MATLAB Functionality for Digital Speech Processing

• MATLAB Speech Processing Code
• MATLAB GUI Implementations
Graphical User Interface

GUI Lite 2.6
How do we rapidly and efficiently create a GUI for problems like the one shown above?
Graphical User Interface Components

• GUI Lite created by students at Rutgers University to simplify the process of creating viable GUIs for a wide range of speech and image processing exercises

• GUI Lite Elements
 – basic design tool and editor (GUI Lite 2.5/2.6)
 – panels; used to block group of buttons/graphical panels/etc., into one or more coherent blocks
 – graphics panels; used to display one or more graphical outputs (figures)
 – text block; used to display global information about the specific speech processing exercise
 – buttons; used to get and set (vary) exercise parameters; used to display a list of exercise options; used to initiate actions within the code
 • editable buttons – get and/or set parameter value
 • text buttons – display variable values
 • slider buttons – display variable range
 • popupmenu buttons – display list of variable options (e.g., list of speech files)
 • pushbuttons – initiate actions within the code
Zoom Waveform Strips Plot

Strips Plot -- file: test_16k.wav, fs: 16000 Hz, nsamp: 22492

Buttons 1-11
- Speech Directory
- Choose File

Panel 1
- Text Box 1
- Graphics Panel 1

Panel 2
- Play Speech
- Close GUI

Panel 3
- Zoom 1
- Strip Plot

Graphics Panel 2
GUI LITE 2.6 Setup Process

• Create a directory for loading all necessary file folders for creating GUI 26 exercises; i.e., call this directory:
 ‘matlab_central_speech’

• Define full path to the chosen directory; i.e.,
 path_to_speech='C:\data\matlab_central_speech'

• Download (from MATLAB Central), and place in the chosen directory, the following code and data folders:
 – functions_lrr; speech_files; highpass_filter_signal; VQ;
 – cepstral coefficients; isolated_digit_files; GUI_LITE_26;

• Download (from MATLAB Central) the folder:
 ‘pathnew_matlab_central.m’

• Run pathnew script to set up path links to GUI LITE 26 and to the directories above
GUI LITE 2.6 Setup Process

• Search for MATLAB Central using web search tool with search input ‘MATLAB Central’ and go to MATLAB Central
• Click on File Exchange
• In the File Exchange website type ‘speech processing exercises’ in the search box
• Find and download each of the folders from the previous vu-graph;
 – find the folder of interest
 – click on download
 – from the displayed zip file, choose extract and search for the matlab directory and download all files
GUI LITE 2.6 Design Process

• begin with a rough sketch of the GUI 2.6 output, segmented into button panels, graphics panels, text boxes, and buttons
• create exercise folder; e.g., ‘hello_goodbye_world’
• run program ‘runGUI.m’ to create GUI elements and save as a GUI file (e.g., filename.mat);
• the software also creates an apps program named filename_GUI26.m and a Callbacks program (just the GUI structure) named Callbacks_filename_GUI26.m
• edit the program Callbacks_filename_GUI26.m by adding the appropriate callback code for each of the graphics panels, text boxes and button boxes
• run the resulting exercise and loop on GUI design and Callbacks implementation
Hello/Goodbye World Plan

Design Specs:
- 2 Panels (for linking inputs and outputs)
- 1 Text Box (for describing the Exercise GUI)
- 3 Buttons (all pushbuttons) (for embedding Callback code to play two messages and to close up the GUI)
GUI Lite v2.5

Select Workplace Directory
Current Workplace Directory: C:\data\matlab_gui_current\hello_goodbye_world_gui25

New
Create New GUI

Run 1
Run with runGUI.m File

Run 2
Run w/ .mat & callback.m Files

Mod
Modify Existing GUI

close
GUI26 Creation for ‘hello_goodbye_world’

• run the program ‘runGUI.m’ and click on the ‘New’ button
• enter values for the number of panels (2), number of graphics panels (0), number of text boxes (1), and number of buttons (3)
• enter the name for the GUI .mat file (‘hello_goodbye_world’)
• automatically create the set of GUI objects specified above, using the mouse cursor to define the range and properties of each object (this step is guided by the program ‘runGUI.m’)
• the resulting specifications for the GUI are automatically saved in the designated .mat file, ‘hello_goodbye_world.mat’
• edit the Callbacks routine, ‘Callbacks_hello_goodbye_world_GUI26.m’, by entering the MATLAB code for the graphics panels, text boxes and button boxes
% Callback for button 1 – print out message Hello World
function button1Callback(h,eventdata);

% title box
 stitle1=strcat(‘Hello World Using GUI2.5’);
 set(titleBox1, ‘String’, stitle1);
 set(titleBox1, ‘FontSize’, 25);

 % uiwait(msgbox(‘Hello World!’,’Message1’,’modal’));
 waitfor(errordlg(‘Hello World’,’Message1’));
 return;
end
GUI26 Callback Code – Button 2

