1268

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 6. JUNE 1991

Training Set Design for Connected Speech
Recognition

Michael K. Brown, Maureen A. McGee, Lawrence R. Rabiner, Fellow, IEEE, and
Jay G. Wilpon, Senior Member, IEEE

Abstract—A key issue in the design and implementation of a
speech recognition system is how to properly choose the speech
material used to train the recognition algorithm. Training may
be more formally defined as supervised learning of parameters
of primitive speech patterns (templates, statistical models, etc.)
used to characterize basic speech units (e.g., word or subword
units), using labeled speech samples in the form of words and
sentences.

In this paper we study two methods for generating training
sets. The first uses a nondeterministic statistical method to gen-
erate a uniform distribution of sentences from a finite state ma-
chine (FSM) represented in digraph form. The second method,
a deterministic heuristic approach, takes into consideration the
importance of word ordering to address the problem of coar-
ticulation effects necessary for good training. The two methods
are critically compared.

The first algorithm, referred to as MARKOV, converts the
FSM into a first-order Markov model. The digraphs are deter-
minized, transitive closure computed, transition probabilities
are assigned, and stopping criteria established. An efficient al-
gorithm for computing these parameters is described. Statisti-
cal tests are conducted to verify performance and demonstrate
its utility. MARKOV is shown to be an excellent method for
generating widely distributed coverage of the grammar, which
includes a large number of distinct word bigrams for small
samples, but performs less well as the sample sizes increase.

We then describe a second algorithm for generating training
sentences, referred to as BIGRAM, that uses heuristics to sat-
isfy the three requirements described below. It is well known
that the highest recognition performance is achieved when the
training set material is carefully selected to have the following
properties: 1) adequate coverage of basic speech (subword)
units; 2) adequate coverage of words in the recognition vocab-
ulary (intraword contextual units); 3) adequate coverage of
word bigrams (interword contextual units).

The first two conditions are necessary to ensure sufficient
data for reliable and robust estimates of basic unit/word model
parameters. The third condition is necessary to characterize
the effects of word coarticulation on both unit and word models.
BIGRAM uses criteria based on these requirements to generate
an efficient (small) set of sentences that cover all word bigrams
or, for incomplete training sets (e.g., with a large FSM where
complete coverage is unattainable), a relatively large portion of
word bigrams.

The training script generation algorithms are evaluated on
two standard finite state grammars, the Flight Information and
Reservation Language (FIRL) and the 991 word Darpa Naval
Resource Management Grammar. BIGRAM compares favor-
ably with MARKOV for generating larger training sets. A com-
parison of the BIGRAM generated training script for the Darpa
task with a partially hand-processed training script obtained

Manuscript received June 8, 1989; revised June 7, 1990.
The authors are with AT&T Bell Laboratories, Murray Hill, NJ 07974.
IEEE Log Number 9143804.

from BBN Laboratories shows that the automatic algorithm
provides better coverage of the word bigrams in the language
than the hand-generated script.

I. INTRODUCTION

OPER training of speech recognizers is essential for
obtaining the highest possible recognition accuracy for
a given amount of speech material (e.g., Mikkilineni et
al. [1]). With the introduction of the Grammar Compiler
[2], rapid development of new grammars for connected
speech recognition became possible. The need to rapidly
generate good training sets from these grammars has led
to the development of tools to train the recognizer with a
sufficiently broad selection of the potential phrases. For
small grammars having only a small number of possible
sentences this is not difficult; simply use all possible sen-
tences in the training set. However, the Grammar Com-
piler has made it easy to generate and use grammars ca-
pable of generating billions of sentences. It thus becomes
necessary, for proper training, to carefully select some
modest subset of all possible sentences.

Training of a word-based connected speech recognizer
generally consists of a bootstrapping step, where the vo-
cabulary words are trained using a data base consisting
solely of isolated tokens of each word, followed by full
training using a data base of fluently spoken sentences.
Using the segmental k-means training procedure [3], the
individual words in each sentence are extracted using a
maximum likelihood segmentation scheme. Updated word
reference models are generated and the process is iterated
to convergence. This training procedure enables the rec-
ognition system to learn about and characterize word
boundary coarticulation phenomena.

Two training set generation algorithms are studied in
this paper. The first, subsequently referred to as MAR-
KOV (developed by Brown and McGee), is a nondeter-
ministic statistical method that converts an acyclic finite
state machine (FSM) representation of the grammar into
a first-order Markov model, and selects sentences in a
uniformly distributed manner. The second method, re-
ferred to as BIGRAM (developed by Brown, Rabiner and
Wilpon), is a deterministic, heuristic algorithm that at-
tempts to cover all or, at least, most of the word bigrams
in the grammar in a minimal number of sentences. Later,
we compare the performance of the two methods on sev-
eral standard tasks.

1053-587X/91/0600-1268$01.00 © 1991 IEEE

BROWN ez al.: TRAINING SET DESIGN FOR CONNECTED SPEECH RECOGNITION . 1269

A. The MARKOV Algorithm

In our initial approach, uniform random selection of
sentences, the intention is to produce a training set that
covers the grammar as broadly as possible given a limited
sample size. It should be noted that while it is always
possible to obtain uniformly distributed sentences, in gen-
eral, it is not possible to generate an arbitrary nonuni-
formly distributed set of sentences using the technique to
be described when the FSM is efficiently represented be-
cause the structure of the digraph representation causes
words in the grammar to be shared among various sen-
tences. Thus, these sentences cannot be entirely indepen-
dent. We will show that uniform sampling is an excellent
method for obtaining broadly distributed coverage for
small samples of large grammars, but the method does not
guarantee that all words in the grammar will be repre-
sented. The underrepresentation can be corrected by a
secondary algorithm like that described by Mikkilineni et
al. [1]. Rather than augment the statistical method with a
secondary algorithm, however, we develop this heuristic
style of algorithm substantially further as another stand-
alone method.

We show in Sections III-B and IV-A that, while select-
ing small training sets from large grammars at random is
generally a good method of sparsely covering the full lan-
guage uniformly including a high number of distinct word
bigrams, selecting relatively large training sets from small
grammars generally yields poor results. For strictly ran-
dom selection, the correct solution is to use the a priori
probabilities of sentence occurrence in actual practice to
weight the sentence selection. Unfortunately, a priori
sentence statistics are generally unavailable, and even if
available, can often not be represented in an arbitrary
Markov graph structure.

B. The BIGRAM Algorithm

Of particular importance in speech recognizer training
are the word-pair (word bigram) coarticulation effects due
to the slurring of one word into another. Word coarticu-
lation is a normal characteristic of fluently spoken speech
and becomes even more important when sentences are
spoken rapidly. Recognition accuracy is improved with
bigram-based training when compared with random train-
ing sets. Earlier evidence of this is found in Mikkilineni
et al. [1]. Subsequent experiments (unpublished) have
confirmed that bigram-based training results in signifi-
cantly better recognition performance.

At the word level we do not need to be as concerned
with word trigrams as with word bigrams since, with the
exception of a few monosyllabic words, there is essen-
tially no coarticulation across groups of more than two
words. Hence, for effective training, we need only cover
all possible word bigrams to generate essentially all pos-
sible word coarticulation phenomena. Note that if we pro-
duce a training set that contains all vocabulary words and
all word bigrams, then we have covered virtually ail of
the training phenomena of interest.

It is clearly desirable, but not always possible, to cover
all possible word bigram coarticulation effects for a given
grammar. For small to moderate sized grammars, where
the number of word bigrams in the language is less than
about 1000, we can produce training sets with complete
coverage. The average talker, however, will not want to
train the recognizer (i.e., speak training sentences to the
recognizer) with more thap about 1000 sentences. For
large grammars, where we cannot possibly cover all word
bigrams, it is clearly desirable to cover as many word bi-
grams as possible in a reasonably small training set. Fur-
thermore, since short sentences are easier to speak with-
out interruption, and it may be important that all word
bigrams in the sentence are trained (any pause in speaking
causes the word bigram at that location to be lost), it is
desirable to use as few words as possible in each training
script sentence.

