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ABSTRACT

We examine the relations between maximum likelihood
(ML), maximum mutual information (MMI), and minimum
discrimination information (MDI) modeling approaches,
which have been applied to estimating acoustic word models
in speech recognition systems. We show that all three
approaches can be uniformly formulated as MDI modeling
approaches for estimating the acoustic models for all words
simultaneously. The three approaches differ in either the pro-
bability distribution (PD) attributed to the source being
modeled or in the model effectively being used. None of the
approaches, however, assumes model correctness, i.e., that
the source has the PD of the model. A new modeling
approach is proposed, which, in contrast with the other
approaches considered here, directly aims at the minimization
of the probability of error.

1. Introduction

Speech recognition could be optimally performed if the
probability of any word! in the recognizer’s vocabulary and
the probability distribution (PD) of the corresponding acous-
tic signal were known. In this case the recognizer which is
optimal in the sense of minimizing the probability of error is
a maximum a-posteriori (MAP) estimator which chooses
from all possible words in the vocabulary, the word which
together with the acoustic input signal yields the highest joint
probability. In practice, the word probability and the PD of
the acoustic signal are not known and hence only suboptimal
recognizers can be implemented.

The commonly used recognition approach is first to
choose probabilistic models for the words and for the
corresponding acoustic signals, and then to estimate the
parameters of the models from appropriate word and acoustic
training sequences. Once the parameters of the models have
been estimated, the optimal MAP decision rule is applied to
the estimated PD’s, as if they were the true ones. The acous-
tic model is usually chosen to be a Markov source, or a hid-
den Markov model (HMM), and its parameters are estimated
by the Maximum Likelihood (ML) estimation approach [1].
The word model, or the language model, is also often chosen
to be Markovian.

Since no fundamental achievable recognition bounds
(similar to Shannon bounds in coding theory) are known, and
since the optimal recognizer cannot be implemented, it is not
clear how good (or bad) the performance of current state of
the art recognizers is as compared to the ultimate achievable
performance. Hence, the assumptions upon which the subop-
timal recognizer are based have been repeatedly challenged in
an attempt to improve recognition accuracy. While there is
common agreement among researchers on the validity of

1. The term “‘word"” is referred here to any language unit being modeled acoustically,
i.e., subword units, physical words, phrases, eic.
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using Markovian models for words and acoustic signals, the
best way to estimate the parameters of these models is still
an open question. For example, it is not clear in what sense
an HMM, which has been estimated by the so-called ML
estimation approach, is optimal, since, in general, the acous-
tic signal is not a Markov source. Hence, the nice properties
of the ML estimator, which are valid if the source and the
model are the same, do not necessarily hold here. Another
relevant question concerns the decision rule for recognition.
The MAP decision rule is optimal if the probabilities of the
words and the PD’s of the acoustic signals are correct.

Recently, two new approaches for estimating the param-
eters of the acoustic HMM model were proposed [2], [3].
The first is optimal in the maximum mutual information
(MMI) sense. This approach assumes that a language model
is given and attempts to find the set of acoustic models
which, together with the given language model, has the max-
imum possible mutual information with respect to the given
training sequence. The second approach only considers the
acoustic model and is optimal in the minimum discrimination
information (MDI) sense. The objective here is to find the
model which has the minimum discrimination information (or
cross entropy) with respect to all sources which could have
generated the measurements given in the training sequence
from the actual source. The measurements are usually given
in terms of moments of the acoustic signal, e.g., correlation
vectors from the source.

The MMI and MDI approaches aim indirectly at reduc-
ing the error rate of the recognizer, since the objective of the
two approaches is to improve the estimation of the PD of the
acoustic signal. It is nontrivial, however, to show theoreti-
cally that either approach actually reduces the probability of
error. Hence, the extent to which each approach really
improves recognition accuracy, as opposed to modeling accu-
racy, is experimentally demonstrated and therefore is highly
task dependent.

The purpose of this note is first to show some relations
between the ML, MMI, and MDI modeling approaches. In
fact we will show that the three approaches can be uniformly
formulated as being MDI modeling approaches which differ
in the PD’s used for the source to be modeled and the model
itself. This formulation is important since it provides a
unique common basis for comparing the three modeling
approaches. Second, it clearly shows the difference between
the approaches in terms of the assumptions being made about
the true PD of the source to be modeled and about the model
itself.

