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On the Relations Between Modeling
Approaches for Speech Recognition

YARIV EPHRAIM, MEMBER, 1EEE, AND LAWRENCE R. RABINER, FELLOW, IEEE

Abstract —Some relations among approaches that have been applied
to estimating models for acoustic signals in speech recognition systems
are examined. In particular, the maximum likelihood (ML), maximum
mutual information (MMI), and minimum discrimination information
(MDI) modeling approaches are studied. It is shown that all three
approaches can be formulated uniformly as MDI modeling approaches
for simultaneous estimation of the acoustic models for all words in the
vocabulary and that none of the approaches requires any model correct-
ness assumption. The three approaches differ in the effective source
being modeled and in the probability distribution attributed to this
source.

1. INTRODUCTION

PEECH RECOGNITION could be performed opti-

mally if the probability of any word' in the recognizer’s
vocabulary and the probability distribution (PD) of the
acoustic signal corresponding to that word were known.
In this case the recognizer that is optimal in the sense
of minimizing the probability of error is a maximum
a posteriori (MAP) decoder that chooses from all possible
words in the vocabulary that word that yields the highest
conditional probability given the acoustic input signal. In
practice, the word probability and the PD’s of the acous-
tic signals are not known, so only suboptimal recognizers
can be implemented.

The most commonly used speech recognition approach
is first to estimate the unknown word probability and the
unknown PD’s of the acoustic signals from long training
sequences of words and acoustic signals, respectively.
Then, the optimal MAP decision rule is applied to the
estimated word probability and PD’s as if they were the
true probability measures. Such an approach is referred
to as the “plug-in” method in the statistical literature. In
estimating both the word probability and the PD’s of the
acoustic signals, parametric models are first assumed for
these probability measures, and then the parameter sets
of the models are estimated from the given training
sequences. The model assumed for the acoustic signal is
referred to as the acoustic model. The model assumed for
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the probability of word occurrence is referred to as the
word model. Thus the estimation of the unknown statis-
tics of the speech signal becomes a parameter estimation
problem. However, it is not a standard parameter estima-
tion problem, since the statistics of the sources (here the
acoustic signal and the word) generating the training
sequences are not necessarily those of the models. This
estimation problem is therefore better described in terms
of source modeling by parametric models.

The acoustic model for a given word is usually chosen
to be a Markov source, or a hidden Markov model (HMM)
[1]-[3]. Similarly, the word model is also chosen to be
Markovian [4]. The estimation of the parameter sets of
the HMM’s for the acoustic signal is usually performed by
the maximum likelihood (ML) estimation approach [5]-[7].
An ML estimate results from local maximization of the
likelihood function of the HMM for a given training
sequence of speech signal. This statistical inference ap-
proach is chosen for two major reasons. First, there exists
an efficient algorithm, the Baum algorithm [5]-[7], for
performing the modeling. Second, under a model correct-
ness assumption which implies that the acoustic signal is a
Markov source, the ML estimator of the parameter set of
a finite alphabet HMM is consistent [8, Theorem 3.4],
provided that the ML estimate globally maximizes the
likelihood function, and the initial state probabilities, the
state transition probabilities, and the alphabet letter
probabilities conditioned on the state are all strictly posi-
tive and time invariant. Hence one can argue intuitively
that using the ML estimates of the acoustic models and
the MAP decision rule can lead to a speech recognition
system that is asymptotically optimal [9].

Since no fundamental achievable recognition bounds
(similar to Shannon bounds in coding theory) are known,
and since the optimal recognizer cannot be implemented,
it is not clear how good (or bad) the performance of
current state of the art recognizers is as compared to the
ultimate achievable performance. Hence the assumptions
upon which the suboptimal recognizer is based have been
repeatedly challenged in an attempt to improve recogni-
tion accuracy. In particular, the optimality of the ML
procedure for estimating the parameter sets of the HMM'’s
for the acoustic signals has been questioned for two
reasons. First, acoustic signals are not necessarily Markov
sources. Second, the amount of training data available for
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modeling is usually limited. Hence consistency of the ML
estimator is not well-defined, and the argument given
earlier for the asymptotic optimality of the recognizer
whose acoustic models are estimated by the ML estima-
tion approach may no longer be valid.