Previous efforts to produce effective training sets have
used various methods. Some training sets have been pro-
duced by hand or by a combination of machine and hand
selection [4]. Others have been produced automatically
but do not cover all of the word bigrams in the language
[1].

There are cases where training sets that do not cover all
of the vocabulary words and word bigrams lead to rec-
ognition problems. For example, BBN Laboratories pro-
duced a set of 1600 training sentences for the Darpa
speech recognition task [4] containing over 5000 word bi-
grams and covering 987 words of the 991 word vocabu-
lary. Two copies of this sentence list were recorded for
use in training various speaker independent speech rec-
ognition systems. Because four vocabulary words were
missing from the training speech data base, whole word
based recognizers cannot be fully trained using this train-
ing set. Furthermore, even though there were over 27 000
words in the training corpus, a large percentage of the 991
words occurred fewer than 4 times (i.e., too few to make
a sufficient training contribution).

We describe a new heuristic algorithm that searches for
word bigrams and attempts to produce a training set of
sentences containing the largest number of new word bi-
grams in each new sentence. In this way, if there is no
restriction on the number of sentences, then all word bi-
grams are generated in a small number of sentences. If
the number of sentences must be limited, then a large set
of unique word bigrams will be covered in the allowed
sentences. We show that this fully automatic procedure
produces training sentence sets with full vocabulary cov-
erage and larger word bigram coverage than a semiauto-
matic method used by BBN to produce a training set for
the Darpa grammar.

In the next section we discuss the MARKOYV procedure
for selecting sentences in a uniform way. Section III de-
scribes testing procedures used to verify that the training
sets are indeed uniformly distributed. We study redun-
dancy and language coverage in Section IV. In Section V
the BIGRAM training set generation algorithm and its im-
plementation is described. Real task grammars are tested

1270

in Section VI along with an experimental evaluation and
a comparison with previous training methods. Finally, we
offer some concluding remarks in Section VII.

II. GRAMMATICAL CONSTRAINTS

Speech recognizers generally use finite state machines
(FSM’s) to represent the grammatical constraints of a par-
ticular recognition task. Thus, the grammars are limited
to regular grammars. Finite state or regular grammars are
attractive for constraining speech recognizers because they
place tight bounds on variability of speech and they are
relatively easy to implement in a real-time processing sys-
tem. These variability constraints limit the amount of
acoustical processing needed to recognize a sentence,
which is important for high processing speed. On the other
hand, such grammars do not allow a very rich syntax for
a given task unless the FSM is quite large. Undoubtedly,
more sophisticated parsers such as augmented transition
networks (ATN’s) will eventually supercede when
acoustical processing hardware becomes sufficiently fast.

The grammars, implemented as FSM’s, are represented
by digraphs. An example graph is shown in Fig. 1. Se-
lecting sentences from such a grammar is not as simple as
a uniform random walk traversing the graph from the start
state to some arbitrary terminal state (indicated by.double
circles in the figures). Taking state transitions that have a
large number of succeeding possibilities must be weighted
more heavily. Ordinarily, deciding when to stop at an in-
termediate terminal state must be weighted based on both
preceding possibilities and succeeding possibilities. We
present a method for avoiding the intermediate stops that
also has computational advantages.

A. Uniformly Distributed Grammar Sampling

The problem is to randomly select sentences from a very
large set of possibilities, where the set of possibilities are
contained in a FSM representation. The sentences must
be selected with equal probability of selection so that no
part of the language is underrepresented. It is easy to see
from Fig. 1 that a random walk through the graph, where
state transitions (or branches) are chosen with equal prob-
ability, will favor the selection of sentences *‘find an ob-
ject’” and ““find another object.”’ The sentences ‘“find the
object’” and *‘find the next object’’ are only half as likely
to occur because they must share the branch labeled
““the,” which is selected only as frequently as the
branches labeled ‘‘an’’ and *‘another.”’ Thus, the prob-
abilities of occurrence of the sentences described by a ran-
dom walk through the graph of Fig. 1 are:

1/3
1/3
1/6
1/6

Clearly, the branch labeled ‘‘the’’ should be weighted
twice as heavily as the other branches when selecting a
branch at state 2. This weighting is given by the number

find an object

find another object
find the object
find next object.

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 39, NO. 6. JUNE 1991

an

another

next

object

Fig. 1. State diagram for ‘find (an | another | the (next | object & 1) object
@1’

of paths from the successor state 4 to all succeeding ter-
minal states (in this trivial case only state 5).

The sentences may be selected more uniformly by cre-
ating a Markov model of the finite state grammar. State
transition probabilities are determined from the relative
numbers of sentence possibilities passing through each
branch of the FSM. For efficiency reasons described later,
we will not actually compute the full stochastic matrix of
transition probabilities, but will instead store weights
which can be computed directly from the structure of the
graph.

For larger graphs the number of paths to terminal states
is found by calculating the transitive closure on the graph.
This can be obtained from repeated products of the con-
nectivity matrix C, which is defined as follows. For each
pair of states (i, j) in the graph count the number of
branches conrecting state / to state j and enter this value
in the C matrix at row i and column j. Thus, C indicates
the number of ways of getting from state i to state j by
element c; in one transition. The number of ways of get-
ting from one state to another in two transitions is given
by C?. Similarly, the number of ways of getting from state
i to state j in n state transitions is given by element (i,)
of C”. For acyclic graphs C" = 0 for sufficiently large
finite n.

The total number of all ways of getting from state i to
another state j is given by element (i, j) of the transitive
closure

™M

B C'=1-0" Q.1

0

i

Clearly, for very large graphs, direct computation of (2.1)
is intractable. Typically, the graphs used for speech rec-
ognition purposes contain several hundred to several
thousand states. Fortunately, we do not need all of the
elements of B and there is an efficient way of finding the
required elements.

1) Computing Transitive Closure Efficlently: In our
application, the size of C is quite large, usually larger
than 100 x 100. Our largest grammars have about 5000
states, so it becomes very important to consider storage
and computation. The typical effort in computing the in-
verse of a matrix is n’ /3 flops. We can reduce the effort
to n(n — 1)/2 flops by modifying the structure of the
matrix.

Since we only care about the number of ways of getting
to terminal states we need compute only a few of the ele-
ments of B. In general, the number of terminal states is

BROWN er al.: TRAINING SET DESIGN FOR CONNECTED SPEECH RECOGNITION 1271

very small. Furthermore, C and hence B can be made tri-
angular for acyclic graphs by ordering the states appro-
priately. This allows us to use an efficient algorithm for
finding the weights. One additional trick that can be used
is to add ‘‘null’’ branches to the graph from all interme-
diate terminal states to a single terminal state having no
descendents (i.c., the state of the last column of the tri-
angular C matrix). This modification does not alter the
distribution of sentences selected because the transition
probabilities take the new branches into account. The
“‘null’’ branches are essentially cost free and have no la-
bels so there is no alteration in the final training set re-
sults. '

The ordering of states for an acyclic graph is obtained
by a topological sort like that provided by the UNIX tsort
command [5]. This guarantees that states are numbered
so that a given state has a higher number than any of its
ancestors. In fact, the tsort program source code was ob-
tained and modified to perform this function in our imple-
mentation. Thus, making C upper triangular is straight-
forward.