After establishing the above relations, we shall present a
new approach for doing the modeling which is more directly
related to our main objective, i.e., minimization of the recog-
nition error rate. The note does not aim at providing any
specific algorithm for implementing the newly proposed
approach but rather serves to enlighten the subject.



2. ML, MMI, and MDI Modeling Approaches

Let Py be the PD of the acoustic model for the m—th
word in the vocabulary, where A,, is the parameter set of the
model. Let P, be the PD of the word model, where p is the

- parameter set of the model. We assume that there are L
words in the vocabulary, and hence, L acoustic models and a
single word mode] have to be designed. Let Qy| s and Qu,
respectively, be the PD’s attributed to the acoustic signal
from a specific word and to the word itself, where Y is a ran-
dom variable representing the acoustic signal and M is a ran-

- dom variable representing the word. These two PD’s are
estimated from appropriate acoustic and word training

sequences. Let yr(m)={y;(m), t=0,, T} be the given acous-
tic training sequence for the m—th word, where y,(m)eRK,
the ~ K - dimensional Euclidean space. Finally, let

{wjs J =0,+, J} be the given word training sequence.

To simplify the discussion, we will consider in all sub-
sections, but subsection. 2.3, the case where the space Y on
~-which P and Qy| u are defined is finite. From the practical

point of view, this assumption is always met as our models

“and training sequences are stored in a digital computer. From
the theoretical point of view, this assumption will allow us to
present the main ideas in this section in a simple way
without using measure theoretic arguments. The extension to

- the case where Y is infinite can be found in Csiszar and

~Tusnady [4]. For a finite space Y, the conditional PD’s Py

‘and” Qy|p, Tespectively, have probability mass functions
(pmf’s) p(y | m)=py,(¥) and g(y|m), and they are abso-
lutely continuous with respect to each other. Similarly, the
PD’s P, and Qy are absolutely continuous with respect to

each otﬁcr and have pmf’s p (m)=p,(m) and q(m), respec-
tively. :

Let-Qy u be the joint PD of the acoustic signal and the
word. Similarly, let Py y be the joint PD of the acoustic and
word ‘models. Let g (y,m) and p (y,m), respectively, be the
pmf’s corresponding to Qyy and Pyy. We have that
g (m)=q(y | m)g(m) and p 3,m)=p3y_O)pum).

-The discrimination information between Qy  and Py y
will play a central role in this section. It is given by
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is the discrimination information between the PD attributed
to the word and the parametric word model, and
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is the discrimination information between the PD attributed
to the acoustic signal from the m—th word and the acoustic
parametri¢ model for that word. The second expression in (1)
suggests that

min D (Qyu |1 Pyu) =
H-{’m}'»'-:l
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"This means. that if P)_does not depend on W, the word
model parameter set, then jointly optimal word and acoustic

25

modeling, in the sense of minimizing the discrimination
information D (Qy,u Il Py,y), can be independently performed
by minimizing D'(Qy IP,) and D (Qy|s-m P2, ), Tespec-
tively. As we shall see, this will be the case for the acoustic
models used in the ML and MDI approach of [3], but not for
the model used by the MMI approach.

In this correspondence we are only concerned with the
estimation of the acoustic model.. Hence, whenever necessary,
we will assume knowledge of the word model. We now
examine the three approaches for. acoustic modeling men-
tioned in Section 1, namely, the-ML, MMI, and MDI, and
show that each approach effectively minimizes the discrimi-
nation information D (Qy Py ) for a particular pair of
q(y | m) and py,_. :

2.1 ML Estimation

In the ML estimation approach we estimate the parame-
ter set A,,, given the training sequence yr(m), by

max In 3, (v m ). ®)
Let Qy| M be the empirical distribution' of the m—th training
sequence, i.e., the pmf g(y | m)is.given by

1 y=yr(m)

q@ | m) = xo-yr(m) £ ©)

10, otherwise
where () is a probability measure which is concentrated on
yr(m). On substituting (6) into (1) we have that