Recently, two new approaches for estimating the pa-
rameter sets of HMM’s for given acoustic signals were
proposed. The first is the maximum mutual information
(MMI) approach [9], [10]. This approach assumes that a
word model is given and attempts to find the set of
HMM’s for the acoustic signals for which the sample
average of the mutual information with respect to the
given word model is maximum. The second approach is
the minimum discrimination information (MDI) estima-
tion approach [11]. The discrimination information, also
known as the cross entropy, relative entropy, directed
divergence, I-divergence, and Kullback-Leibler number,
is a measure between two PD’s, one is related to the
source being modeled and the other to the model being
used. The modeling is performed by joint minimization of
the discrimination information measure over all PD’s of
the source that satisfy a given set of moment constraints
and all PD’s of the model from the given parametric
family. The consistency of the MDI estimation approach
was discussed by Shore and Johnson [19]. They showed
that, if the source is characterized by moment constraints,
then the MDI modeling approach is the only correct
inference approach, in the sense of satisfying a set of
consistency axioms. Any other inference approach will
either provide the same estimate as the MDI approach or
will lead to inconsistency. The important case of MDI
hidden Markov modeling of acoustic signals for which
covariance constraints are available was considered in
[11).

Both MMI and MDI modeling approaches aim indi-
rectly at reducing the error rate of the recognizer. The
MMI approach was motivated by the idea of estimating
the set of acoustic models that minimizes the average
code length needed for correct decoding of each spoken
word from its acoustic signal. The MDI approach capital-
izes on modeling using reliable aspects of the training
data. This results from estimating the model for each
word that yields MDI with respect to all acoustic utter-
ances of the word satisfying the given set of moment
constraints. In either case, however, it is difficult to show
theoretically that the modeling approach results in a
recognition scheme that minimizes the probability of er-
ror. Hence the extent to which recognition accuracy is
improved, as opposed to coding efficiency or modeling
accuracy, is experimentally demonstrated and therefore is
highly task dependent.

The primary purpose of this paper is to establish some
relations among the ML, MMI, and MDI modeling ap-
proaches. We demonstrate that all three approaches can
be formulated uniformly as being MDI modeling ap-
proaches that differ in the effective source being modeled
and in the PD attributed to that source. This formulation
is important since it provides a common basis for compar-

ing the three modeling approaches. Furthermore, it clearly
shows the difference among the approaches in terms of
the assumptions being made about the true PD of the
source to be modeled and the model itself. Although the
relations developed here among the three modeling ap-
proaches are given in the context of speech recognition,
they are generally correct for other pattern classification
problems, since we do not use any particular property of
either the speech signal or the Markovian models.

We conclude the paper by proposing a new approach
for estimating the acoustic and word models which is
more directly related to our main objective than the other
approaches discussed here, i.e., the minimization of the
recognition error rate. In this approach a set of acoustic
and word models is designed by minimizing the empirical
classification error rate for the MAP decision rule. The
purpose here is to show that such modeling is possible
with complexity not greater than that of the MMI or the
MDI approaches. It should be mentioned that classifica-
tion approaches, other than the two-step modeling-recog-
nition approaches discussed here, were developed re-

cently for sources whose statistics are not explicitly known
[12], [22], [23].

iI. ML, MMI, aND MDI MODELING APPROACHES

Let Y be a random variable defined on the sample
space, say Y, of all acoustic signals corresponding to the
words in the vocabulary. Let y 2{y,, t=0,---,T—1}be a
realization of Y, where y, € RX, the K-dimensional Eu-
clidean space. Let M {1, --,L} be a discrete random
variable representing the words in a vocabulary of size L.
Let Qy ) and Q,, be, respectively, the PD’s attributed to
the acoustic signal from a given word and to the word
itself. Let Py, and P, be, respectively, the PD’s of
parametric models for the acoustic signal from a given
word and for the word. The parameter set of Py s _,,»
here the HMM for the mth word, will be denoted by A,,,.
The parameter set of the word model P,, will be denoted
by u. Let Qy ,, be the joint PD attributed to the acoustic
signal and the word. Similarly, let Py ,, be the joint PD of
the model for the acoustic signal and the word. Since the
vocabulary has L words, L acoustic models and a single
word model have to be designed. The parameter sets of
the acoustic models {A,,,, m=1,-- -, L} are estimated from
appropriate acoustic training sequences. Let y,(m)=
{y(m), t=0,---,T =1}, y(m) € R¥, be the given training
sequence of acoustic signals corresponding to the mth
word. For simplicity of notation, we assume that all train-
ing sequences have the same length.