The addition of the ‘‘null’’ branches increments by one
all elements in the last column of C that fall in rows cor-
responding to terminal states, except for c,,. This reduces
the number of apparent terminal states to one. Now we
only need to obtain solutions for the last column of B,
ie., by, i =1,2,--+,n — 1(we do not actually need
b,, for training set generation but calculate it only to de-
termine the number of sentences in the grammar). Since
(I — C) is a unit diagonal upper triangular matrix, the
inverse is easily found by reducing this matrix to I using
Gauss elimination while applying the same operations to
an augmentation matrix. In this case, however, that aug-
mentation ‘‘matrix’’ is actually an n X 1 column vector
containing zeros except for the last element, which is one
(i.e., the last column of I). That is, we compute

b’lﬂ=1

n
Z Cik b kns

k=i+1

by, i=n—-1,n-2,-"-,1L

2.2)

Since only the upper triangle needs processing it takes n(n
— 1)/2 flops to reduce (we reduce the matrix in reverse
order one column at a time). We do not actually apply
these operations to (I — C) because we do not care about
its final form but instead apply them only to the augmen-
tation vector. Thus, the number of flops required is n(n
- 1)/2.

One further observation reduces this effort to O(n) in
the number of adjacencies n, (nonzero elements of C).
Since C is very sparse (usually no more than about 1% of
the elements are non-zero) we need not compute all the
terms of (2.2). Thus, a simple comparison for nonzero
elements of C reduces the floating point computational
effort to essentially n, fiops.

This algorithm is arguably optimal. Since closure is
needed for every state the connectivity at each state must

be examined at least once. This algorithm examines the
connectivity exactly once.

The resulting b;, become the weights for all branches
entering state i. Let the set of immediate descendents of
state i be S;. Then the stochastic transition probabilities
are

Since we have merged all terminal states into one terminal
state we no longer need to be concerned with stopping
decisions at intermediate terminal states. We now have
everything needed to start the Markov process.

2) Storage and Sentence Generation: Since we store
the graph structure for the grammar in a doubly linked
form, we do not need to actually store C but can instead
compute the elements of B directly from the graph. The
resulting weights are attached to the states rather than the
branches and we look ahead one ply in the graph to com-
pute the transition probabilities as the sentences are being
generated. This may result in duplication of calculations
but, as will be shown later, the amount of duplication is
generally small and this method saves considerable stor-
age since there are uswally many more branches than
states. Furthermore, many of the transition probabilities
will never be computed for small training sets.

Then the procedure for generating one sentence is

1) Start at the start state, call this state i.
2) Order the branches leaving the state i.
3) Form a distribution of cumulative sums of prob-
abilities p;; for the ordered branches.
4) Generate a random number in the interval [0, 1).
5) Select the first ordered branch whose cumulative
probability sum is greater than the random num-
ber.
6) Proceed to this next state (call it j) outputting the
branch label if not ‘‘null.”’
7) If j is the terminal state,
then stop,
else go to 2.

B. Word Bigrams

Consider again the grammar depicted by the graph in
Fig. 1. For this grammar the language consists of exactly
four sentences:

1) find an object

2) find another object
3) find the next object
4) find the object.

and the grammar contains 5 states. There are 8 word bi-
grams in this language. They are:

1) find an
2) find another
3) find the

1272

4) an object

5) another object
6) the next

7) the object

8) next object.

These word bigrams are completely represented in four
training sentences (i.e., in this case all the sentences of
this language). Using this set of four sentences we find
that only one of the word bigrams (‘‘find the’’) is repre-
sented more than once. For this example, the four sen-
tences form the optimal training set in the sense that no
smaller training set can be constructed that contains at

_ least one occurrence of each word bigram.

In general, it is not possible to construct a training set,
consisting of complete sentences, that contains all word
bigrams in a grammar in a uniform way (i.e., equal num-
ber of occurrences of all word bigrams). The toy example
given above illustrates why this is true. For larger, more
realistic, grammars the nonuniformity of word bigram oc-
currence increases. It is clearly desirable to minimize this
effect as much as possible so that individual word bigrams
do not dominate the training set, thus causing some word
bigrams to be poorly represented. This is accomplished
by constructing training sentences by starting at a state in
the grammar where the number of word bigrams previ-
ously generated in the training set is low and building a
sentence from this point to the start state and to a terminal
state in such a way that the number of new word bigrams
generated is large. Searching a word bigram table for an
appropriate starting place is undoubtedly the most impor-
tant part of this process. The building phase can be made
optimal by applying graph searching methods (and exper-
iments were conducted with this method) but the process-
ing time needed is considerable and the results are only
marginally better than the heuristic approach to be de-
scribed here. However, experiments have shown that
using less effective starting word bigram heuristics (e.g.,
excluding some of the selection criteria) makes a much
larger difference in the overall effectiveness of the algo-
rithm.

III. TESTING THE MARKOV TRAINING SET GENERATOR

Two methods were used to test the statistical charac-
teristics of the MARKOV training set algorithm. One test
checks the large sample performance and the other tests
the small sample performance. The large sample perfor-
mance test shows that the distribution is truly uniform and
the small sample test demonstrates that the samples are
not spectrally band limited (i.e., locally correlated).

A. Distribution Test

To test the uniformity of the distribution, large training
set samples were generated and counts taken of the fre-
quency of occurrence for each possible sentence. To ver-
ify performance, three test grammars were used. These
grammars were specifically designed to have characteris-

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 39, NO. 6, JUNE 1991

tics typical of grammars commonly used in connected
speech recognition and contain sufficient variability, in-
cluding the intermediate terminal states, to make any bias
in the selection procedure apparent. Indeed, several subtle
problems were initially discovered by this procedure and
subsequently corrected.

The grammars used for testing are shown in Figs. 2-4.
These grammars differ only in the locations of terminal
states. Note our convention of labeling the start state 0.
In these figures state transitions have single letter labels.
For simplicity, we have not shown multiple branches.
Thus, multiple branches have multiple letter labels. For
example, there are two branches (labeled B and C) from
state 1 to state 2. The first grammar (G1) with 37 possible
sentences has one intermediate terminal state at state 3.
The second grammar (G2), having 41 sentence possibili-
ties, has terminals at states 3 and 7. The third grammar
(G3), containing 50 sentence possibilities, has three ter-
minals at states 3, 4, and 7. The connectivity matrix for
these grammars is

—

a
fl
S O O o O o o o
S O O O O O O O =
S © O O O O N o
S O O O O O w O
S O O O O = W o O
S © O O o O O
S O N O O O O ©
S N O O O O O ©o
W N O N O O O O

0 00

Each test used a randomly generated training set of
100 000 sentences. If the generation of sentences is truly
uniform, then for the grammars G1, G2, and G3 we ex-
pect a probability of occurrence p for each sentence gen-
erated to be 1/37, 1/41, and 1/50, respectively. In an
actual trial of 100 000 sentences we expect the distribu-
tion of measured frequencies to conform to the binomial
distribution. Then the expectations in 100 000 sentences
are that we will get about 2703 of each sentence for G1,
about 2439 for G2, and about 2000 for G3. The expected
standard deviations, given by ¢ = (np(1 — p))'/ 2 where
n is the number of Bernoulli trials, for grammars G1, G2,
and G3 are 51.28, 48.78, and 44.27, respectively. We
would expect normal deviates in any test to fall within 3¢
of the expectations with a probability of 0.9973. Any out-
liers would indicate bias in the sentence generation.

In three tests consisting of 100 000 sentences each, the
maximum deviates over the set of 37 for G1 were 2.24g¢,
2.130, and 2.57¢. The average (rms) standard deviations
on the full set of sentences, which are expected to be
unity, were 1.09, 0.864, and 1.16. If we continued to
repeat these trials there should be only about one chance
in 370 that a deviate will exceed 30. The largest maxi-
mum deviate obtained over three trials each of 100 000

0000

-

BROWN et al.: TRAINING SET DESIGN FOR CONNECTED SPEECH RECOGNITION 1273

Fig. 4. Grammar G3.

sentence for G2 and G3 were 2.73¢ and 2.300, respec-
tively. The maximum deviations were consistently below
3¢ from trial to trial. Thus it is apparent that the large
sample statistics do indeed indicate uniformly distributed
sentence selection.

