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ways realize a given bispectrum or a bicumulant sequence, the use
of a linear model as an approximation in certain applications can
be justified if the computed bispectrum has an index value close to
unity.
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The Segmental K-Means Algorithm for Estimating
Parameters of Hidden Markov Models

BIING-HWANG JUANG anD L. R. RABINER

Abstract—Statistical analysis techniques using hidden Markov
models have found widespread use in many problem areas. This cor-
respondence discusses and documents a parameter estimation algo-
rithm for data sequence modeling involving hidden Markov models.
The algorithm which we call the segmental K-means method uses the
state-optimized joint likelihood for the observation data and the un-
derlying Markovian state sequence as the objective function for esti-
mation. We prove the convergence of the algorithm and compare it
with the traditional Baum-Welch reestimation method. We also point
out the increased flexibility this algorithm offers in the general speech
modeling framework.

I. INTRODUCTION

Consider a first-order N-state Markov chain governed by an
N X N state transition probability matrix A = [a;;] and an initial
state probability vector #' = [7,, m, * * * , wy]. By definition,
LXia;=1fori=1,2 -+ ,Nand L, m = L. A state
sequence s = (sg, §y, * * * ,S7) wheres, € {1,2, -+ - N} = Zy,
the state index set, is a realization of the Markov chain with prob-
ability

,
Prislam =m, 11 a . (1)

Suppose s is not observed directly. The actual observation se-
quence x = (X, X, , xr) where x, € ®¥, the usual
K-dimensional Euclidean space, is a manifestation of some state
sequence s through an observation probability density set B =
{b;}. | where each b, is defined on ®X. For each s, = i, the prob-
ability of occurrence of x, is given by b;. The triple A = (7, A, B)
is called a hidden Markov model [4] and the density function of x
is given by

flx[n) = 2o,

5

0

T
I a, ub,(x). )
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The objective in maximum likelihood estimation is to maximize
f(x|N\) over all parameters \ for a given observation sequence x
(or sequence set X = {x'}).

The above maximum likelihood estimation problem can be ef-
fectively solved using a reestimation algorithm [5]-[7], often called
the Baum-Welch algorithm [5] or forward-backward algorithm.
The algorithm is an iterative procedure that guarantees a monotonic
increase in the likelihood through a set of reestimation transfor-
mations.

In this correspondence, we consider a different optimization cri-
terion for estimating the parameters of the hidden Markov model.
Instead of the likelihood function (2), we use

T

max f(x, s\)\) = max m,, I:II a, b, (x) (3)

as the optimization objective. Note that (3) focuses on the most
likely state sequence as opposed to summing over all possible state
sequences as in (2). We shall call (3) the state-optimized likeli-
hood. Cast in the formulation of a maximum a posteriori sequential
estimate, (3) was previously addressed by Jelinek ([8, appendix
1I]).

The motivation for using (3) as the optimization criterion is as
follows. First, the summation in (2) requires that all state transition
paths be considered in the likelihood calculation, thus requiring
significant computation. Second, since the b;’s in the set B often
vary in value over a large dynamic range, evaluation of the likeli-
hood along every possible path will inevitably encounter numerical
difficulties. Third, in speech recognition applications, modeling and
decoding must both be performed on the observation data sets and
the criterion of (3) appears to be quite natural for both of these
tasks. Also, the most likely state sequence s accompanying the op-
timization procedure carries some information, such as the state
duration, which is useful in many applications [9], [10].

Although the segmental K-means algorithm has been described
in a previous publication [9], we shall formally define the algo-
rithm and discuss its convergence properties in this paper. Our proof
of convergence of the algorithm essentially follows the procedure
outlined in Baum'’s original paper [5], supplemented by [6] and [7]
for different types of observation densities. It, however, requires
some modifications because of the nonlinear (maximization) op-
erator involved in (3). By making use of Zangwill’s global con-
vergence theorem [11, p. 91], we separate the issue of algorithm
convergence and the issue of increasing state-optimized likelihood.
A similar strategy was adopted by Sabin [12] in his proof of global
convergence of the generalized Lloyd vector quantizer design al-
gorithm. The global convergence theorem is a general result, ap-
plicable to the case where the hidden state space is a space of in-
dependent variables (as formulated in the numerous examples of
the EM algorithm paper by Dempster er al. [13]) as well as our
current consideration of the space of Markovian samples. This al-
lows us to focus on how the algorithm guarantees an increase in
the state-optimized likelihood for several kinds of observation den-
Sities.

II. GLoBAL CONVERGENCE THEOREM

Let A be an open subset of Euclidean p space ®”. A hidden
Markov model A is a point in A and to each A\ € A we have a smooth
assignment A = (7 (N), A(N), B(N)). Furthermore, we assume
A is compact and f(x, s|\) is continuous in A and differentiable
in its interior so that f(x, s|A) is bounded above.