To simplify the discussion, we shall assume in all sub-
sections but Section 1I-C that the space Y is finite. This
assumption is always met in practice because our models
and training sequences are always stored in a digital
computer. From the theoretical point of view, this as-
sumption will allow us to present the main ideas in this
paper in a simple way without using measure theoretic
arguments. The extension to the case where Y is infinite
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can be achieved in a manner similar to the approach used
in Csiszdr and Tusnady [13]. We shall use lower case
letters to denote the probability mass functions (pmf’s)
corresponding to the PD’s defined before. Thus g(y|m),
g(m), p(y|m), p(m), q(y,m), and p(y,m), denote the
pmf’s corresponding to Qy, .y, Qs Pyiprs Pys Oy pyo and
Py 4, respectively.

The discrimination information D(Q,, Py, ) be-
tween the two PD’s Qy 4, and P, ,, will play a central
role in this section. It is defined [14] by

D(QY,M”PY,M) “\m=1yey

+ oo,

where Qy ) < Py, denotes that Q. , is absolutely
continuous with respect to Py ,,. For Oy <Py, We
have that [14, p. 13]

D(Qy, mllPy m)

L
= D(QullPy) + Z q(m)D(QY|M=m”PY|M=m) (2)

m=1
where

D(QuIP) 2 T q(mynl)

. M m=1 p(m)

is the discrimination information between the PD at-

tributed to the word and the parametric model for the
word, and

(3)

q(y|m)
p(y\m)

D(wazm”PwM:m)é Z g(y|m)In (4)

yE€Y
is the discrimination information between the PD at-
tributed to the acoustic signal from the mth word and the
acoustic parametric model for that word. Equation (2)
suggests that

D(QY,M“PY.M) = min {D(QM”PM)
L} i

min
{n, A, m=1,--
L
+ min E ‘I(m)D(QY|M~m”PY|M=m)}- (%)
A, m=1,- L} 0 4

This means that if {PY|M:m7 m=1,---,L} does not de-
pend on pu, the word model parameter set, then jointly
optimal word and acoustic modeling, in the sense of
minimizing the discrimination information
D(Qy 4Py, »), can be independently performed by mini-
mizing D(Q,|Py) and Erl;r=lq(m)D(QY|M=m”PY|Mzm)’
respectively.

In this section we shall be concerned only with the
estimation of the acoustic models for the different words
in the vocabulary, {PY|M=m’ m=1,---, L}. Whenever nec-
essary, we shall assume a priori knowledge of the word
model P,,. We now examine the three approaches for
acoustic modeling, namely, the ML, MMI, and MDI, and
formulate them as MDI modeling approaches. The MDI

XX q(y,m)lnp“

IEEE TRANSACTIONS ON INFORMATION THEORY, VOI.. 36, NO. 2, MARCH 1990

interpretation of the ML approach is based on the origi-
nal work of Csiszar and Tusnady [13].

A. ML Estimation Approach

In ML estimation the parameter set A,, of the acoustic
model Py, _,, is estimated from the given training se-
quence y,(m) by

maxIn p(y;(m)|m). (6)

m

q(y,m)
( if Qy_M<<P,,_M

y,m)’ (1)

otherwise

Let Qyp_,, be the empirical distribution of the mth
training sequence, i.e., the pmf q(y|m) is given by

1, = m
aGim) ==y (m {1+ Y =rrm) )
0, otherwise
where 8(+) is a probability measure which is concentrated
on y;(m). On substituting (7) into (2) we obtain

D(Qy ulPy )
L
=D(QullPy)— X g(m)Inp(y(m)m) (8)
m=1

where we have used

L q(ylm)Ing(ylm) = Ing(y;(m)jm)=In1=0. (9)
yEY
From (8), and the fact that D(Q,,||P,,) is independent of
{A,,, m=1,--- L}, we see that

mi L)D(QY,M”PY,M)

Apom=1,---,

L
=D(QullPy) = X q(m)maxin p(y,(m)im). (10)
m=1 m
Equation (10) shows that the standard ML estimation
approach (6) is an MDI modeling approach, for estimat-
ing all acoustic models simultaneously, when the PD
attributed to the acoustic signal from each word is con-
centrated in the acoustic training sequence from that
word. Note that this PD is concentrated in the entire
training sequence from each word, rather than in the
individual vectors of that training sequence, i.e., we use
g(y|m) = 8(y — y,(m)) rather than