One problem that was discovered during this testing
phase was that the UNIX® C library function rand(),
which uses a multiplicative congruential random number
generator, is not adequate for generating the random num-
bers used in the state transition selection procedure. The
function random(), which uses a nonlinear additive feed-
back random number generator, was subsequently used
with much better results.

B. Occupancy Test

Since we are interested in creating small training sets
from a large grammar it is important to test the small sam-
ple statistical performance. For very small samples some
of the sentences in the grammar will not be present in the
resulting training set, so the distribution test is not appro-
priate. The likelihood of missing sentences in a small

training set can be found from the probability of occu-
pancy in an n bin model, where n is the number of pos-
sible sentences.

One form of the occupancy model may be described as
follows. Repeatedly throw balls at a set of n bins. Each
ball must randomly fall into one of the bins. After r balls
have been thrown we would like to know what the prob-
ability is that all of the bins are occupied by at least one
ball. More specifically, we would like to determine the
distribution of probabilities that exactly 1,2, - -+ , n bins
are empty. This is equivalent to randomly choosing one
of n sentences from a set with replacement r times, each
selection being independent of the others.

The probability that all of the bins are filled is given by

[61
po(r, m) = 25 (—1) <") (1 - 5)
y=0 14 n

and the probability that exactly m cells remain empty is

n m\"
pm(r’ n) = (> <1 - —> pO(r7 n— m) (32)
m n

Table I shows a numerical evaluation of (3.2).

One conclusion that can be drawn from (3.1) and (3.2)
is that selecting samples that are only slightly larger than
the number of sentence possibilities from the grammar at
random is not a good method for obtaining a uniformly
distributed sample since it is likely that some sentences
will be repeated while others are ignored. We will deal
with this issue more carefully in Section IV-A.

To test the small sample statistics we generated a large
number of small independent training sets and compared
the occupancy rates with the theoretical values obtained
from (3.2). We looked for correspondence of the means
and variance of the empirical distribution and the pre-
dicted distribution. In particular, if the number of occu-
pied cells differs from expectation and the variance is sig-
nificantly below expected variance we would be led to
suspect that the random process is spectrally band limited,
with potential for creating more redundancy than ex-
pected from an uncorrelated random selection.

For the first test we generated 300 training sets each
containing 50 sentences for each of the grammars G1, G2,
and G3. The resulting training sets were sorted and du-
plicate sentences eliminated. From (3.2), the predicted
maximum likelihood sizes of the resulting training sets
were about 28, 29, and 32 sentences, respectively. The
expected values, which for relatively small r are generally
about the same as the maximum likelihood values, are
given by

3.1

pn(r,m) = n [l = (1 =n7Y]

which is derived from (3.2) using the well-known formula
for expectation. For this experiment, the values computed
using (3.3) are 27.6, 29.1, 31.8, respectively. The actual
maximum likelihood estimates obtained from the training
set data were about 28, 29.5, and 31.5, matching the pre-

(3.3)

1274

TABLE 1
PROBABILITIES p,, (r, 5)
m r=35 r=28
0 0.03840 0.3225600
1 0.38400 0.5225472
2 0.48000 0.1483776
3 0.09600 0.0065024
4 0.00160 0.0000128

dicted values closely in all cases. The means of the dis-
tribution matched not only in location but showed good
correspondence in magnitude as well. The variances were
also quite similar.

A second test was also conducted using 300 training
sets containing 25 sentences each. The expected sizes of
the uniquely sorted training sets predicted from (3.3) were
18.3, 18.9, and 19.8 for sentences for G1, G2, and G3,
respectively. The actual test estimates obtained on the
uniquely sorted training sets were about 18, 19, and 20,
respectively. The distributions also corresponded closely
to (3.2).

One observation that is immediately apparent from the
preceding analysis is that it is unlikely that any single ran-
dom selection of r sentences from these small grammars
will actually yield r different sentences. We observe that
the number of sentence possibilities n has relatively little
influence on the expected number of different sentences
in the training set, particularly when n is relatively large.
Later we show mathematical evidence for this conclusion.
In each case for a selection of 50 sentences only about 30
different sentences were actually obtained. We study this
characteristic of random selection more in the next sec-
tion.

IV. LANGUAGE REDUNDANCY AND COVERAGE

It is particularly important, for efficient training of a
speech recognizer, that the training set cover the language
of the grammar without a great deal of redundancy. Com-
plete coverage of the language means that all vocabulary
words must be present along with all possible word bi-
grams and trigrams, in order to model the coarticulation
effects. For very large grammars complete coverage is
clearly impractical. It is useful to study the likelihood of
redundancy and coverage under the random selection rules
we have presented.

A. Sentence Duplication

For training sets smaller than the number of sentence
possibilities it is interesting to determine the probability
Pa that a sentence will be duplicated since this is an un-
desirable event. It is particularly important to study these
small sample properties because this is typical of the way
that training sets will actually be generated in practice. It
should be kept in mind that the following development
assumes that the graphs have been minimized (using the
~methods described in Brown and Wilpon [2]) so that all

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 6, JUNE 1991

TABLE II
PROBABILITY p,(r, n) OF DUPLICATION
Estimate

ron 10 100 1000 Pa(r, 1000)

2 0.1000 0.0100 0.0010 0.001

3 0.2800 0.0298 0.0030 0.003

4 0.4960 0.0589 0.0060 0.006

5 0.6976 0.0966 0.0100 0.010

6 0.8488 0.1417 0.0149 0.015

7 0.9395 0.1932 0.0208 0.021

8 0.9819 0.2497 0.0277 0.028

9 0.9964 0.3097 0.0355 0.036
10 0.9996 0.3718 0.0441 0.045
20 1.0 0.8696 0.1741 0.190
30 1.0 0.9934 0.3625 0.435

redundancy has been removed. The probability of dupli-
cation can be found from (3.2) by summing over the pos-
sibilities that result in redundancy. That is,

2

=n-

pdr, n) = @.1)

Pu(r, n).
+1
Illustrative numerical values for (4.1) are given in Table
II. It is clear from the table that even for very small train-
ing sets, the likelihood of duplication is surprisingly high
when the grammar is of moderate size.

One way of increasing the number of different sen-
tences obtained is to generate many sentences and elimi-
nate the duplicates afterward. The size of the random
sample needed to obtain n, different sentences can be de-
termined using (3.2). In this case we need an expression
for the confidence we can have in obtaining at least o
different sentences from a selection of » randomly chosen
sentences, given n sentence possibilities.- This is the prob-
ability that no more than n — « cells will remain empty
after r trials '

a-1

o 1, m) = 2 pu(r, n)

>

p(n; =
which can be computed directly for moderate values of n,
r, and «.

For very large n and relatively small r the likelihood of
duplication is low, as can be seen from the first few en-
tries in the second and third columns of Table II. For most
speech recognition applications r << n and duplication
is not a serious problem. This can easily be seen from the
following analysis.

From (3.3) we estimate the expected number of sen-
tences given r trials using the approximation

—1yr r
1-nY=1--; r<<n
n
which may be obtained from logarithmic approximations.
Then the expected number of sentences

W (r,n) =r.

Using this estimate we predict the probability of dupli-
cation on trial r is approximately (r — 1)/n. Then the

BROWN er al.: TRAINING SET DESIGN FOR CONNECTED SPEECH RECOGNITION 1275

probability that a duplication will occur in the first r trials
is approximately
r .
patrm) = patromy = LT D,
i=1 n 2n
It can be seen from Table II that this estimate is quite
accurate for small r and large n.