An algorithm T on A is a mapping from points of A to subsets
of A. When the mapping is point to point, T is simply a transfor-
mation. We say algorithm Ton A is closed if A€ A, f e A, \,
N\, &, — ¢and {, € T(\,) imply that { € T(X). Closure is a gen-
eralization of continuity. For point-to-point mapping, continuity
implies closedness.
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Let Q be the set of fixed points of 7. A function g on A is called
an ascent function for algorithm Tif 1) g: A = &' C ® is contin-
uous (e.g., R = (0, ®)); 2) g(¢) > g(N\) for f € T(N\) and A
¢ and 3) g(¢) = g(N\) for £ € T(\) and N € Q. This definition
of ascent function is a direct opposite of the descent function de-
fined in [12] by Sabin.

Global Convergence Theorem: Let the sequence {\;} o be
generated by an algorithm T such that N\;,, € T(\,), for some A\,
€ A. Let T be closed and Q@ C A be the set of fixed points of T.
Then i) Q is closed; ii) all the accumulation points of { \;} are in
Q and g(\,;) converges monotonically to g (N*) for some \* € Q if
g is an ascent function.

We say a function A (\) is T converging if & is an ascent function
for algorithm T which satisfies all the above requirements such that
lim; A(N;) = h(\*) for some \* € Q.

III. T-CONVERGING LIKELIHOOD FUNCTIONS

The observation densities B = {b;}"., we consider in the hid-
den Markov models are of the following types: a) strictly log-con-
cave densities such as the normal, Poisson, binomial, and gamma,
etc. [5]; b) elliptically symmetric densities [6]; c) mixtures of a)
and/or b) above [7]; d) mixture densities with autoregressive con-
straints [10]; and e) partitioned or vector quantized mixtures of the
above satisfying certain conditions [10]. These densities (as the
bases of likelihood functions for parameter estimation) can be
shown to be 7 converging for some specific T’s.

For example, the strictly log-concave densities we consider are
b(x|N\) where for each i and almost all x, log b(x|\) is strictly
concave in A and lim, - o log b(x|\) = — o [5]. These densities
are T converging if T is chosen as T: N = X\ where

X = arg max Q(X\, N') = arg max S b(x|N) log b(x|N') du(x)
, N

(4)
as show by Baum et al. [5]. This can be easily seen by setting
Baum’s N-state Markov chain to a single state case. In the above,
a totally finite measurable space of x is assumed with measure p ( - ).

Furthermore, as will be discussed below, hidden Markov model
density of (2) could be used as the observation density of a certain
state in another hidden Markov model and the 7-converging prop-
erty can be hierarchically constructed accordingly.

IV. THE SEGMENTAL K-MEANS ALGORITHMS

The segmental K-means algorithm, as the name implies, is an
algorithm for estimating the hidden Markov model parameters by
embedding the K-means method [14] in a Markov chain modeling
algorithm for time-varying data sequences. The algorithm involves
iteration of two fundamental steps: 1) segmentation and 2) opti-
mization. (A similar but more restricted algorithm bearing the name
‘“*Viterbi extraction’” has also been proposed by Jelinek [8].) We
start from an initial model N. The segmentation step is equivalent
to a sequential decoding (or encoding, depending on the view of
source coding or channel coding) procedure and can be optimally
performed via a generalized Viterbi algorithm [15] which attains
max, f(x, s{N) as in (3).

Given a state sequence s and the observation x, the optimization
step finds a new set of model parameters A so as to maximize the
above state-optimized likelihood. That is

7\=arg{nax {maxf(x,s])\)}. (5)

Note that maximization of the state-optimized likelihood in (5)
may not be straightforward. For each state i, the generalized iter-
ation algorithm may have to be employed, depending on the choice
of the observation densities which need to be T-converging.

We then replace the original model N by the new \ and iterate
the above two steps until the state-optimized likelihood converges
within a prescribed threshold.
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V. CONVERGENCE OF THE SEGMENTAL K-MEANS ALGORITHM

With all the results discussed in Sections II and III, it is now
straightforward to show that the segmental K-means algorithm con-
verges in terms of the state-optimized likelihood.

Zangwill’s global convergence theorem is the main theorem that
the proof is based on. What needs to be shown is that the algorithm
T: X = X\ according to (3) and (5) is closed and that the state-
optimized likelihood max, f(x, s|\) is an ascent function for the
algorithm.

There are two difficulties encountered at this point, however.
First, although we have chosen the observation densities to be T
converging, it is not trivial to show that the state-optimized like-
lihood is T-converging because after each iteration the optimal state
sequence may have been changed and, therefore, the set of data
presented for the estimation of model parameters in each state may
be different from the previous set. Second, as mentioned before,
the T-converging property of the observation density functions only
guarantees fixed point convergence and it is not readily clear how
the individual T convergence of the state observation densities
would affect the T convergence of the overall state-optimized like-
lihood with a underlying Markov chain structure.