T-1

1
q'(yim) == Y 8(y, — y(m)).
t=90

Using g'(y|m) would have led to an MDI measure which
is insensitive to permutations of the vectors in the acous-
tic training sequence from each word. Thus the temporal
information about the acoustic signal carried by the prop-
erly estimated HMM (using (6)) for that signal could have
been lost. The pmf ¢'(y)m) was considered in [13], where
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the MDI interpretation of the ML approach was origi-
nally given, and applied to independent identically dis-
tributed (i.i.d.) vector sources. In our case, however, nei-
ther the speech signal nor the acoustic HMM’s are i.i.d.
Vector sources.

The MDI derivation of the ML estimation approach
clearly shows that this approach does not require any
model correctness assumption, since the pmf’s {g(y|m),
m=1,---, L} attributed to the acoustic signals and the
pmf’s { p(y|m), m=1,---, L} of the acoustic models were
independently chosen. Such an assumption was previously
attributed to the ML estimation approach, for example, in
[15]. The significance of the MDI interpretation of the
ML estimation approach is that ML estimation of the
parameter set of a model for a given source is equivalent
to approximating the empirical distribution of the source
by the PD of the model in the MDI sense. Thus a
goodness criterion for the ML estimate is introduced.
This interpretation also has operational consequences—it
shows that the ML estimate may be sensitive to the
specific training sequence from the source used for mod-
eling. This is a familiar situation in modeling speech
signals for recognition applications. The MDI equivalence
of the ML estimation approach, however, does not show
that the estimated models have any additional desirable
properties like consistency (see, e.g., [16], [17]). Such
properties may exist only under a model correctness as-
sumption, i.e., when the statistics of the source are identi-
cal to those of the model.

B. MMI Estimation Approach

The MMI modeling approach was first proposed in [18,
p. 262] and was first applied to acoustic modeling of
speech signals in [9], [10]. Let /(Y;M) be the mutual
information between the two random variables Y and M:

L * m
(M) = £ T a*Olmyas(my L™

m=1yey X g*(yiDg*(1)

=1
(11)

where g*(y|m) and ¢*(m) are the true pmf’s of Y given
M and of M, respectively. Since these pmf’s are not
known, the modeling approach proposed in [9], [10] is to
replace the pmf’s in the argument of the information
measure (i.c., the argument of the logarithm function) by
the pmf’s of the parametric models and to calculate the
expected value involved in (11) with respect to estimates
q(yjm) and g(m) of g*(y|m) and g*(m), respectively.
This results in

L
ivimy= 5 T ayimya(myin 2

m=1yey ZP(}’U)P(I)

=1
(12)

The estimate of g(y|m) suggested in [9] is the empirical
distribution (7). Substituting (7) into (12) gives

L
- - p(yr(m)|m
i = £ qlmyin— 22N
" L p(yr(m)I)p(1)
=1
which should be maximized over all {A,,, m=1,---,L}.

Note from (12) that

[(Y; M) = D(Qy uliPyPy) = D(Qy Py y) (14)

where P, is the PD of the model for all acoustic signals,
with pmf p(y) =L/, _, p(y|m)p(m). Since the estimated
average mutual information /(Y; M) in (12) (and similarly
in (13)) comprises the difference of two nonnegative dis-
crimination information measures, this estimate can be
negative; thus it is not a valid measure for mutual infor-
mation. This happens if the two random variables Y and
M are strongly dependent under the P measure, e.g.,
when Qy 4 = Py Py # Py _y. For a less trivial example, let
Y be a scalar random variable that can take only L
values, Y=1,---,L, let p(y,m)=(0—-¢e)/L8(y—m)+
e/L* 0<e<1,and let g{y,m)=0if y=m and q(y,m)
= 1/(L?>— L) otherwise. In this case we have that
I(Y; M) =In(e /L) < 0. Nevertheless, acoustic models de-
signed by maximizing I(Y; M) have been shown to be
useful in speech recognition applications [9], [10]. Hence
an interpretation must be found that explains the merit of
this approach other than from its being an MMI estima-
tion approach.