Typical grammars being produced with the Grammar
Compiler have values for n in excess of 10'°. In most
cases it is not desirable to generate training sets larger
than a few hundred sentences. For most of our recent ap-
plications r? << n and the probability of duplication is
very small indeed. Hence, for the very large grammars
being produced today, we have an excellent method for
choosing nonredundant training sets.

B. N-Gram Probabilities and Word Frequencies

The probability of making a particular state transition
in any randomly selected sentence, say from state i to state
J via branch k, is determined by the number of ways of
reaching state i, the number of ways of terminating from
state j, and the total number of possible sentences. That
18,

b libjn

b 4.2)

D =
where p; indicates the probability of crossing branch k
when randomly generating a single sentence as described
earlier. Similarly, the N-gram probability of traversing any
particular sequence of N branches from k through m start-
ing at state s and ending at state 7 is

_ bl:bm

b in .
The expected frequency of occurrence of a vocabulary
word in a randomly selected sentence is the sum of branch

probabilities of all branches labeled with that word. That
is,

Pk -m

fw = Z Pk

Iky=w “.3)

over all k for word w, where [(k) is the label of branch %.

Test grammars G1, G2, and G3 have word frequencies
as shown in Table III for both equally probable sentence
selection and for random selection based on equally prob-
able branch selection at each state. For these grammars
the word frequencies are also the word probabilities.
These grammars are atypical in the sense that each branch
has a unique label. In general, several branches will have
the same word labels and the word frequencies may ex-
ceed unity, signifying that more than one instance of a
word may occur in a single sentence.

Note that, on average, only one instance of the words
“P”’ and *‘Q’’ will occur in 25 training sentences selected
from grammar G3. Choosing sentences based on equally
probable branch selection is only slightly better in this
instance. The lowest representation in this case is for

TABLE 111
WORD FREQUENCIES

Equiprobable Sentences Equiprobable Branches

Word Gl G2 G3 Gl G2 G3
A 0.567568 0.512195 0.6 0.5 0.5 0.5
B 0.162162 0.146341 0.18 0.1 0.1 0.1
C 0.162162 0.146341 0.18 0.1 0.1 0.1
D 0.108108 0.097561 0.12 0.0667 0.0667 0.0667
E 0.108108 0.097561 0.12 0.0667 0.0667 0.0667
F 0.108108 0.097561 0.12 0.0667 0.0667 0.0667
G 0.081081 0.073170 0.08 0.1 0.1 0.1
H 0.08108! 0.073170 0.08 0.1 0.1 0.1
I 0.081081 0.073170 0.08 0.1 0.1 0.1
J 0.162162 0.146341 0.18 0.15 0.15 0.15
K 0.243243 0.219512 0.18 0.175 0.175 0.1167
L 0.233243 0.219512 0.18 0.175 0.175 0.1167
M 0.432432 0.487805 0.4 0.5 0.5 0.5
N 0.216216 0.243902 0.2 0.25 0.25 0.25
(0] 0.216216 0.243902 0.2 0.25 0.25 0.25
P 0.054054 0.048780 0.04 0.125 0.125 0.125
Q 0.054054 0.048780 0.04 0.125 0.125 0.125
R 0.162162 0.195122 0.16 0.125 0.125 0.125
N 0.162162 0.195122 0.16 0.125 0.125 0.125
T 0.108108 0.097561 0.08 0.0833 0.0625 0.0625
U 0.108108 0.097561 0.08 0.0833 0.0625 0.0625
v 0.108108 0.097561 0.08 0.0833 0.0625 0.0625

““T,”” ““U,”” and ‘*V’’ which require, on average, 16 sen-
tences to get one instance while ‘“A’” only requires 2 sen-
tences. Clearly, if it is desired to obtain a training set with
equally balanced word frequencies, neither of these meth-
ods is appropriate.

Generally, we do not want equally balanced word fre-
quencies in the training sets because of coarticulation ef-
fects. Those words belonging to a large number of distinct
word bigrams and trigrams need more representation in
the training set. We discuss this further in the next sec-
tion.

V. THE BIGRAM-BASED TRAINING ALGORITHM

The BIGRAM algorithm for constructing the training
set consists of two phases. The first phase involves
searching a table of identified word bigrams derived from
the given grammar, and choosing a word bigram and its
corresponding location in the grammar digraph as a start-
ing point. The second phase consists of two parts: con-
structing the leading part of the sentence up to the starting
word bigram location, and constructing the remainder of
the sentence. Both of these parts are essentially the same
process, but in the former we are looking for the start state
in the grammar digraph, and in the latter we are looking
for some terminal state in the digraph.

A. Selecting the Starting Bigram

We have found empirically that selecting a starting lo-
cation in the grammar for generating a sentence is critical
to obtaining high word bigram coverage for large gram-
mars with a small number of training sentences. The se-
lection process is based on a number of criteria that mea-
sure the likelihood of generating a sentence containing a

1276

large number of new word bigrams. These criteria, in or-
der of importance, are

1) the number of times this word bigram has already
appeared;

2) the number of times the words in this word bigram
have appeared;

3) the number of potential sentences that can be con-
structed from this starting location; and

4) how far this starting location is from the start state.

The grammar digraph is first preprocessed to determine
which word bigrams are present and a table of word bi-
grams is constructed. The number of potential sentences
is obtained from a transitive closure computation for the
digraph.

For obvious reasons, the dominant selection criterion
is the number of times a word bigram has already ap-
peared. For very large grammars and small training sets
this means searching for a word bigram that has not yet
appeared. For smaller grammars it is desirable to have
several copies of each word bigram, thereby attempting
to distribute the coverage uniformly.

The next criterion is the number of times a word has
already appeared. It is important to avoid using the same
word many times in each of its possible word bigrams at
a particular location in the grammar. Of course, each word
in the vocabulary will appear at least once if al] of the
word bigrams are present. When all of the word bigrams
are not present, as in the case of small training sets and
large grammars, we have found that the number of new
word bigrams generated by using the same word repeat-
edly is small. This is due to the fact that word bigrams
tend to be highly correlated in some grammars. That is,
if a sentence starts with a particular word pair (first word
bigram) then the likelihood is high that the second word
bigram will be one of a relatively small set of possible
word bigrams. The starting word bigrams are selected
based first on the lowest frequency of occurrence of the
first word of the word bigram and then on the frequency
of occurrence of the second word of the word bigram,
although this ordering is arbitrary.

If all of the above criteria are met equally for more than
one word bigram, we choose that word bigram contained
in the fewest number of sentences of the language. The
reason for this is somewhat subtle. In the sentence build-
ing part of the algorithm we will, all other things being
equal, chpose to take the path that gives us the greatest
number of sentence choices (based on the argument that
maximum freedom of choice allows us to more easily
avoid repeating word bigrams). On the other hand, loca-
tions in the grammar that are traversed in only a small
number of ways are less likely to be included in sentences
that originate from other parts of the digraph. Since we
would like to obtain as broad a coverage of the grammar
as possible, we choose these unlikely locations as starting
places.

We choose to start at a later state in the grammar if all
of the other criteria are met equally since this compen-

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39. NO. 6. JUNE 1991

sates for the fact that later parts of the grammar will gen-
erally be avoided by the sentence building part of the al-
gorithm due to its tendency to generate short sentences
whenever possible.

B. Building the Remainder of the Sentence

Once a starting location has been chosen, the leading
part of the sentence is constructed by searching the gram-
mar digraph and the word bigram table simultaneously to
minimize a path cost consisting of the following, in order
of importance:

1) the number of times this word bigram has already
appeared;

2) the minimum number of word bigrams over the set
of possibilities at the immediate ancestor state;

3) the number of states (words) to the start state;

4) the number of potential sentences available at the
ancestor state.