The algorithm T is closed because we assume that the function
F(x|N) = L, f(x, s|\) and thus max, f(s|\) is continuously dif-
ferentiable in \ for almost all x in a totally finite measurable space.
The inclusion of the underlying Markov chain does not induce ex-
tra complications as it only produces the product form in (2) and
3).

Let s* and 5 be the two optimal state sequences:

s* = arg m?xf(x,s|)\) (6.1)
5 =arg m.fxxf(x, s|N). (6.2)
Then |
max f(x, s|X) = f(x, s*[X) (7.1)
| = m}\ale(x, s*|N\") (7.2)
= max {mfxxf(x, s} (7.3)
= max f(x, s|N). (7.4)

The inequality in (7.1) is strict unless 5 = s* which results in A €
T(\) and the inequality in (7.4) is strict unless \ achieved the max-
imum of (7.3) or A € T(\).

Note that the maximization over A\’ in (7.2) and (7.3) can be
replaced by any converging hill-climbing algorithm such as the
generalized K-means method even though it only guarantees a fixed
point solution.

This completes the proof that the segmental K-means algorithm
converges in Zangwill’s global convergence sense.

VI. REMARKS

Although we have discussed extensively the convergence prop-
erties of the segmental K-means algorithm, some specifics of the
actual transformation were not given. The algorithm of (5) can be
written as

X\ = arg max {maxf(x, s|)\)}
A 5

= arg max {max [log f(x|s, N) + logf(s|)\)]}. (8)
A $

Using the previous notation of (6.1), we see that max, {logf(x|s*,
N) + log f(s*|N)} consists of two terms that can be separately
optimized since log f(s*|\) is a function of A(\) alone and log
f(x|s*, N\) is a function of B(\) above. (We shall neglect the
initial probability vector = for simplicity.)
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Lets* = (s, s¥, s%, -+ ,57%).sF €Zy. Then
T
tog £(x|5*%. N) = 2 b(x) 9)
(=
and
T
log f(s*|\) = 2 loga,; . (10)
which can be regrouped as
N
log f(x|s*, \) = 2. 27; log b;(x,) (1)
i=11el;
and
N
log f(s*|\) = X 2 XZloga, (12)
i=1j=11€Ty
where T, = {r:sf =i}and T, = {r: s’ = i. s’ =j}. Since
the b;’s are independent, the optimization over B = {b;} can be
done separately foreachi = 1,2, - + - , N, according to (11). This

is equivalent to N separate estimations of b;’s given N sets of data
{x: t € T;}. The maximization of (12) over 4 = [a;] subject to
the constraints E}\Ll a; = 1 and a; = 0 for all / is essentially a set
of N maximization problems

N
max 2 2 loga,»,» i=12,",N (13)
j=11€T,
which have the solution g,
T,
a,j.:NLi'—, ,j=12,- N (14)
Z |7
i=1
where || - || denotes the cardinality.

Equations (11) and (12) provide an intuitive confirmation about
the convergence of the algorithm by way of separating the opti-
mizations over the observation densities and the transition proba-
bilities of the Markov chain. However, unlike the original Baum-
Welch algorithm which uses (2) as the modeling criterion, the so-
lution (14) does not require probability weighting from the (unhid-
den) observations x.

The segmental K-means algorithm can be straightforwardly ex-
tended to the case of multiple independent observation sequences
X = {x'}. The optimization criterion for multiple independent se-
quences becomes

max £(X, §|\) = max IT f(x', s'|\) (15)
s s i

where § = {s'} is the state sequence set. The multiple sequence

case only incurs an extra summation over the sequence index in the

formulation results of (11) and (13) above.

It is important to note that the T-convergence property can be
hierarchical as mentioned above. In the above, the proof that the
segmental K-means algorithm is 7 converging was built upon the
T-convergence properties of the observation likelihood. It should
be understood that 7-converging hidden Markov models are equally
applicable as the (sequence) observation density. For speech mod-
eling, this thus legitimizes the use of segmental subword hidden
Markov models [16], and connected word models [9], although in
the latter case the ultimate Markov chain for the digits is of little
use because of the assumed random nature of the unconstrained
digit sequence utterances.
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FIR Filtering by the Modified Fermat Number
Transform

WEIPING LI AND ALLEN M. PETERSON

Abstract—Right-angle circular convolution (RCC) and the modified
Fermat number transform (MFNT) are introduced. It is shown that a
linear convolution of two N point sequences can be obtained by a cor-
responding N point RCC. It is also shown that the MFNT supports
RCC so that a linear convolution can be computed by an N point MFNT
and its inverse plus N multiplies.
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