Let Q) and Py, be, respectively, the a posteriori PD
attributed to the word given the acoustic signal and the
a posteriori PD of the model for the word given the
acoustic signal. Let g(m|y) and p(mly) be, respectively,
the corresponding pmf’s of Q,,, and P,y. From (7) we
have

a(yr(m)Ng() { 1, I=m

‘I(l|)’T(m))= 3 0, otherwise

Y q(yr(m)lk)q(k)

k=1

(15)

which shows that the a posteriori probability of the mth
word is one if the mth training sequence is observed and
zero otherwise. For y =y (m), the pmf p(l|y). I=
1,---, L, is given by

pyr(m)|1)p(l)
L »

X p(yr(m)lk)p(k)

k=1

p(llyr(m)) = (16)

and it depends on all parameter sets of the acoustic
models, {A,,, m=1,---,L}, as well as on the parameter
set of the word model u. Using (15) and (16), we can
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rewrite (13) as
L

i( Y,M) = Z q(m)D(QM|Y=y7{m)”PM|Y:y7(m))

m=1

L
= 2 q(m)Inp(m)

m=1

(17)
where
D(QM|Y:y7(m)”PM|Y:yT(m))

= % gty (m)) )
=1

p(llyr(m))’

Hence the MMI estimate of the set of acoustic models is
obtained from

(18)

L
min z q(m)D(QM|Y=y7(m)”PM[Y=yT(m))‘
Apom=1,-++ L} )
(19)

The MDI derivation of the MMI estimation approach
given in (19) shows that this approach tries to estimate a
set of acoustic models that minimizes the average discrim-
ination information measure between the a posteriori em-
pirical PD of the word given the acoustic signal and the
a posteriori PD of the model for the word given the
acoustic signal. The average is taken over all words in the
vocabulary. This criterion is well defined since the aver-
age discrimination information measure is nonnegative,
and it constitutes a similarity measure between Py y and
QO y- In the extreme case where Py = Quyy, the aver-
age discrimination information equals zero. This is, of
course, a desirable property of any estimation procedure.
Similarly to the ML case, the MMI approach does not use
any model correctness assumption.

It is interesting at this point to compare the ML and
the MMI estimation approaches based upon their MDI
interpretations. Using (4)-(7), the ML estimate can be
viewed as resulting from

min
m=1, -

L
Z q(m)D(QY|M=m”PY|M=m)' (20)
{A LY =1

m>

As is clearly shown by (19) and (20), the two modeling
approaches minimize average discrimination information;
however, they do so between different pairs of PD’s. In
the ML approach, the empirical PD Oy\m—m iS approxi-
mated by the model Py,,_,,, while the MMI approach
approximates the empirical PD Q,,,_, «my DY the model
Pyiy=ymy This means that the ML approach tries to
estimate the set of acoustic models that best approximate
probability measures concentrated in the acoustic training
sequences. On the other hand, the MMI approach tries to
estimate the set of acoustic models for which the proba-
bility of each word given a training sequence is as close as
possible to unity if the training sequence comes from the
same word and is as close as possible to zero otherwise.

In terms of the classification problem considered here,
the MMI modeling approach seems reasonable, since
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recognition is performed on the basis of the a posteriori
PD Py, by choosing the word m that maximizes plml|y
= z) for the given test sequence z. Hence it is intuitively
appealing to estimate the set of acoustic models which
maximizes Py,y_, .., for M = m (by making it as close as
possible to one), and at the same time minimizes
PMIy)zyT(m) for M # m (by making it as close as possible to
Zero).

C. MDI Estimation Approach

The MDI modeling approach proposed in [11] is for
estimating an individual acoustic model from a given
training sequence of the speech signal. We shall first
review the principles of this approach, and then general-
ize it for multiple model estimation. The major differ-
ences between this approach and those considered previ-
ously is in the way the PD attributed to the acoustic signal
is estimated from the given training data. Rather than
assuming that the PD of the acoustic signal is concen-
trated in the given training sequence, the MDI approach
of [11] considers all PD’s that satisfy a set of moment
constraints from the acoustic training sequence. The PD
that yields MDI with respect to the acoustic model is
chosen. This PD for the acoustic signal, called the MDI
PD with respect to the model, depends on the set of
moment constraints and on the parameter set of the
model. The modeling is performed by minimizing the
discrimination information measure between the MDI PD
and the PD of the model, over all parameter sets of the
model. In practice, the moment constraints have to be
estimated from the acoustic signal. In this case the esti-
mated moments are considered as if they were the true
moments. If the signal is stationary and ergodic, and the
frame length from which each moment is estimated is
large enough, then good estimates result. Alternatively,
the estimated moments of the acoustic signal can be
considered as being a characterization of the acoustic
signal, regardless of how well they approximate the true
moments.