The first criterion is again obvious. The second criterion
amounts to a one-ply search for the minimum word bi-
gram cost path to the start state. We will discuss this fur-
ther in the next subsection.

The third criterion is based on the desirability of short
sentences for convenience in training. We look for the
shortest path to the start state. The shortest path infor-
mation is obtained from a preprocessing stage where dy-
namic programming is applied to the entire grammar di-
graph. Thus each state has associated with it the minimum
path length and the direction of this path. Short sentences
have the added benefit of reducing the correlation of word
bigrams in the training set. That is, since word bigrams
tend to be correlated within a sentence, there is more free-
dom to choose the word bigrams independently when the
sentence length is short (and we have more sentences).
This means that the number of duplicate word bigrams is
reduced in the final training set.

The last criterion tries to maintain maximum entropy.
All other criteria being equal, we wish to retain as much
freedom of choice as possible as the sentence is being
constructed so that we have a better chance of avoiding
word bigrams that have already been used.

The construction of the remainder of the sentence, from
the starting word bigram to a terminal state in the gram-
mar digraph, is similar to the method just described. Of
course, the direction of search in the digraph is reversed.
The only other difference is in the path length criterion.
Again, dynamic programming is applied in a preprocess-
ing stage to determine minimum path length to the nearest
terminal state. Thus, sentences that would normally be
constructed by passing through a terminal state to a later
terminal state will not be generated unless the starting
word bigram is at a location later than a terminal state.
That is, terminal states are unimportant when constructing
the leading part of the sentence but we always choose to
stop when we encounter a terminal state while construct-
ing the trailing part of the sentence.

BROWN er al.: TRAINING SET DESIGN FOR CONNECTED SPEECH RECOGNITION 1277

C. Optimal Sentence Building

Obtaining the globally minimal training set necessary
to completely cover all word bigrams in the grammar is a
difficult problem. It is easy to show that choosing a new
starting word bigram that occurs in only one place
(uniquely) in the grammar gives a starting location that
must fall within a sentence of the minimal set (since this
word bigram is the only one that can complete the set).
Unfortunately, there is no simple way to guarantee that
the rest of the sentence generated will be a member of the
minimal set, even if all of the word bigrams for this sen-
tence might have the uniqueness properties just men-
tioned. Global information is needed to make this deter-
mination which involves generating all possible sets for
comparison. Clearly, this is prohibitively expensive, so
we choose to apply heuristic methods to obtain a good but
not minimal training set.

As mentioned in the preceding subsection, the second
criterion requires looking one ply ahead to find the word
bigram that will result in a path containing a larger total
number of new word bigrams. The absolute maximum
new word bigram count can be obtained by applying graph
searching techniques. Unfortunately, for large grammar
digraphs such graph searching methods are very time con-
suming. For experimental purposes a full search was
tested. The results did not significantly improve for small
to moderate sized grammars where the entire word bigram
set was obtainable. For very large grammars the amount
of time needed to generate sentences is prohibitive and no
conclusion about effectiveness can be made at this time.

The single ply search does provide significant improve-
ment over no search, and it is likely that a full search will
provide additional improvement in new word bigram cov-
erage when the training set covers a substantial part but
not all of the possible word bigram set. It is not until many
of the word bigrams have been used that the searching
becomes necessary to avoid repeating word bigrams.
When the training set is very small, in relation to the size
of the grammar, the likelihood of repeating word bigrams
in the sparsely covered word bigram set is small.

D. A Small Toy Grammar

The algorithm was first run on the small toy grammar
shown in Fig. 2. The grammar consists of 9 states, has a
vocabulary of 22 words, and the language contains 37
sentences. There are 38 word bigrams in this grammar
and the algorithm covers all of them in 20 sentences. Of
most interest, for a small grammar like this, is the number
of sentences needed to cover each word bigram at least N
times. The number of sentences needed for this task is
given in Table IV.

It can be seen from Table IV that the heuristic BI-
GRAM algorithm, although not optimal, does very well.
Interestingly, if we ignore the second criterion of Section
V-A for starting word bigrams, then we obtain a minimal
number of training sentences for this grammar. Unfortu-
nately, this limited set of criteria results in poor perfor-

TABLE IV
TRAINING SET SIZE

Bigram Copies Number of Sentences Minimal Number

i 20 19
2 39 38
3 59 57
4 78 76
5 97 95

mance on larger grammars. Since the small grammars re-
quire so few training sentences, even when the selection
is not optimal, we choose to use the criteria best suited
for the larger grammars.

VI. EXPERIMENTAL EVALUATION

We tested the algorithm on two real grammars. These
are representative of the typical grammars being used to-
day. The flight information and reservation (FIRL) gram-
mar [7], [8] is a relatively small hand-built grammar that
was designed in the late 1970’s. We are using a new ver-
sion of that grammar (that we call new FIRL or NFIRL)
that was constructed using the Grammar Compiler [2].
The DARPA [4] grammar, which is also constructed with
the Grammar Compiler, is a large ship-based naval com-
mand grammar. The grammar statistics are shown in Ta-
ble V. The number of adjacencies is the number of non-
zero elements of the connectivity matrix.

The criteria used to measure the effectiveness of the
algorithms include:

1) the number of distinct word bigrams contained in a
fixed number of training sentences;

2) the number of distinct word bigrams per word in a
training set;

3) the number of vocabulary words used in a fixed
number of training sentences,

4) the number of sentences needed to completely cover
the word bigram set.

It is desirable to minimize the last measure and maximize

the other three. The first two are alternate measures of
efficiency, depending on whether the number of sentences
or number of words in the training set is of most impor-
tance. The training algorithms are written to generate
training sets consisting entirely of complete sentences, and
the number of sentences generated can be controlled.
From the human trainer’s point of view, the number of
words probably more accurately represents the amount of
speech he will need to input during the training session.

The results (see Tables VI and X) show that MARKOV
performs better than BIGRAM for extracting small train-
ing sets from large grammars, but the performance of BI-
GRAM soon overtakes MARKOV as the training set size
increases. During the testing of MARKOV, the number
of redundant sentences generated was constantly moni-
tored. No sentence redundancy was seen in any of the
training sets, even for 1000 sentence sets generated from
the NFIRL grammar.

1278

TABLE V
REAL GRAMMAR STATISTICS

Grammar = NFIRL DARPA'
States 123 4686
Terminals 8 57
Branches 439 38329
Adjacencies 184 8392
Sentences 6.01 x 10° 3.14 x 10"
Bigrams 674 56918
"Optimized
TABLE VI
PERFORMANCE STATISTICS ON NFIRL
Markov BIGRAM
Sentences #B #V #B/#W #B #V #B/#W
10 106 44 0.612 30 31 0.555
50 267 68 0.304 237 119 0.592
100 329 76 0.188 351 127 0.411
295 416 83 0.080 674 127 0.242

The computation times for the two grammars were typ-
ically about 2.35 s for the NFIRL grammar and about 44.5
s for the DARPA grammar on a Sun 4/280 (a 10 mips
machine). Considering the sizes of the grammars being
processed, these running times are excellent.

A. The NFIRL Grammar

The NFIRL grammar has been used for more than a
decade in connected speech recognition experiments. It is
connected to an on-line airline flight schedule data base
and can be used to inquire about and set up flight reser-
vations. The vocabulary can be seen in Table VII.

Several training sets of sizes varying from 10 sentences
to 295 sentences were generated and examined for word
bigram and vocabulary coverage as described above. The
results for both algorithms are shown in Table VI. BI-
GRAM produced complete word bigram and vocabulary
coverage in 295 sentences. Since MARKOV is nondeter-
ministic, the results vary from trial to trial, but the vari-
ance is small. The results in Table VI (and also Table X)
for MARKOV are averaged over several trials. The col-
umns of Table VI (and Table X) are labeled with the num-
ber of distinct word bigrams generated (#B), the number
of vocabulary words included (#V), and the ratio of dis-
tinct word bigrams to total words in the training set
(#B /#W).

