y=1
0<t<T. (34)
From (9), (20), (31), and (32) we have
E(B)B,
qr(ﬁ)=————M'(B) {(B) , 0<1<T,
2. F(B)B,(B)
B=1
F _(a)B,(B)a,zdet V2 (I+ SzA,
a,(a B) =~ Ml(a) ( )ap € ( B ) 7
E L Fs@)B(Blagde H(I+5A,)
0<t<T. (35)

The argument of the logarithm in (10) has the same form
as the denominator of ¢,(8) in (9) for any 0 <t <T. This
argument can therefore be calculated similarly to the de-
nominator of g,(B) in (35) with A, in (33), (34) replaced
by ¥,.

III. CONVERGENCE ANALYSIS

In this section we analyze the MDI algorithm for hidden
Markov modeling developed in Section II and prove its
local convergence. As we have seen, in each iteration of
this algorithm, the MDI PD with respect to a given model
is first estimated, and then a new model which reduces the
resulting MDI measure, or at least keeps its value con-
stant, is estimated. For sources characterized by a given set
of partial covariance matrices such that each of them has a
positive definite extension and zero mean Gaussian AR
HMM’s, we have shown that a unique MDI PD with
respect to a given model exists, and a new model which
reduces the MDI measure, or at least keeps its value
constant, can always be found. The new model is, however,
not unique since some of its parameters (those correspond-
ing to forbidden state transitions) can be arbitrarily chosen
from the feasible set of parameters (see, e.g., the discussion
following (27)).

Suppose that each given partial covariance matrix for
the source has a positive definite extension. Let P, be, as
above, the PD of a given model and Q, be the MDI PD
with respect to P,. Then, for any PD Q € Q(R) we have
the following inequality:

D(Q|IPy) =2 D(Q\lIPy) =#(R, P)) (36)
where, due to the uniqueness of Q,, equality holds if and
only if Q=0Q,. Now, given @,, the new model P, is
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chosen so that

D(Q,lIPy) = D(Q,lIPy)- (37)

Since
D(Q,IPy) = D(QlIPy) = [dyan(»)In( p()/Pa(»)),
(38)
equality in (37) holds if and only if P,=P, ae. Q,.

Combining (36) and (37), we obtain the following inequal-
ity:
»(R, P)) = D(Q,||Py) = D(Q,IPy)

> D(Q\IIPy) =»(R, Py). (39)
Thus the MDI measure associated with the new model P,
is lower than or equal to that associated with the initial
model P,. If »(R, Py) =v(R, P,/), then from (39) we have
that D(Q,||Py) = D(Q\|Px) = D(Qx||Py), which by (36)
and (37) implies that P,= P, ae. Q,. Based on this
discussion we have the following lemma.

Lemma 1: Assume that each given partial covariance
matrix for the source has a positive definite extension. Let
P, be a given HMM, Q, be the MDI PD with respect to
P,, and P, be an estimated new HMM. Then

»(R,P,)>»(R, P,)

and equality holds if and only if P, = P,. a.e. Q,.

Lemma 1 shows that the algorithm generates a sequence
of HMM’s, say P,, for which »(R, P, ) is a strictly
decreasing sequence, ‘unless (R, P, )= v(R P, ). In the
latter case P, =P,  ae. Q,, where Q,, is the MDI PD
with respect to Py, ‘and a fixed point of the algorithm is
reached. Since »(R, Py ) 20, the limit lim,_, »(R, P, )
exists. Unfortunately, however, this neither guarantees the
convergence of the model sequence Py to a fixed point
nor that a fixed point should ever be reached. Hence
convergence of the model sequence should be examined.
Note that since P, is a continuous function of A (see (1)),
and the corresponding MDI PD Q, is a continuous func-
tion of A and A (see (6)), convergence can be equivalently
considered in terms of either (P, , 0y,) or(A,, A,).