The special important case of modeling sources from
which second-order moments are available, using HMM’s
with Gaussian autoregressive (AR) output PD’s, was con-
sidered in [11]. Specifically, it was assumed that, for each
time ¢, we are given a K X K covariance matrix R/(m),
which agrees with the covariance matrix of y(m)e RX
within some symmetric band, say B. The elements of
R(m) that are outside B are assumed unknown. Such a
matrix is referred to as the partial covariance of the
source at time t. Let R (m)2{R,(m), t=0,---,T —1} be
the sequence of given partial covariance matrices from
the acoustic signal for the mth word. Let Q(R,(m)) be
the set of all PD’s Qy,,,_,, that satisfy the given set of
partial covariance matrices. The MDI estimate of the
parameter set of the model for the mth word A,, is
obtained from

min min
An Qyitom € UR(mMY)

D(QY|M=m”PY\M=m) (21)
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where now

q(ylm)
p(yim)

provided that Qy »_,, and Py _,, are absolutely contin-
uous with respect to Lebesgue measure. The convention
that In0 = —o, In(c /0)=0o for any positive number c,
0-(+x)=0, and 0-(—x)=0, is assumed in evaluating
(22).

The double minimization in (21) is implemented by
alternate minimization of D(Qyw mll Py sr=m)> ONCE OVEr
all Qypr—m € UR(m)) assuming Pyy_,, is known, and
then over all Py ,_, for the resulting MDI PD with
respect to the old model, as originally proposed in [13].
The algorithm starts from a given model, €.g., the model
estimated by the ML approach, and generates a sequence
of HMM’s with nonincreasing discrimination information
values. The algorithm is stopped if the difference in
discrimination information in two consecutive iterations is
smaller than or equal to a given threshold. For a given
HMM Py, and partial covariance matrices {R(m))
such that each R, (m) has any positive definite extension,
a unique PD Qyy_, exists that minimizes
D(Qypt—mll Pyjps=m) over Q(Rp(m)). The probability
density function (pdf) of the MDI PD is given by

D(Qyps-mllPyips—m) = [a(yim)In dy (22)

T-1

1
q(ylm) = Cmp(yim)em{—v Zy,#/\(m)y,} (23)

t=10

where C,, is a normalization constant that makes
[dyq( y|m)—l the pound sign denotes vector transpose,
and {A,(m)} is a set of symmetric matrices of Lagrange
multipliers that vanish outside B and are chosen so that

[dv a(yim)y,y¥ = R(m) (24)
within the given band B. Note that C,, is a highly nonlin-
ear function of A, and {A (m)}. The discrimination infor-
mation between the MDI PD with respect to the given
model and the model itself, called the MDI measure with
respect to the given model, equals

min D(QY\M:m"PY\M:m)

Qyim—m € UR(m))
1 T-1
:—lnC,,,—Etr E Rl(m)A[(m)

=0

(25)

The Lagrange multipliers can be estimated from maxi-
mization of the right side of (25) over all {A (m)} for
which g(y|m) is a nonsingular pdf, say the set &, . This
function is unimodal on §, , and hence the maximization
can be performed using any standard constrained opti-
mization procedure. Given the MDI PD with respect to
the old model, a new HMM that decreases the MDI
measure (25) can be estimated by maximizing an appro-
priately chosen auxiliary function, using the “forward-
backward” procedure. This results in a reestimation algo-
rithm similar to the Baum algorithm [5]-[7].

The extension of the MDI approach to multiple model
design can be done as follows. Let ¥ 2{Y(1),-- -, Y(N)}
be a sequence of N random variables representing acous-
tic signals, where each random variable is defined on Y.
Let M 2{M,,---,M,)} be a sequence of N discrete ran-
dom variables representing words, where each can take L
values. Let y2{y(1),---,y(N)} be a realization of Y,
where y(n)2{y,(n), -, y,_(n)} and y(n)<€ RX. Simi-
larly, lct m2{m---,my} be a realization of M. Let
Qv > Py Oviisr Pyims Qm» and Py, respectively, be
defined 51m11arly to Oy u> Py m> Qyims PY‘M, Qy, and
Py,. Let R2{R/(n), n=1,---,N} be a given set of se-
quences of partial covariance matrices corresponding to
the acoustic signals Y. Let Q(R) 2 {Qv - that satisfies
R}. Similar to (2) we have that