At first glance, it appears that MARKOV significantly
outperforms BIGRAM for small training sets (e.g., 106
word bigrams for MARKOV compared to only 30 word
bigrams for BIGRAM in the 10 sentence sets). However,
MARKOV does not have any constraint on the length of
a sentence, so the sentences generated by MARKOV are
about three times as long as those produced by BIGRAM.
Even so, the ratios of word bigrams per training word still
indicates that MARKOV does very well.

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 39, NO. 6. JUNE 1991

As the number of sentences in the training set in-
creases, it becomes increasingly likely that previously
generated word bigrams will appear again, and MAR-
KOV starts to show performance loss. BIGRAM also loses
efficiency, as indicated by the word bigram to word ratios,
but it does not lose ground as quickly as MARKOV and
soon yields much better performance.

One difficulty that MARKOV will have on some gram-
mars is obtaining complete coverage of the vocabulary.
The word frequencies for the entire NFIRL grammar are
given in Table VII. These numbers indicate the expected
number of occurrences of a word per sentence. For ex-
ample, in a training set of 1000 randomly selected sen-
tences we would expect to see about 463 instances of the
word ‘‘my.”’ This grammar has a 127 word vocabulary.
Eleven of these words are used only once in the entire
grammar. It is obvious from the extremely low word fre-
quencies of many of the words that a random selection of
1000 sentences will, on average, not cause even one oc-
currence. At the other extreme, in a training set of 1000
sentences there will probably be more than 1000 instances
of the word “‘on.”’

B. The Darpa Naval Resource Management Grammar

The Darpa grammar [4] is a large Naval Resource Man-
agement grammar developed by a group consisting of
BBN Laboratories, Texas Instruments, Stanford Research
Institute (SRI), and the National Bureau of Standards
(NBS, now called the National Institute for Science and
Technology or NIST). This is generally considered to be
a good test grammar, and difficult recognition task. The
original grammar, as distributed by BBN, contains over
60 000 states and more than 250 000 state transitions. As
such it is essentially unusable with current technology for
speech recognition purposes because of its size. The
grammar was reduced (see Table V) using the optimiza-
tion algorithm available with the Grammar Compiler [2].
The reduced grammar contains only about 15% of the
original branches making it possible to process this large
grammar for speech recognition purposes. The Darpa
grammar comes with a training set of 3200 sentences that
were generated by a combination of machine and hand
processing. The 3200 sentences are actually two copies of
a set of 1600 different sentences that contain 5109 word
bigrams out of the 56 918 word bigrams that exist in the
Darpa grammar.

To compare the performance of BIGRAM on large
grammars with the BBN hand-generated training set, we
generated a set of 1600 sentences from this grammar. The
resulting training set statistics are shown in Table VIII.
The statistics for the BBN training set, which included
hand processing, is also shown for comparison. Clearly,
BIGRAM produces (automatically) a smaller training set
containing not only more word bigrams but also complete
coverage of the vocabulary. Full vocabulary coverage is
particularly important, as mentioned in Section I, because
missing triphones in the training data can lead to problems
in characterizing the basic speech units for recognition.

BROWN et al.: TRAINING SET DESIGN FOR CONNECTED SPEECH RECOGNITION

1279

TABLE VII
WOoRD FREQUENCIES IN NFIRL
Word Freq. Word Freq. Word Freq.
my 0.4633 the 0.5917 card’ 1.664 x 107"
home 0.1544 morning 0.1073 prefer 2.496 x 107°
office 0.1544 night 0.1073 boeing 4.993 x 107"°
phone 0.4633 afternoon 0.1073 douglas 4.993 x 107"
number 0.7284 evening 0.1073 de 9.986 x 107 '°
is 0.4751 of 0.05364 ten 4.827 x 107°
area 0.4602 sunday 0.06708 bac’ 1.664 x 107'°
code 0.4602 monday 0.06708 lockheed” 1.664 x 107"
two 0.8311 tuesday 0.06708 eleven 4.327 x 107°
three 0.6931 wednesday ~ 0.06708 how 0.07727
four 0.6586 thursday 0.06708 much 0.0002484
five 0.6586 friday 0.06708 many 0.007478
six 0.6586 saturday 0.06708 go 0.001048
seven 0.6586 january 0.04458 are 0.01148
eight 0.6586 february 0.04458 there 0.01148
nine 0.6586 march 0.04458 take 0.005491
zero 0.77 april 0.04458 plane 0.005491
one 0.9051 may 0.04458 a 0.05491
when 0.0002499 june 0.04458 meal 0.005491
at 0.00025 july 0.04458 served 0.005491
what 0.01173 august 0.04458 Stops 0.01098
time 0.0004984 september 0.04458 want 0.1706
does 2.929 x 107¢ october 0.04458 need 0.1647
flight 0.5328 november 0.04458 would 0.1706
to 0.5358 december 0.04458 like 0.1706
from 0.002883 please 2.164 x 107° coach 0.1647
washington 0.05404 repeat 1.498 x 107° first 0.1647
chicago 0.05404 times 4.993 x 107'° class 0.1647
new-york 0.05404 arrival 3.329 x 107'° seat 0.09883
boston 0.05404 departure 3.329 x 107'° seats 0.3953
denver 0.05404 fare 0.0004969 non-stop 3.329 x 107"°
detroit 0.05404 i 0.5115 some 6.657 x 107'°
los-angeles 0.05404 will 0.005491 information 6.657 x 107"
miami 0.05404 pay 8.322 x 107" make 6.657 x 107'°
philadelphia 0.05404 by 8.322 x 107'° reservation 6.657 x 107'°
seattle 0.05404 cash’ 1.664 x 107'° twelve 3.994 x 107°
depart 0.0001058 american® 1.664 x 107 o-clock 1.598 x 107*
arrive 1.465 x 10°° express’ 1.664 x 107'° am 1.598 x 10°*
do 0.0004969 diners’ 1.664 x 107'° pm 1.598 x 107*
flights 0.002484 club’ 1.664 x 10°'° in 5.326 x 107°
leave 0.001595 master’ 1.664 x 107'° return 0.0001044
for 0.00159 charge’ 1.664 x 107'°
on 1.053 credit” 1.664 x 107'°
*Only one occurrence in NFIRL
TABLE VIII TABLE IX
DARPA-1000 STATISTICS RANDOM SENTENCE STATISTICS
Statistic BIGRAM BBN Test #B #V
Sentences 1600 1600 1 2081 252
Words Included 991 987 2 2087 243
Bigrams Included 5496 5109 3 2052 246
Total Number of Words 11771 13987

Max. Sentence Length 20 22
Ave. Sentence Length 7.36 8.74

This phenomenon was observed when using the BBN
training set with this grammar in a phone-like unit (PLU)
based recognizer.

For comparison purposes a random selection of 1600
sentences from the Darpa grammar was made using
MARKOV. The number of word bigrams and vocabulary
words covered by three random samples of 1600 sen-
tences each are given in Table IX. From these results it

is clear that random sentence selection is not an effective
way of getting high word bigram coverage and the tech-
nique is inadequate for obtaining good vocabulary cov-
erage. As seen previously with NFIRL, the poor vocab-
ulary coverage is due to very low word monogram
frequencies for some words in the grammar.