L
D (Qyu \Py,y) = D@y IPy) = % q(m)lnpy, Or(m)), (7)
m=1

where we have used

T q@ | m)ing@y | my=lng@r(m) | m)=In1=0. (8
yeY

Since the first term in (7) is,indeﬁendent of A,,, we have
ar%I:ﬁn DQymu\Pyy) = ar%:lax Inpy Or@m)

which means that the standard ML estimation approach is an
MDI modeling approach, for estimating all acoustic models
simultaneously, when ‘the PD attributed to the source is the
probability measure which is concentrated in the acoustic
training sequences for the different words in the vocabulary.
Note that here we have attributed to the source a PD which
is concentrated in the entire training sequence from each
word, rather than in the individual vectors of that training
sequence. The latter PD has been used in [4] when treating
independent identically distributed (ii.d) vector sources. The
reason is that in our case the speech is not an iid vector
source nor is the commonly used hidden Markov acoustic
model.

Note also that in the MDI derivation of the ML
approach, the pmf g(y |'m) attributed to the source and the
pmf pj  of the model, are independently chosen. Hence, the
ML estimation approach’does not require any model correct-
ness assumption, in which:the PD attributed to the source is
that of the model, as was suggested, for example, in [2], [5].
2.2 MMI Estimation

We now apply the same techniques to show that the
MMI estimation approach is, in fact, an MDI modeling
approach for estimating all acoustic models simultaneously
using the empirical “distribution of the acoustic signal from
all words. The MMI -modeling approach was first proposed in
[6, p. 262], and was first applied to modeling speech signals
in [2]. Let (Y I M) be the mutual information between the
two random variables Y and M. The random variable ¥



obtains values in the finite space Y, and the random variable
M can only have L values, the number of words in the voca-
bulary. The mutual information between Y and M is given by

Lo * PACIED)
IYIM=F T q (yIm) (m)In I , (10)
m=lyeY Y q'oimg m)
m'=1

where ¢*(y | m) and ¢"(m) are the true pmf’s of Y given M
and of M, respectively. Since those pmf’s are not known, the
modeling approach proposed in [2], is to replace the pmf’s in
the argument of the information measure (i.e., the argument
of the In function) by the pmf’s of the parametric models,
and to calculate the expected value involved in*(IO) with
respect to an estimate g (y | m) of the true pmf ¢ (y | m) of
the source. This results in

L pl,,,(y)
1Yy =3y 3 q0 | mgmn—F—"—— (11
m=1 yeY

X P, Opu(m’)
m’=1

The estimate of g (y | m) suggested in [2] is the empirical
distribution (6). Substituting (6) into (11) gives
pa, Or(m)
3 )
Y P, Orm)puim”)
m'=1

L
IYIM)= 3 g(m)In

m=1

12)

which should be maximized over all {A,,, m=1, -, L}.

To formulate the MMI approach as an MDI approach,
let g(y | m) be as in (6), and consider the following acoustic
model for the m—th word in the vocabulary

P, )
pyImy=— (13)
Y Pa, Opum”)
m'=1
On substituting (6) and (13) into (1) we obtain
D (Qym 1 Pyu) =D(Q,,,I|Pu) -I(YIM), 14)

which is minimized by the acoustic models that maximize
I(Y IIM). This demonstrates that MMI is an MDI modeling
approach for the source (6) and the model (13). Note that in
contrast with the ML case, where the minimization of
D (Qy,um | Py pr) over all A, could be done term by term, here
the maximization of /(Y I|M) over all models must be done
simultaneously. This is, of course, due to the specific form of
the model (13) which ties together all individual acoustic
models.

2.3 MDI Estimation

We now review the principles of the MDI modeling
approach proposed in [3], for estimating an individual acous-
tic model from a given training sequence from the source.
We shall then generalize this approach for multiple model
estimation. The major difference between this approach and
the previous approaches considered here, is in the way the
PD attributed to the source is estimated from the given train-
ing data. Rather than assuming that the PD of the source is
concentrated in the training sequence, we consider the set of
all PD’s which could have resulted in the set of measure-
ments taken from the source being modeled. From this set of
PD’s, we choose the PD which yields minimum
discrimination information with respect to the parametric
acoustic model. The resulting PD is called the MDI PD. The
modeling is done by minimizing the discrimination informa-
tion between the MDI PD, and the PD of the model, over all
parameters of the model.