Let

(40)

§(Py,): Py~ (P, 0) (41)

be the “point-to-point” mapping from the model P, to
itself and its MDI PD Q, . This mapping is exactly deter-
mined by the procedure pr0v1ded by Corollary 1. Let

p(Pr,00): (P, 00) = AM}QA

be the “point-to-set” mapping from the pair of PD’s
(Py,Q»,) to the set of O, equivalence models P, . Each
of these models results from the maximization of the
auxiliary function,

g(Px,,’Qx,,; me) & Zf‘hn(xy z)In Pa
X

(42)

(x,z)dz, (43)

n+1

over all A, ,, as was shown in Section II-C. The algorithm
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is now defiend as the composition of these two mappings
as follows:

Ta(Py): P Te(Py,) =0($(Py))-

(44)

- { P)\n+l} O,

We have the following theorem.

Theorem 2: Assume that each given partial covariance
matrix has a positive definite extension. Let Py be an
initially given zero mean Gaussian AR HMM, and let
P\, E€Ti(P,), n20.Let T £ {P: P,=Ti(P,)ae. Q,}
be the set of fixed points of Ty, where Q, is the MDI PD
with respect to P,. If all parameters of AR models gener-
ated by Ty are in a compact subset of the Euclidean space,
then

1) each accumulation point P,. of [P, ]7_, is a fixed
point, i.e, P,. €T,

2) p(P,,T)—0, where p is the usual distance in the
Euclidean space;

3) »(R,P,)—»(R,P,.).

The theorem says that the limit of any convergent subse-
quence of [P, ], is a fixed point of the algorithm T.
Since this sequence lies in a compact space, the existence
of at least one convergence subsequence is guaranteed, and
hence the set I' is not empty. Furthermore, the theorem
states that the sequence of HMM’s generated by Ty ap-
proaches the set of fixed points of T; and that the MDI
sequence approaches the MDI which corresponds to some
fixed point. The theorem, however, does not guarantee the
convergence of the model sequence to any specific fixed
point of Tg.

The following Lemma establishes the relations between
a fixed point of the algorithm and a stationary point of the
MDI measure.

Lemma 2: Assume that each given partial covariance
matrix has a positive definite extension. Let T; be an
algorithm as in Theorem 2. Then any fixed point of Ty is a
stationary point of the MDI measure.

IV. ML anp MDI MODELING APPROACHES

In this section a relation between the MDI approach
and an ML approach for hidden Markov modeling is
established based upon the results obtained in [26] for
Gaussian models. Consider the MDI measure (7), which
can be written as

T
v(R,P\)=-InY, l_lax? wdet™2(I+ S A,)

x L7=0

-exp {1/2tr(R,A,)}| (45)

and assume that there exists a unique sequence of states,
say x*, which dominates the sum in (45). In this case, the
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MDI measure can be approximated by

v(R,P,) = —In max ]_[ a

r=0

det™/>(I+S,A,)

X7—1%r

-CXp{1/2tr(R,Af)}}

In Ayx xr

0

T
Z tr(R,A,)~Indet(I+5,.A,). (46)

It
|
I\)[—* HM‘!

Furthermore, from (20), we have for 0 <t < T that

q,<a,ﬁ>={1’ a=xinB=xt )

0, otherwise

and from (9) we have for all 0 <¢<T that ¢q,(B8) =1 if
B=x}* and ¢,(B) =0 otherwise. Hence, from (8) an ap-
proximate Lagrange multiplier matrix for each time ¢ is
obtained from the solution of the following set of equa-
tions.

Rr=(sz'+A)" (48)
Note that the approximate Lagrange multiplier matrix A,
depends on the state x*, not only on ¢ as is the case in (8).
If for each ¢ the given partial covariance matrix comprises
the J X J (J < N) principal leading block of the original
covariance matrix of the source, R}, then a closed-form
solution exists for the approximate Lagrange multiplier
matrix A, which upon substitution in (46) gives [26,
theorem 1];

T
»(R,P,)=— Y In Qs s
=0

Nl»—'

f [r(RJ.,SJ'_}“.)—lndet(R,’,S,‘_;;,)~.I] (49)

where R;, and §; . are the J X J principal leading
blocks of R and S, x> respectively. Hence, given the
dominant sequence of states x *, approximate MDI hidden
Markov modeling can be performed by minimizing (49)
over all feasible parameter sets A. This can be done in a
way similar to the maximization in (22) using ¢,(a, 8) and
q,(B) from (47). The value of J should be at least the
order of the AR models plus one for the normal equations
which result from (30) to have a unique solution.