% Callback for button 2 – print out message Hello World
function button1Callback(h,eventdata);

% title box
 stitle1=strcat(‘Goodbye World Using GUI2.5’);
 set(titleBox1, ‘String’, stitle1);
 set(titleBox1, ‘FontSize’, 25);

 % uiwait(msgbox(‘Goodbye World!’,’Message1’,’modal’));
 waitfor(errordlg(‘Hello World’,’Message1’));
 return;
end
% Callback for button3 -- Close GUI
function button3Callback(h,eventdata);

% title box
stitle1=strcat('Close GUI');
set(titleBox1,'String',stitle1);
set(titleBox1,'FontSize',25);

uiwait(msgbox('Closing GUI','Message2','modal'));
% waitfor(errordlg('Closing GUI','Message2'));
% return;

display Goodbye
close(gcf);
end
run: hello_goodbye_world_GUI26.m
directory: hello_goodbye_world
hello_goodbye_world

Text Box1

Panel1

Panel2

Button1 - Pushbutton

Play Message1

Button2 - Pushbutton

Play Message2

Button3 - Pushbutton

Close GUI

Message Box from Code

This is a Text Box: Change String Here
hello_goodbye_world – GUI Modifications

- Run program ‘runGUI.m’ to bring up GUI Lite 2.6 editor
- Choose Mod (modify) and select GUI file ‘hello_goodbye_world.mat’ for editing
- Choose ‘Move & Resize Feature’ option
- Choose ‘Button’ option
- Left click inside button to be modified
- Choose new button coordinates by using graphics cursor to identify lower left and upper right corners of modified button
- Click ‘Save GUI’ button
- Iterate on other buttons
- Click ‘Quit’ option to terminate GUI Lite 2.6 editor
GUI LITE 2.6 Edit Screen

Select Edit Option

- Add Feature
- Delete Feature
- Move & Resize Feature
- Modify Feature
- Feature Index
- Save GUI
- Save GUI As
- Quit

runGUI.m

hello_goodbye_world_GUI26.m
GUI Lite 2.6 Features

• separates GUI design from Callbacks for each GUI element
• provides a versatile editor for modifying GUI elements without impacting the Callback actions
• provides a GUI element indexing feature that enables the user to identify GUI elements with the appropriate Callback elements
Missing GUIDE Features

- radio button
- check box
- listbox
- toggle button
- table
- axes
- button group
- active X control

- are the missing features of value?
- do we need these features?
- can we create the desired set of speech processing exercises without these features?
- can we add these features to the GUI LITE editor?
Mathematics, derivations, signal processing; e.g., STFT, cepstrum, LPC, ...

Basic understanding of how theory is applied; autocorrelation, waveform coding, ...

Ability to implement theory and concepts in working code (MATLAB, C, C++); algorithms, applications

Need to understand speech processing at all three levels
The Speech Stack

<table>
<thead>
<tr>
<th>Fundamentals</th>
<th>acoustics, linguistics, pragmatics, speech production/perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech Applications</td>
<td>coding, synthesis, recognition, understanding, verification, language translation, speed-up/slow-down</td>
</tr>
<tr>
<td>Speech Algorithms</td>
<td>speech-silence (background), voiced-unvoiced, pitch detection, formant estimation</td>
</tr>
<tr>
<td>Speech Representations</td>
<td>temporal, spectral, homomorphic, Linear Prediction Coding</td>
</tr>
</tbody>
</table>

Basics – read/write speech/audio files; display speech files; play files
MATLAB Exercise Categories

- Basic MATLAB Functions for handling speech and audio files
- Advanced MATLAB Functions for Speech Processing
MATLAB Exercise Categories

• The speech processing exercises are grouped into 5 areas, namely:
 – **Basics** of speech processing using MATLAB (5)
 – **Fundamentals** of speech processing (6)
 – **Representations** of speech in time, frequency, cepstrum and linear prediction domains (22)
 – **Algorithms** for speech processing (7)
 – **Applications** of speech processing (17)
Basic Functionality

• **read a speech file** (i.e., open a .wav speech file and read the speech sample into a MATLAB array)
• **write a speech file** (i.e., write a MATLAB array of speech samples into a .wav speech file)
• **play a MATLAB array** of speech samples as an audio file
• * **play a sequence of MATLAB arrays of speech samples** as a sequence of audio files
• **record a speech file** into a MATLAB array
• **plot a speech file** (MATLAB array) as a waveform using a strips plot format
• * **plot a speech file** (MATLAB array) as one or more 4-line plot(s)
• **convert the sampling rate** associated with a speech file (MATLAB array) to a different (lower/higher) sampling rate
• **lowpass/highpass/bandpass filter** a speech file (MATLAB array) to eliminate DC offset, hum and low/high frequency noise
• **plot a frame of speech** and its associated spectral log magnitude
• **plot a spectrogram** of a speech file (MATLAB array)
• * **plot multiple spectrograms** of one or more speech files (MATLAB arrays)