In [3] we considered the special case of Gaussian
autoregressive (AR) hidden Markov modeling where the
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measurements from the source, at each time f, were the
values of the elements of the covariance matrix of y,(m)
within a given symmetric band of this matrix. If
Ryp(m) A {R,(m), t=0, -, T} denotes the set of given partial
covariance matrices for the m—th word, and Q(Ry(m)) is the
set of all PD’s which satisfy these measurements, then the
MDI modeling approach chooses the parameter set A, as

D(QIIPy).

min  min

A QeQ(Rr(m))
The minimization in (15) can be efficiently implemented, as
we have shown in [3], through alternating minimization of
D (QliPy) once over all QeQ(Rr(m)) assuming P A, 1S
known, and then over all HMM’s of the given order assum-
ing the MDI PD is known. For a given HMM P, _, and par-
tial covariance matrices {R,(m)} such that each R,(m) has a
positive definite extension, there exists a unique PD which
minimizes D (QIIPy ) over all Qe Q(Rr(m)). The probability
density function (pdf) of this PD is given by

T
q | m)=Cpy,®) eXP{—% SyiAmyY, (16
=0

here, C is a normalization constant which makes

dyq(y | m) = 1; # denotes vector transpose; and {A,(m)} is
a set of symmetric matrices of Lagrange multipliers which
are chosen so that

Jdyeq(ye | my,y# =R,(m) within the given band. (17)

The discrimination information between the MDI PD and the
given model is given by

. 1 I
min  D(QIP; ) =-InC-=uY R, (m)A,(m). (18
oellm S (QIIPy,) 3 Eo ((m)A(m).  (18)
The Lagrange multipliers can be found by a maximization of
the right hand side of (18) over all {A;(m)} for which
g(y|m) is a pdf [3]. Due to the uniqueness of the solution
of (17), the function in (18) has only one maximum point
and hence the maximization can be carried over by any stan-
dard optimization procedure. Given the MDI PD, a new
HMM can be found by a procedure similar to the Baum
algorithm using the ‘‘Forward-Backward’’ formulas [3]. The
algorithm is iterated in the above manner until some conver-
gence criterion is satisfied.

The extension of the above MDI approach to multiple
model design can be done in two different ways. First, note
from (1) that D (Qy um I Py »r) can be minimized term by term
over Qe Q(Rr(m)) and X,,. Hence, the approach of [3] can
simply be viewed as an MDI approach for multiple acoustic
model design. The second extension is done as follows. Let
R A{Ry(m), m=1, -, L} be the given sequence of measure-
ments corresponding to the L words in the vocabulary. Let
AL {Aq, =, AL} be the parameter sets of all L models. Let
z 2{zr(m), m=1, -, L}, where, zr(m) £ {z,(m), 1=0, -, T}
and z,(m)e RX. Finally, let

L
pa(@) = [ Py, (zr(m))

m=1
be the acoustic model for the L words. If the PD which
minimizes D (Q!IPy) over all Qe Q(R) exists, then it has the
following well known form.

1L T 4
q(z) = Cpx(Z)CXP{—gz X z; (m)A,(m)z,(m)},
m=1 t=0

15)

19)

20

L T
= [1Cnpr, Grom) exp{-3 S mAmzm)},
m=1 1=0
L
A TTqGrm) im).
m=1



1In this case we have that
L
min  D(QIIP; ), (21
Z, oclitiony o

and hence, the minimization of (21) over A can be done term
by term. This results in the MDI modeling approach of [3].
. 2.4.Discussion

The analysis presented in this section shows that the

- threé ‘modeling approaches considered here, ML, MMI, and

MDJ; are all optimal modeling approaches, in the MDI sense,
"~ for' simultaneous estimation of the acoustic models for all
" “words in the vocabulary. The approaches differ in the PD’s
attributed to the source and the model effectively being used.
The. ML and MMI approaches make precisely the same
assumptions about the source being modeled. They both attri-
bute to the source a PD which is concentrated in the indivi-
dual -acoustic training sequences corresponding to the dif-
ferent words in the vocabulary. The MDI approach attributes
to the source a more robust PD estimate by considering all
PD’s which could have resulted in the given measurements
. from the source. Since in MDI modeling the PD attributed to
the ‘source and the model being used are independently
“chosen, none of the three approaches assumes model correct-
ness.