D(Qy wlPy )
= D(QwyllPy)+ ZQ(I-)D(QVW:ZHPV\/W:i) (26)
i

where | is defined similarly to 7. When modeling is
performed using partial covariance matrices R corre-
sponding to a sequence of words, say m, we implicitly -
assume that q(I)=1 for /=m and q(I)=0, otherwise.
Hence simultaneous MDI estimation of all acoustic mod-
els can be achieved by

min min _ D(

~ (27)
A1 Qrim7-m € AUR)

Q}"|A7=m”P?u\7=r—n)-
We shall assume here that N > L, and that R contains at
least one sequence of partial covariance matrices for each
word in the vocabulary. We shall now show that if the
acoustic signals are assumed statistically independent un-
der the P measure, then the minimization in (27) can be
independently performed for each acoustic model using
the approach developed in [11]. Hence this approach can
simply be viewed as an MDI approach for simultaneous
estimation of all acoustic models.
Assume that

N

p(ylm) = n p(y(n)im,). (28)
Following the proof of [11, theorem 1], it can be shown
that if each partial covariance matrix R(n), t=0, -,
T-1, n=1,---,N, has any positive definite extension,
then there exists a unique PD Qg5 _5 that minimizes
D(Q% 57—l P 77 -m) OVer Q(R), with pdf given by

1 N T-1
q(ylm)=6pw|m)exp{ )IEDM y,(n)*A,(n)y,(n)}

2n=]t=0

II

N
T:ICnp(y(n)lm,,)
17-
exp{—— Z y(n) A(n)y,(n)}
1=0

N
= I:[]q(y(n)lmn), (29)
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TABLE 1
SuMMAaRY CoMPARISON OF ML, MMI, aAnD MDI MODELING APPROACHES
Measure Source Model
ML Z5 1 g(m)D(Qy -l Py s ) qlylm) =8y = yy(m) plylm)
MMI EL g DQ iyl Payy— v yiomy) glmiy)=8(y = y;(m) plmiy)=

MDI ErelﬁID(QY\M:m“PY\M:m)

p(ylm)p(m)
i p(yIDp(l)

q(ylm)= plylm)

1 7-1
C,,;P(Y|’")5XP{_5 Z yl#Al(m)yr}

1=0

where g(y(n)im,) is the MDI PD with respect to
pCy(n)im,), given R, (n), defined similarly to (23). In this
case we have that [14, p. 12]

min R)D(Q?HW=W”P)7|A7=W)

Qv ii7-m € AU

N
=y min

D(Qv, i1, - 1Py 11, -m, ) (30)
n=1 Qv =m,s UR (1)

Now, if N= L, then we have a single acoustic utterance
from each word, say y;(!) for m, =1, and estimation of
the parameter sets of the models is performed indepen-
dently, since

min min D(Q?W:m“P?W:,‘)

(A,)ll;l Ov\i-m € QR)

min
QY/\M/=/E QR

L
=Y min

D(Qy,p=lIPyyag,1)- (31)
=1 M )

If N> L, we may have more than one acoustic utterance
for each word in the vocabulary. In this case modeling is
performed by

min Y, min

D(Qy, =l Py, a1, 1)
A n:m,=1 Qy,m, =1 € UR(n))

[=1,---,L. (32)

While the minimization over Qy ,, _, € Q(R;(n)) is in-
dependently applied for each utterance of acoustic signal,
the minimization over A, is performed using all acoustic
utterances from the same word. This minimization can be
accomplished similarly to the case of a single acoustic
utterance per word through maximization of an auxiliary
function that comprises the sum of individual auxiliary
functions for the different utterances from the same word
(see [11, (14)D), [21].

D. Discussion

We have seen that the three modeling approaches
considered here—ML, MMI, and MDI—are optimal ap-
proaches for simultaneous estimation of all acoustic mod-
els, in the minimum average discrimination information
sense. The ML and MDI aproaches minimize the average
discrimination information measure between the PD at-
tributed to the acoustic signal from a given word, and the
PD of the acoustic model for that word (see (20) and
(31)). The MMI modeling approach minimizes the aver-

age discrimination information measure between the PD
attributed to the word given an acoustic signal, and the
model for the word given the acoustic signal (see (19)).
The ML and the MMI attribute to the acoustic signal a
PD that is concentrated in the individual training se-
quences for the different words. Thus these two ap-
proaches make precisely the same assumptions about the
acoustic signal being modeled. The MDI approach, how-
ever, attributes to the acoustic signal from each word a
more robust PD. This PD is obtained by considering all
PD’s for the acoustic signal for a given word, which satisfy
a given set of moments from this signal. Since the three
modeling approaches are variants of the MDI modeling
approach, and in MDI modeling the PD attributed to the
source need not be the same as the PD of the model,
none of the three approaches assumes model correctness.

