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Abstract. Recent advances in neural network classifier design have
provided new insights into the problem of automatic speech recogni-
tion by machine. It has been shown that the speech representation
used as the input to the network classifier is critically important
for obtaining high recognition accuracy. In this paper we focus
our attention on spectrum-based speech representations. Spectral
representations, in order to be useful for speech recognition, need
to be justified from both the computational (analytical) and the
perceptual viewpoints. Our discussion of spectral representations,
therefore, includes both the computational model and the asso-
ciated measures of similarity that are appropriate for neural net-
works. This tutorial is intended to serve as a bridge between generic
neural networks classifiers and classical speech analysis for speech
recognition applications.

1. INTRODUCTION

For speech recognition, a parsimonious representation of speech is essential
and critical to overall system performance. Signal analysis methods, which
convert speech into some type of parametric representation, are often the
common denominator of all recognition systems, regardless of the particular
classification approach taken in the design.

There exists a wide range of possibilities for representing the important
properties of the speech signal. In this paper, we discuss representations
that are based on the spectral properties of the speech signal, since spectral
representations are arguably the most important parametric representations
in speech recognition applications.
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Before giving a detailed discussion of various spectral representations, it
is worth emphasizing the fact that a speech signal is a dynamic signal whose
characteristics change with time in a particular manner and that linguistic
isomorphism (e.g. two utterances that are considered as manifestations of the
same word) does not imply acoustic isomorphism (e.g., the same word can be
pronounced differently by different people). This acoustic variability is the
origin of the fundamental difficulties that affect the derivation of “reasonable”
speech representations. In this regard, a viable speech representation has to
be built upon a linguistically as well as perceptually justifiable computational
model. While this goal cannot totally be achieved, it should be understood
in the following discussion that it is the ultimate objective of the research in
this area.

2. SPECTRAL ANALYSIS MODELS

The two most common choices of spectral analysis model for speech recogni-
tion applications are a bank-of-filters model and an all-pole (linear prediction)
model. The bank-of-filters model is shown in Fig. 1. The speech signal s(n)
is passed through a bank of Q bandpass filters whose coverage spans the
frequency range of interest in the signal. These filters generally overlap in

BANOPASS  [31(n) viin) | LOWPASS [tiin) | SAMPLING iuym) | ampLITUDE |Xiim)
FILTER 1 H;"‘-'“E""“""‘{i FILTER REDUCTION COMPRESSION

[ ] L] [ L] [ ]
s(n)
e [ ] [ ] [ ] [ ] L d
. [ L ] [ L 4

BANDPASS [Sa(n) valn) | Loweass [totn) | SAMPLING lugimi| smpuitupe [xoim)
"1 FILTERQ [~ S|NONUNEARITY FILTER REOTE o COMPRESSION

]

wy wy wy wg
i 1 | i
| 1 1 ce e 1
SAX XN/ N
W i Win Wi i ’ e war Won
W Wan
Figure 1:

A bank-of-filters spectral analysis model.

frequency as shown at the bottom of Fig. 1. The output of each channel
is independently subjected to a specified nonlinearity as well as other signal
processing to produce the spectral representation X,. The nonlinearity is
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typically a full wave or half wave rectifier, or a short time energy estimator.
A low-pass filter is further used to obtain a smooth, slowly varying represen-
tation of the filtered output. This smooth spectral representation can then be
resampled at a reduced rate (typically 50-100 times per second), producing a
sequence of spectral vectors {X,(m)}.

The LPC analysis approach performs spectral analysis on blocks of speech
(speech frames) with an all-pole modeling constraint. This means that the
spectral representation is constrained to be of the form o/ A(e?*) where A(e?*)
is a pth order polynomial with z-transform

AR)=1+a1z7 +.. . 4ap2P . (1)

The order p is called the LPC analysis order. The output of each LPC spectral
analysis block is a vector of coefficients which define the spectrum of an all-
pole model which best matches the signal spectrum over the period of time
in which the frame of speech samples was accumulated.

2.1. Types of Filter Bank

The most common type of filter bank used for speech recognition is the uni-
form filter bank in which the center frequencies of the @ bandpass filters are
equally spaced to cover the frequency range of interest.
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Figure 2:

The critical bandwidth as a function of the frequency at the center
of the band.

An alternative to uniform filter banks is non-uniform filter banks designed

according to some frequency spacing criterion. One commonly used criterion
is to space the filters uniformly along a logarithmic frequency scale. Thus for
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a set of () bandpass filters with center frequencies, f;, and bandwidths, b;,
i=1,2,...,Q, we set

b] =C (2&)
bi:abi..,l, i:273» yQ (zb)
and .
= (b — b1)
e g (20)

where C and f; are the arbitrary bandwidth and center frequency of the first
filter and « is the logarithmic growth factor. When o = 2, the frequency
spacing is an octave between bands.