Given a model P,, the dominant sequence of state x*
can be estimated by examining the value of

T

H a, .x det™

7=0

V2 (I+ S, A, )exp {1/2tr(R,A,)} (50)

or of its logarithm, for each possible sequence of states x.
Since each sequence is considered independently, (47) and
(48) apply to the examined sequence, say x, and the

1009

dominant sequence of states x* is obtained from

T
max{ Y lnaxﬂxv—%[tr(R,,,S,‘,}(f)
x =0

—1ndet(RJ’,S,‘,,lc1)—J]}. (51)

The maximization of (51) can be efficiently performed by
applying the Viterbi algorithm [39] using the path metric

Ina, .~ 3 [tr(R,.,51 ) ~Indet (R, ;1) J].

r=0,---,T. (52)

The above discussion suggests that approximate MDI
hidden Markov modeling of sources for which the given
partial covariance matrices comprise the J X J principal
leading blocks of the full covariance matrices can be
achieved by alternating minimization of

T
- Z In a, .«

=0

(53)

once over all sequences of states assuming that the model
is known, and then over all HMM’s assuming that the
minimizing sequence of states is available. Both minimiza-
tions can be efficiently performed, the first by the Viterbi
algorithm and the second by a variant of the Baum algo-
rithm. This results in a descent algorithm for the approxi-
mate MDI measure (49). This procedure is equivalent to
the so-called segmental k-means algorithm [40], [3] in the
speech recognition area, which aims at

1 tr{R, S/} )—Indet(R, .S 1 )-J]|,
2 » Alat 4 ? T

(54)

where p,(x, y) is given in (12). Note that (54) is an
approximation of the original ML approach developed by
Baum et al. [9], [10] which aims at

max In py(x, y)

max In ) py(x, y)- (55)
X
For sources that exhibit stationary properties, e.g.,
asymptotically weakly stationary (AWS) sources [26], we
can approximate the second term in (49) (and similarly in
(51)-(53)) by its asymptotic form [26, theorem 2] obtained
for J — oo and get for large J

T

»(R,P\)=— L Ina,, ..
=0
J L 1,(8) /(8) d6
5.,2;:0-/(; [gx;“(a) _ln gx,*(a) l:l 277’

T J
- 72210 [ln Ayx xx— Edls(ﬁ(a)r gx;(a))]
(56)

where f(8) and g..(8) are, respectively, the power spec-
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tral densities associated with the given covariance of the
source at time ¢ and the covariance of the output Gaussian
process from state x*, and d;5(f,(0), 8,+(0)) is the well-
known Itakura—Saito distortion measure between f,(6)
and g,.(8) [30].

V. COMMENTS

We have proposed a new information theoretic ap-
proach, which is optimal in the MDI sense, for Gaussian
AR hidden Markov modeling of sources characterized by a
given set of partial covariance matrices. The modeling is
performed by alternating minimization of the discrimina-
tion information measure over the set of all PD’s which
satisfy the given partial covariance matrices from the
source, and the set of all zero mean Gaussian AR HMM’s.
The algorithm aims at finding a pair of PD’s, one in each
set, that are closest to each other. We have shown that, for
a given model and given partial covariance matrices where
each one has a positive definite extension, the estimation
of the PD of the source can be done by any standard
constrianed minimization procedure in the Euclidean space.
Furthermore, for a given PD of the source, the estimation
of a new model can be efficiently done by a procedure
which generalizes the Baum algorithm. Local convergence
of the algorithm was proved under the mild assumption
that the estimated parameters of the AR models are all in
a compact (or bounded) subset of the Euclidean space.
Finally, it was shown that the MDI modeling approach
approximately becomes an ML modeling approach when
the MDI measure is assumed to be concentrated in a single
sequence of states of the model.