Table I summarizes the three modeling approaches in
terms of the average MDI measure they minimize, the PD
attributed to the source being modeled, and the PD of
the model itself.

The estimation of the acoustic models by the ML and
MDI approaches can be done independently of each
other, while in the MMI approach all acoustic models
must be simultaneously estimated. Hence, if the size of
the vocabulary is increased, all acoustic models must be
redesigned in the MMI approach, whereas in the ML and
MDI approaches only models for the new words must be
designed. From the three estimation approaches, the ML
approach is the easiest to implement using the Baum
algorithm. The MMI approach is usually implemented
using general constrained optimization procedures, e.g., a
variant of the steepest descent method [20]. The imple-
mentation of the MDI algorithm requires constrained
maximization in a high dimensional Euclidean space for
estimating the Lagrange multipliers corresponding to the
given moments. The estimation of the parameter set of
the model itself, however, can be done efficiently by a
procedure that generalizes the Baum algorithm.

III. MobeL DEsIGN FOR MiNniMuM EMPIRICAL
ERROR RATE

Next, we propose a new approach for designing the set
of acoustic and word models in which the models are
optimized for the decoder used during recognition in the
minimum empirical error rate sense. We focus on the
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MAP decoder assumed throughout this paper which is
implemented using the acoustic and word models. The
acoustic and word models are designed by minimizing the
empirical error rate function over the parameter sets of
the models. The minimization can be performed using
general optimization procedures similar to those used in
implementing the MMI and MDI approaches.
The probability of classification error is given by,

Pe(’\uu‘)=l— Z Z q*(y’m)

m=1 yew)h“(m)

(33)

where g*(y, m) is the true joint pmf of the acoustic signal
and word, A£{A,, m=1,---,L}, and w, (m) is the set
of all acoustic signals y €Y that will be decoded as the
mth word. The set {wML(m), m=1,---, L} constitutes a
partition of Y. For the MAP decoder we have

p(ylm)p(m)

ordlm) =y e =

I=1,---,L
l#m ’

m=1,,L (34)

where we arbitrarily assign y to the set of the lowest
index when ties occur. Let 1, () be the characteristic
function associated with w, (m),

1, €Ew, (m)
1w/\‘“(m)(y) = { Y Ao

(35)
0, otherwise.

Assume that we have labeled training data of N pairs of
words and acoustic signals {(w,,yr(n)), n=1,---, N},
where w, €{1,--+,L} and y (n)e€Y forall n=1,---,N.
Furthermore, assume that N > L to give meaningful
estimation. The training data are used for estimating the
unknown pmf g*(y,m). Using the empirical distribution
estimate

1 N
g(y.m) =+ Z:,]é(y—yr(n),m— w,)  (36)

and (35), we get from (33) the following empirical classifi-
cation error rate function

A~ 1 £
PO =1-5 L T Ly (). (37)

m=1nw,=m

The acoustic and word models are estimated from mini-
mization of Ise(/\, w) over the domain of {A, u}. This error
rate function is well-defined and attains its minimum for
some set of models. The minimization of this function
could be done using general optimization procedures,
e.g., the steepest descent method, if P,(A,u) were differ-
entiable. Since this is not the case here, we approximate
the characteristic functions {1, .(y)} by differentiable
functions, e.g., sigmoid functions, and minimize the re-
sulting approximated error rate function.

The major advantage of this approach, as compared to
the other modeling approaches discussed in Section 11, is
that here the model design procedure is optimal in the
minimum empirical classification error rate sense for the
given decision rule. Thus the uitimate criterion of speech
recognition is used in estimating the unknown statistics of
speech, and the models are optimized for the decision
rule used during recognition. It should be understood,
however, that if the amount of training data is insuffi-
cient, minimizing the empirical error rate for the training
set does not guarantee minimum error rate on the test
data. Conditions for convergence of the empirical classifi-
cation error rate to the probability of classification error
can be found in [24].
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