An alternative to the octave band scale that is often used is the critical
band scale [1]. The concept of a critical band is based on perceptual studies
of speech articulation. It was shown that each critical band provided essen-
tially equal contribution to speech intelligibility. Figure 2 shows the critical
bandwidth as a function of the frequency at the center of the band. The use
of a critical bandwidth filter bank leads to a scale for center frequency spacing
which is approximately linear for frequencies below 1000 Hz and is close to
logarithmic for frequencies above 1000 Hz. Similar perceptually motivated
frequency spacing criteria lead to mel-scale and Bark-scale filter banks.

2.2. Linear Prediction Analysis

In all-pole modeling, a given speech sample s(n) is assumed to be generated
as a linear combination of the past p samples and an excitation term, i.e.

s(n) = Z a;s(n — 1) + Gu(n) (3)
i=1

where u(n) is a normalized excitation function, G is the gain of the excitation
and ay,as, ...,ap are the prediction coefficients. A linear system model is
shown in Fig. 3 where the transfer function H(z) is an all-pole system of the
form 1/A(z).

Given the speech signal, the predictor coefficients are calculated by mini-
mizing the residual energy of the predicted speech signal. The residual signal
is the difference between the actual speech signal and the predicted signal,

P

e(n) = s(n) — 5(n) = s(n) — Z ap s(n — k) (4)

k=1

and the residual energy is accordingly defined as
E = Z e2(n) (5)

where the summation is over the (short-time) analysis interval (i.e. speech
frame). The best set of predictor coefficients can be found by well known
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methods such as the autocorrelation method or the covariance method [2).
The resultant spectral representation of the speech is thus o/A(e?) which is
defined by the coefficients {7, a;, as, ...,ap} where 0 o \/Epi,, where Epin
is the minimum value of the prediction error energy.

u(n) H(z) ——— s(n)

G
Figure 3:
A Linear System Model for Speech Prediction

3. SPECTRAL DISTORTION MEASURES AND PA-
RAMETER TRANSFORMATION

A spectral representation, in order to be useful in speech recognition, needs to
have associated with it a reasonable spectral distortion measure which gives
a measure of the dissimilarity between two spectra. The concept of a good
spectral representation, is, therefore, not an isolated one but is closely related
to the way meaningful spectral dissimilarities are evaluated. Because of this
relationship, there is a strong need to interpret a spectral representation in
several transformed coefficient domains. This concept will become clear in
this section.

3.1. Log Spectral Distances and Related Coefficient Trans-
formations

Consider two power spectra S(w) and S'(w). The difference between the two
spectra, on a log magnitude versus frequency scale is defined by

V(w) = log S(w) — log S’ (w) . (6)

One natural choice for a distance between S and S is the set of L,, norms
defined by

ass)=[[ v 2" Q

For m = 2, the distance is defined as the rms log spectral distortion which
is widely used in many speech processing systems. It is well known that the
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cepstrum, c,, is the set of coefficients of the Fourier series representation of

log S(w); i.e.

oC

log S(w) = Z cpe” i (8)
n=-—0oo
By applying Parseval’s theorem, we can express the rms log spectral distortion
in terms of the cepstrum:

2

[e]

1/
d(8,5') = [ 3 (e - c;)Z] C)

n=-—0o0

where ¢, and ¢], are the cepstra corresponding to S and S’ respectively.
Since evaluation of (9) is usually carried out with only a limited number
of terms (normally< 30), the resultant distance computation is usually called
the (truncated) cepstral distance.

The distance of (9) can be equally defined on cepstra derived from other
spectral representations such as the filter bank output {X, },?:1. When X,
are obtained according to mel-frequency spacing, the resulting cepstrum is
sometimes called a mel-frequency cepstrum or mel-cepstrum.

When S(w) is modeled by a linear prediction model of the form
o2/ | A(el*) |2, the cepstral coefficients can be recursively computed:

co = logo?
n—1
- 1 \ (10)
Cp = —ay - kz_:lkckan_k for n>0

where ag = 1 and a;, = 0 for k£ > p, the linear prediction order. The cepstrum
so derived is often called the “LPC cepstrum” to denote its difference from
other cepstral representations.