The complete statistics for 1600 sentences and several
smaller training sets are summarized in Table X. Again,
MARKOV does well for small training sets, but soon loses
to BIGRAM as the set size increases. For this grammar,
BIGRAM has completely covered the vocabulary in 500

1280
TABLE X
PERFORMANCE STATISTICS ON DARPA
Markov BIGRAM
Sentences #B #V #B/#W #B #V #B/#W
10 152 88 0.695 23 32 0.697
100 650 159 0.299 367 309 0.734
500 1387 219 0.128 2343 991 0.651
1600 2073 247 0.060 5496 991 0.467

sentences, while MARKOV is still far from complete
coverage even at 1600 sentences.

VII. CONCLUDING REMARKS

Two new methods, called MARKOV and BIGRAM,
for generating training sentence sets have been devel-
oped. MARKOV is a method for generating small uni-
formly distributed speech recognition training sets. Using
this procedure we can create training subsets that will give
broad coverage of the language for a finite state grammar
when the size of the training set is much smaller than the
number of sentence possibilities. However, we have also
shown that, as the training set size increases, individual
word coverage may be very poor, depending on the fre-
quency of word occurrences in the grammar. Random
sentence selection can be useful for generating small
training sets quickly since MARKOV is a much faster al-
gorithm than BIGRAM and, in many cases, may be suf-
ficient for final training.

Uniformly distributed training sets are sometimes not)

the best choice for good recognition accuracy. In partic-
ular, if the grammar is of modest size, containing perhaps
only a few thousand sentence possibilities, then a ran-
domly chosen training set of a few hundred sentences will
probably be biased. For these cases, we have derived use-
ful estimates for the probability of sentence duplication.
Since most of our grammars are now very large relative
to the training sets, this may not be a problem. However,
one important figure of merit, word bigram coverage, may
be quite poor when using this method.

To address this problem we have also developed a heu-
ristic method (BIGRAM) for generating training sets hav-
ing excellent coverage of both word bigrams and vocab-
ulary for a given finite state grammar. The results are
shown to be favorable when compared to simple random
sentence selection for relatively large training sets.

These new tools complement the other tools developed
in conjunction with the Grammar Compiler [2]. Experi-
ments have shown that speech recognizers trained using
these techniques will demonstrate improved performance
over those trained from more conventional scripts.

REFERENCES

[1] R. P. Mikkilineni, J. G. Wilpon, and L. P. Rabiner, ‘‘A procedure to
generate training sequences for a connected word recognizer using the
segmental k-means training algorithm,’ in Proc. IEEE ICASSP'88.
vol. S, 1988, pp. 433-436.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 6, JUNE 1991

{2] M. K. Brown and J. G. Wilpon, *‘A grammar compiler for connected
speech recognition,”” IEEE Trans. Signal Processing, vol. 39, no. 1,
pp. 17-28, Jan. 1991.

L. R. Rabiner, J. G. Wilpon, and B. H. Juang, ‘‘A segmental k-means

training procedure for connected word recognition,”” AT&T Tech. J.,

vol. 65, no. 3, pp. 21-31, May-June 1986.

P. Price, W. M. Fisher, J. Bernstein, and D. S. Pallet, ‘*The Darpa

1000-word resource management database for continuous speech rec-

ognition,’” in Proc. IEEE ICASSP’88, 1988.

[5] UNIX® Time-Sharing System, Programmers Manual, vol. 1, ninth ed.,
AT&T Bell Laboratories, Sept. 1986.

[6]1 W. Feller, An Introduction to Probability Theory and Its Applications,
vol. 1, 3rd ed. New York: Wiley, 1968.

[71 S. E. Levinson and L. R. Rabiner, ‘‘A task-oriented conversational
mode speech understanding system,’” in Speech and Speaker Recog-
nition, M. R. Schroeder, Ed. Basil, Switzerland: S. Karger AG, 1985,
pp. 149-196.

[8] M. M. Sondhi and S. E. Levinson, ‘‘Computing relative redundancy
to measure grammatical constraint in speech recognition tasks,’’ in
Proc. IEEE ICASSP’78, 1978.

[3]

(4]

Michael K. Brown received the B.S. degree in
1973, the M..S. degree in 1977, and the Ph.D. de-
gree in 1981, all from the University of Michigan,
Ann Arbor, in electrical engineering.

From 1973 to 1976 he was with the Burroughs
Corporation (now Unisys Corporation) where he
was involved in the development of ink jet print-
ing systems. From 1976 to 1980 he continued with
Burroughs as a consultant working on uncon-
strained handwritten character recognition while
pursuing the Ph.D. degree at the University of
Michigan. His dissertation, on the topic of cursive script recognition, de-
scribed new techniques in feature extraction and pattern recognition. In
1980 he joined the Speech Processing Group at AT&T Bell Laboratories,
Murray Hill, NJ, where he was involved in the development of speech
recognition algorithms and VLSI hardware. Since 1983 he has been with
the Interactive Systems Research Department (formerly called Robotics
Principles Research Department) pursuing interests in electromechanical
control, sensory perception, and man-machine interaction. He holds 6 pat-
ents in the area of control systems and speech processing, and has written
extensively on speech, control, sensors, and robotics.

Maureen A. McGee received the B.S. degree in
computer science from Monmouth College, West
Long Branch, NJ, and the M.S. degree in com-
puter science from New York University in 1986.

She has been a Member of the Technical Staff
at AT&T Bell Laboratories, Murray Hill, NIJ,
since 1986. Her present areas of research include
both speaker-dependent and speaker-independent
connected work speech recognition. Over the pre-
vious 12 years, she has been involved in a number
of diverse research and development projects, in-
cluding process control simulation, operating systems, and compiler gen-
eration. .

BROWN et al.: TRAINING SET DESIGN FOR CONNECTED SPEECH RECOGNITION 1281

Lawrence R. Rabiner (5°62-M’67-SM’75-F’75)
was born in Brooklyn, NY, on September 28,
1943. He received the S.B. and S.M. degrees
simultaneously in June 1964, and the Ph.D. de-
gree in electrical engineering in June 1967, all
from the Massachusetts Institute of Technology,
Cambridge.

From 1962 through 1964 he participated in the
cooperative plan in electrical engineering at Bell
Laboratories, Whippany and Murray Hill, NJ. He
worked on digital circuitry, military communica-
tions problems, and problems in binaural hearing. Presently he is engaged
in digital signal processing techniques at Bell Laboratories, Murray Hill.
He is coauthor of the books Theory and Application of Digital Signal Pro-
cessing (Prentice-Hall, 1975), Digital Processing of Speech Signals (Pren-
lligg—;{all, 1978), and Multirate Digital Signal Processing (Prentice-Hall,

).

Dr. Rabiner is a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, the
National Academy of Engineering, the National Academy of Sciences, and
is a Fellow of the Acoustical Society of America, and AT&T Bell Labo-
ratories.

Jay G. Wilpon (M’84-SM’87) was born in New-
ark, NJ, on February 28, 1955. He received the
B.S. and A.B. degrees (cum laude) in mathemat-
ics and economics, respectively, from Lafayette
College, Easton, PA, in 1977, and the M.S. de-
gree in electrical engineering/computer science
from Stevens Institute of Technology, Hoboken,
NJ, in 1982.

Since June 1977 he has been with the Speech
Research Department at AT&T Bell Laboratories,
Murray Hill, NJ, where he is a Member of the
Technical Staff. He has been engaged in speech communications research
and is presently concentrating on problems in isolated and connected word
speech recognition. He has published extensively in this field and has been
awarded several patents. His current interests lie in training procedures for
both speaker dependent and speaker independent recognition systems, key-
word spotting algorithms, speech detection algorithms, and determining
the viability of implementing speech recognition systems for general usage
over the telephone network.

Mr. Wilpon received in 1987 the IEEE Acoustics, Speech, and Signal
Processing Society’s Paper Award for his work on clustering algorithms
for use in training automatic speech recognition systems.