" 'The acoustic models used by the ML and the MDI
approaches allow independent estimation of each individual
model using the acoustic training sequence corresponding to
the word being modeled. The acoustic models used by the
MMI - approach, however, are all tied together and hence all
acoustic models must be simultaneously estimated.
Furthermiore, optimal joint estimation, in the MDI sense, of
the acoustic and word models can be independently done for
the acoustic models used in the ML and MDI approaches,
since for those models the first term in (4) does not depend
on the word model. This is not the case for the acoustic
model used in the MMI approach. Hence, for the MMI
* acoustic model and a given word model to be jointly optimal
in' the: MDI sense, both models should be simultaneously
designed.

It is worthwhile mentioning that for the most popular
acoustic - models, namely HMM’s, the ML and MDI
approaches can be efficiently implemented by the well known
Baum algorithm [1], and its generalization [3], respectively,
while no efficient implementation is known for the MMI
approach. This approach is usually jmplemented using gen-
eral optimization procedures (e.g., descent methods).

‘Table 1 summarizes the three modeling approaches in
terms of the PD attributed to the source and the model being
used.

min D (QIIPy) =
o Q1P

ML MM MDI
; - (7% —
Cmodel | pa0) | Pr0)
sz,.'(y)p(rn’)
m'=]
source | yo-yrm) | X0yl | ConOlexpi-5 T Am}
=0

3. Model design for minimum probability of error

In this section we propose a new approach for designing
all L, acoustic models simultaneously. This approach assumes
that the decision rule is given in terms of the acoustic models
{p»,} and the word model p,,, and aims at estimating the
parameters of those models so as to maximize the probability
of correct recognition.

The ‘probability of correct decision is given by

L * *
Pc= Y | 4'0|mq mdy
m=1 @A)

(22)
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where, ¢*(y | m) ig the true pdf of the acoustic signal from
the m—th word, ¢ (m) is the true probability of occurrence
of the m—th word, and ®,,(A,1) is the set of all y’s for which
the m—th word will be chosen. The decision rule assumed
known here is the likelihood ratio for the estimated models
and it is given by

O = {y: 1 m"’(y’)p“‘('h) >0, I#m}. (23)
m(A, 1) = {y: nh————"r s .
SO TS ) "
Define T
nm,,(v)pu(m) S e
Sl Sl Al  l#m
N SH02) O]
gaulm) 2 ‘ , (28

0 otherwise

and replace q*‘(y | m) and q*(m) in (22) by the empirical dis-
tributions obtained from the given acoustic and word training
sequences, i.e., ’

a" @ [m) = xGyr(m) 25)
* 1
q (m) - JTE,OX(M -w;).
This results in L
1 J
Pc = ﬁ,é) g‘k‘u’@T(Wj)’wj)- (26)

In principle, the problem is.solved since the task now is to
maximize a well defined function over some given domain of
{A,n}, and by the physical nature of the problem, a max-
imum point must exist. Usually, however, the maximization
procedure requires knowledge of at least the first order
derivative of P¢ with respect to {A, f).}. In our case ga,u(0nm)
is not differentiable but can be well approximated by a dif-
ferentiable function, e.g., the sigmoid function.

The major difference between the newly

. 1 ! groposed
approach ‘and the approaches discussed in Section

is that

here the models are optimized for the given decision rule .

while in the other apgroaches the design of the models is:
independently -done ‘of ‘the decision rule. Furthermore, the

optimization ' here - aims . directly at the ultimate goal of
minimizing the probability of error. The main disadvantage
of this aﬁproach is that it lacks an efficient implementation. -
This is, however, also the case for other approaches which.
have been applied to speech recognition, e.g., the MMI, but
which do not guarantee the minimization of the probability of

€ITOT. :
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