In principle, the MDI modeling approach can be ap-
plied, for any source, using any sequence of partial covari-
ance matrices from that source. In practice, however, each
partial covariance matrix R, has to be estimated from the
observation vector y,. Since y, is N-dimensional and the
number of given elements in R, is proportional to N(N +
1)/2, the class of sources which can be modeled is re-
stricted to those sources whose covariance characterization
is compact in the sense that it is specified by a relatively
small number of parameters: for example, vector station-
ary sources for which each R, is Toeplitz; wide-sense
asymptotically mean stationary (AMS) sources character-
ized by the averages of the elements along each diagonal of
the covariance matrix {41], {42]; and sources in which the
covariance matrices are circulant. In all of these examples,
the partial covariance R, is characterized by at most N
elements and ergodic theorems that guarantee the consis-
tency of the sample covariance estimator exist (see, e.g.,
[41], [43]). The case of sources with circulant covariance
matrices is particularly interesting since, as can be seen
from (8), if we also use Gaussian models with circulant
covariance matrices, then the resulting Lagrange multiplier
matrices must be circulant. This, of course, significantly
simplifies the implementation of the MDI algorithm as
each Lagrange multiplier matrix is characterized by at
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most N/2+1 elements, and all matrix operations can be
performed using the FFT algorithm [44]. The circulant
approximation of the covariance matrix of each AR output
process of the model is commonly done in practice.

The MDI hidden Markov modeling approach proposed
here can be extended without any principal difficulties to
HMM’s with output PD’s other than Gaussian and sources
characterized by any appropriate set of moments; for
example, HMM’s with mixtures of Gaussian AR output
PD’s [11], [8], or HMM’s that are supplemented by time
durational probabilistic models [13], [45]. The case of
Gaussian AR hidden Markov modeling, given second-order
statistics from the source, was chosen here to demonstrate
the procedure and also because of its particular impor-
tance in speech recognition and enhancement applications.
The extension of the MDI algorithm to sources which are
characterized by multiple sequences of partial covariance
matrices, as is the case in speech recognition when model-
ing is done from several utterances of the word being
modeled, and for HMM’s with mixtures of Gaussian AR
output PD’s can be found in [46].

The expected performance of the proposed MDI ap-
proach for hidden Markov modeling is as yet unknown
since it has not been fully implemented or studied. The
major difficulty in implementing the MDI approach is the
calculation of the Lagrange multipliers which requires
application of constrained minimization optimization
methods. A theoretical investigation of the performance of
the MDI approach may be possible only for sources that
are of the same class of the models, i.e., Markov sources.
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APPENDIX

Lemmas Al and A2 below are straightforward applications of
[25, lemmas 1 and 2] to HMM’s.

Lemma Al: Let ¥ £ (¥, t=0,---,T}, where ¥, is any real
symmetric matrix which vanishes outside the band B. Define

1 T
G)pé{‘ll: Ep{exp(—a Y y,*\I’,y,)} <oo} (A1)

=0

where E, is the expectation with respect to the PD P whose pdf
is given in (1). Then ¥ €O, if and only if S;' + ¥, is positive
definite for every t=0,1,---,T and B=1,---, M. Furthermore,
@, is open in R¥, where K = (T +1)|B| and |B| is the cardinality
of the band B.
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Proof:

1 T
EP{eXP(—E Y m)}
X

1
M5 (g )V det!? (Sx,)

~Y a

t=0

-fdy{lfloexp(—ly, (s, +\I/,)y,). (A2)

If S; ' + ¥, is positive definite, then

1
fd)’: CXP( - Eyr#(s,;l + \I,l))'r)

=@2m)"det™ (8,1 +¥,) <0

and hence
1 T
EP{CXP( 5 Z Yr#q’ryt)}
=0
T
=Y Tla,_, det 2( S, +¥,)det™ /2 (5, )
x t=0
<o00. (A3)
1f

T 1
fdyl_[ exp(——y, (Sx +‘I’) ) 00,
t=0 2 !
then from Fubini’s theorem [47, p. 150},

1
fdy,exp(—iy, (SX, +\I') )<oo

for every t. This, however, happens if and only if Sx_,l +V¥, is
positive definite as was shown by Gray et al. [25, lemma 1].
This discussion shows that 8, contains precisely all sequences
¥ for which S”1 + ¥, is positive definite for every . As such, 6,
is open in RK since the eigenvalues of a matrix are continuous
functions of its elements, and hence any small perturbation of
matrix elements results in a small perturbation of its eigenvalues.
Note also that ©, is not empty since, for example, ¥ =0 € 8,.

Lemma A2: Let R and £(R) be as in Theorem 1, and P be
as in Lemma Al. Define

»2 { R: for which there exists a PD Q € @(R)
with D(Q|IP) <c0}. (Ad)

Then Re®, if and only if each R, has a positive definite
extension. Furthermore, ®, is open in R¥, where K is as in
Lemma Al.