For speech recognition, particularly speaker-independent speech recogni-
tion, further modification on the cepstrum is often desirable. It is well un-
derstood that the phonetic distinction among different speech sounds is most
critically affected by the resonance structure of the spectrum but not the
spectral tilt which is a strong function of the speaker’s glottal characteristics
among other factors. Also, higher cepstral coefficients have been shown to be
highly susceptible to artifacts inherent in the spectral analysis method. Hence
for a more reliable representation which contains fewer spurious components
that are non-essential in speech recognition, liftering is often applied to the
cepstral coeflicients. Liftering is a weighting on the cepstrum; i.e. each ¢, is
multiplied by a weight function w(n) which can take various forms such as

. (nmw
w(n) = 1+ hsin (T) n=12,...,L (11)
0 n<0, n>1L

where h is normally L/2 and L is typically 10 ~ 16. Distance computations
which use a liftered cepstrum are called “weighted cepstral distances”.
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3.2. Likelihood-Based Distortions

The linear prediction analysis can be formulated as a statistical estimation
problem in which one seeks to maximize the likelihood of the prediction pa-
rameters for a given speech data frame. The difference in log likelihood can
be considered a form of dissimilarity measure. The Itakura-Saito distortion,
the Itakura distortion and the likelihood ratio distortion [3] are well known
likelihood-based distortion measures.

A key component in the evaluation of likelihood-based distortions is the
residual energy which can be expressed as

E = _" S(w) | A7) |? 521%
P
= 7(0)ra(0) +2)_ r(n)ra(n) (12)

n=1
where r(n) is the autocorrelation corresponding to S(w) and

p—-n

re(n) £ Za;aun for n=0,1,2,...,p. (13)

=0

If the signal level, o, is to be treated in a manner different from the spectral
shape A(e/“), normalization of the autocorrelation terms is necessary. For
example, a residual normalized autocorrelation is often used in the evaluation
of the likelihood ratio distortion between two unity gain all-pole spectra [3].

4. DYNAMIC SPECTRAL REPRESENTATIONS

The dynamic (temporal) behavior of the short-time spectrum of speech plays
an important role in human perception of speech. Dynamic representations
of speech are often derived by time differentiating the log spectrum. A first
order differential spectrum is

2 — = 66"(” —-jnw
En log S(w,t) = ,,;00 TR (14)

where the temporal index ¢ of the short time spectral representations S(w)
and c, have been made explicit. The time derivative is normally obtained
by polynomial approximation. Consider fitting a segment of the cepstral
trajectory, cn(t), t = ~M,—M +1,...,M by a second order polynomial
hi + hat + hst?. The fitting error Y17, [ea(t) — (By + hot + hst®)]? can be
minimized by choosing

M
ho= 3 tea(t) (15)
t=—M
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M M
T Y, enl) =@M +1) Y tPea(t)
ha — t=—M NIt:-—M (16)
T - (M +1) Yt
t=-M

and

(17)

M
1
hy = ——— t) — haT;
1 M+1 [!:z—:fucn() M

where Ty = Zfi_M t2. The time derivatives of c,(t) can then be approx-
imated by hy for the 1st order case and 2h3 for the 2nd order case. The
resulting time derivatives are usually called the delta cepstrum and the delta-
delta cepstrum respectively.

The dynamic representations can be considered supplementary features
and have been demonstrated to be very effective in improving speech recog-
nition performance.

5. NEURAL NETWORKS APPLICATIONS

In neural networks applications, particularly with hybrid learning schemes for
pattern recognition [4], it is often desirable to categorize the inputs into clus-
ters before supervised learning is performed to train the connection weights
towards the output layer. Effectiveness of such clustering is a strong function
of the speech representation and the associated distortion measure.

The various forms of the cepstral representation obviously are readily ap-
plicable in radial basis functions. In this case, the activation function for the
ith node is a normalized Gaussian expression

exp [—[le — pil*/257]
Y exp [=lle = mlI*/253]

k

gi(e) = (18)

where p; can be visualized as the centroid cepstral vector for node (cluster)
i. (For simplicity, we have assumed that the elements of ¢ are uncorrelated.)
Therefore an input cepstral vector ¢ close to p; would produce a large response
at node i. The “variance” L? indicates the degree of dispersion for the region
associated with the ith cluster.

In a similar manner, the concept of radial basis functions can be applied
when using likelihood related distortions (instead of the Euclidean distance
in the exponents of (18)). A straightforward extension is to use

6i(x) = exp(—E;)

" S exn(- o) 1)
k
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where r is the input autocorrelation vector (dimension p 4 1) and the Ej’s
are defined in the same way as Eq. (12), with Ej; representing the residual
energy produced by the inverse filter Ax(z) associated with cluster k.

6. SUMMARY

In this paper we have discussed various spectral representations suitable for
speech recognition applications. These representations are intimately linked
with appropriate spectral distortion measures that can be evaluated in the
relevant domain of representation. We have also pointed out how these repre-
sentations and spectral distortion measures can be applied in neural network
solutions to pattern recognition problems.
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