) Proof: Let V, EQ{ %57} be an extension of R, which
results from a PD Q. Since ¥, is symmetric, it can be written as
¥V, =U¥,U¥, where U, is a unitary matrix and ¥, is a diagonal
matrix which contains the eigenvalues of ¥,. If R, does not have
any positive definite extension, then each extension of R, has at
least one eigenvalue, say the ith, which equals zero. Define
2y U ¥, =0}, where U, is the ith row of U, corresponding
to the zero eigenvalue, and note that E{(U, y,)z} 0. This
means that Q(F) =1 while P(F) = 0. Hence Q is not absolutely
continuous with respect to P and from (4a) we have that
D(Q||P) = oo for any Q, which implies that »(R, P) =oco.
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Suppose now that each R, has a positive definite extension,
say R*, and consider the PD Q. whose pdf is given by

T exp(—3yFR*7Yy,)

qr+ = . AS
w () 7I=]0 (27) "> det'/2 (R¥) (A3)
For this PD, and the prior (1) which is written as
T
P =L I a . ps(x) (A6)
where
T exp(—ly st )
A 2775x, Vr
x,y) & ——
ps(x.7) -rl;lo (2m)"? det2 (S, )

we have that

D(Qx:IIP) =fdqu(y)1nqk-(y)-fdqu(y)lnp(y)
< [ dyae(») 10 gre()

— [ dygr(»)In ps(x', y) - Z Ina, .
r=0

T
= D(Qp:lIPs) - Z lnax;_lx;

=0

T
¥ [t(Rrs;?)
=0

flndet( R;“S;;l) —N-2In ax;,lx;]
(A7)

I

N =

<00

where P is the PD corresponding to pg, (xg, X{," - -, X7) is any
Markov chain with strictly positive probability (there always
exists at least one such chain), and the last equation in (A7)
results from [21, p. 189]. Thus we have proved that @, contains
precisely all sequences R of partial covariance matrices for which
each R, has any positive definite extension. @, can be shown to
be open in RX by arguments similar to these used in the proof of
Lemma Al.

Proof of Theorem 1: a) Results from Lemma A2. b) In
Csiszar [35, theorem 3.3] the existence is ensured of a PD Q with
pdf

q(y) = Cp(y)wp(—l Y A )

=0

where C < oo is a normalization factor which makes fq(y)dy =1
and A is defined in a way similar to ¥ in Lemma Al, which
minimizes D(Q||P) over all Q € Q(R), provided that 8, is open
and R is an inner point of ®,. Lemmas Al and A2 prove the
validity of these hypotheses for P as in (1) and any sequence R
for which each R, has a positive definite extension. The minimiz-
ing PD Q is unique by Lemma A2, the convexity of D(Q||Py) in
Q, and the convexity of Q(R) [35, sec. 1]. Since

17 »
[avp(y)exp =3 Ly =C <o,
r=0

A €0, and hence S_'+ A, is positive definite for every ¢=
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0,1, - -,T. The MDI measure (7) is finite and is obtained by
substituting (1) and (6) into (4b).

Proof of Corollary 1: The first equality in (11) follows by
definition. Define F. 271+ S, ¥,, and use det F, =exp(trln F,)
and dInF, /3f, = F~ '9F, /afu, where f,; are the elements of
F,, to get the gradient of d(R;¥,X), ¥ €3, with respect to
each element of ¥. This shows that the equation set
Vo d(R; ¥, \)|q -, =0 coincides with (8), and hence, from the
discussion which follows Theorem 1, it has a unique solution
A €8, Furthermore, d(R; ¥,X) € Cl the set of functions with
continuous first-order derivatives. Since 8p, is an open subset of
the Euclidean space (see Lemma Al), we have from the corollary
in [31, p. 169] that, if d(R;¥,A) has a minimum point within
8p,, this point must be at ¥ = A. Now since d(R; A, A) <oo and
d(R ¥,\) >0 as ¥ approaches the boundaries of &p,
d(R;¥,\) must have a minimum in 8, , and by the precedmg
argument the minimization point is obtained at ¥ =A. The
unimodality of d(R;¥,\) within 8, follows from the unique-
ness of the solution of the gradient equations and the existence of
a minimum point within 8, .

Proof of Theorem 2: The proof follows from the global
convergence thoerem developed by Sabin and Gray [32], pro-
vided that 1) there exists a continuous function, called a descent
function, which strictly decreases outside the solution set I' and
does not increase inside T'; and 2) the algorithm T} is closed. By
Lemma 1 and the continuity of »(R, Py) that follows from (10)
and the representation (11), »(R, P,) is a descent function. The
closedness of Ty results from Luenberger [31, corollary 2, p. 187]
if ¢(-) is continuous and p(-) is closed. The mapping {(-) is
continuous if A, is a continuous function of A,. This is, how-
ever, implied by the continuity of »(R, P,) within 8, or more
directly, by using the implicit function theorem (see the proof of
Lemma 2). To show that p(-) is closed, let (P, ,0y )~
(Pr, Q)), Py, — Py, where Py € p(Py , 0 )- By definition,

p(P,0n) = (P g( P00 P) 2g(P 005 P ) (AD)
Due to the continuity of g(Py ,Q, ;) for A, €86, , which can
be seen from (22), (9), (20), and (21) the set in (A8) "becomes

{P: g(P\,0\; P) > g( Py, Ox; PA) ) =u(Py,0)) (A9)
when n — co. Hence

P, = lim PA;EFL(szQx)
n— o0

and p(-) is closed. This completes the proof.

(A10)

Proof of Lemma 2: By definition, if P, is a fixed point of
Ty, then Q, is optimal for Py ((Py,Q))={(P))) and P, is
optimal for Q, (P, € p(Py,0,) ae. Q,). The significance of Qy
being optimal for P, is that D(Qy||Py), Qi € Q(R) with pdf
gv(y) as in (6), attains its minimum at A’=A. Hence, if
D(Q,||Py) is differentiable with respect to A" at A’=A, then

Va D(QyIIPy) v ox=0. (All)

To prove that D(Q,||P,) is differential with respect to A’ we first
expand the integrand of the discrimination information meausre
into a Taylor series [21, p. 15],

f [n(y)-
AN )

/qx(y)]n qx(y)
£ [1.(N) aP(»)

where r,.(y) £ g\ (y)/pA(y) and h,.(y) lies between r,.(y) and

dPA(}’)

(A12)
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1. Since 0 < r,.( ) < oo a.e., we have that 0 < &,.(y) <o a.e. and
hence f.(A\)>0 ae. For a given P, and {R,} which have
positive definite extensions, Theorem 1 and the discussion which
follows it guarantee the existence and uniqueness of A(A') € 8p,,
which satisfies (8). Using the implicit function theorem [31, p.
462] it can be shown that A(X') € C!. Hence f,(\) is differen-
tiable with respect to A’. The Gateaux differential [48, p. 171] of
this integrand with respect to A’ is given by

8f,.(>\; u) = ilir(‘) [fv()\’Jr au) Afv()\')]/a.

The existence of the Gateaux differential of D(Q,||Py) with
respect to A’ is now shown using (A13) and Lebesgue’s monotone
convergence theorem [47, p. 22].

SD(N':u) £ Em[D(Qy .aullPr) ~ D(QMIP)] /2

= ii%f[)g_(x+ au) = £,(N)] JadPy(y)

(A13)

=fliir(1)[f‘,()\’+ au) —fy()\')]/adP,\(y)

= [8£,(N; u) aP(). (A14)
The significance of P, being optimal for Q, is that
Vg( Py, Oxs PA)a=a=0 (Al5)

where g( Py, Q,; P,) is given in (43). This condition, however, is
equivalent to
=0,

VaD(QAIPY) Ix=a (A16)

since
VaD(OMIPY) v o = = Va8( Py, Oxi Pa) Ix-a

as is easy to verify. This, in fact, is a property of the EM
algorithm [9, proposition 2.1] whose single iteration is being
applied here in calcualting P, for a given Q,, as we saw in
Section II. Combining (A11l) and (A16), we have that

Va A D(QVIPyv) v ca a2 =0,

which implies that the directional derivative of the MDI measure
v(R; P,) = D(Q,||P\) with repect to A is zero.

(A17)
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