* indicates exercise not yet done
Read a Speech File into a MATLAB Array

• \([\text{xin}, \text{fs}, \text{nbits}] = \text{wavread}('\text{filename}')\);
• \([\text{xin}, \text{fs}] = \text{loadwav}('\text{filename}')\);
 – filename is ascii text for a .wav-encoded file which contains a speech signal encoded using a 16-bit integer format
 – xin is the MATLAB array in which the speech samples are stored (in double precision format)
 – fs is the sampling rate of the input speech signal
 – nbits is the number of bits in which each speech sample is encoded (16 in most cases)
 – program wavread scales the speech array, xin, to range \(-1 \leq \text{xin} \leq 1\), whereas loadwav preserves sample values of the speech file and hence array xin is scaled to range \(-32768 \leq \text{xin} \leq 32767\)
• \([\text{xin1}, \text{fs}, \text{nbits}] = \text{wavread}('s5.wav')\);
• \([\text{xin2}, \text{fs}] = \text{loadwav}('s5.wav')\);
Read a Speech File into a MATLAB Array

- % test.wavread.m
- % test waveread function
- %
- % read speech samples from file 'test_16k.wav' into array x1 using wavread
- % routine
- filein='test_16k.wav';
- [x1,fs1,nbits]=wavread(filein);
- % print out values of fs1, nbits, wavmin1, wavmax1
- wavmin1=min(x1);
- wavmax1=max(x1);
- fprintf('file: %s, wavmin/wavmax: %6.2f %6.2f, fs1: %d, nbits: %d \n','
- filein,wavmin1,wavmax1,fs1,nbits);
- % read speech samples from same file into array x2 using loadwav routine
- [x2,fs2]=loadwav(filein);
- % print out values of fs2, nbits, wavmin2, wavmax2
- wavmin2=min(x2);
- wavmax2=max(x2);
- fprintf('file: %s, wavmin/wavmax: %d %d, fs2: %d \n','
- filein,wavmin2,wavmax2,fs2);

Terminal Display:
file: test_16k.wav, wavmin/wavmax: -1.00 1.00, fs1: 16000, nbits: 16
file: test_16k.wav, wavmin/wavmax: -32768 32767, fs2: 16000
Write a Speech Array into a Speech File

• `wavwrite(xout, fs, nbits, filename);`
• `savewav(xout, filename, fs);`
 – `xout` is the MATLAB array in which the speech samples are stored
 – `fs` is the sampling rate of the output speech signal
 – `nbits` is the number of bits in which each speech sample is encoded
 – `filename` is the ascii text for the .wav-encoded file in which the MATLAB signal array is to be stored
 – For `wavwrite` the MATLAB array `xout` needs to be scaled to the range $-1 \leq x_{in} \leq 1$ whereas for `savewav` the MATLAB array `xout` needs to be scaled to the range $-32768 \leq x_{out} \leq 32767$
• `wavwrite(xin1, fs, ‘s5out.1.wav’);`
• `savewav(xin2, ‘s5out.2.wav’, fs);`
Play a Speech File

- sound(x, fs);
- soundsc(x, fs);

 - for sound the speech array, x, must be scaled to the range $-1 \leq x \leq 1$
 - for soundsc any scaling of the speech array can be used
 - fs is the sampling rate of the speech signal

- [xin, fs] = loadwav('s5.wav'); % load speech from s5.wav;
- xinn = xin/abs(max(xin)); % normalize to range of –1 to 1;

- sound(xinn, fs); % play out normalized speech file;
- soundsc(xin, fs); % play out unnormalized speech file;
Play Multiple Speech Files

• *play_multiple_files.m;
 – sequence of filenames read in via filelist, keyboard or file search

• Example of usage to play out 3 speech files in sequence:
 – kbe=filename entry via filelist(2), keyboard(1), or file search(0):1; % keyboard chosen
 – N=number of files to be played in a group:3; % play out 3 files
 – i=1; filename: s1.wav;
 – i=2; filename: s2.wav;
 – i=3; filename: s3.wav
Play Multiple Speech Files

- test_play_files.m
 - play the following sequence of files:

 s2.wav
 s3.wav
 s4.wav
 s5.wav
 s6.wav

play_multiple_files_GUI26.m
Record Speech into MATLAB Array

• record_speech.m (calls MATLAB function audiorecorder.m, formally wavrecord.m)

• function y=record_speech(fs, nsec);
 – fs: sampling frequency
 – nsec: number of seconds of recording
 – y: speech samples array normalized to peak of 32767
Display Speech Waveform

Strips Plot
4-Line Plots
Project Diagram

Zoom Waveform Strips Plot

- Plotting and examining speech/audio waveforms is one of the most useful ways of understanding the properties of speech and audio signals.
- This MATLAB Exercise displays a speech/audio waveform as a single running plot of samples (called a Strips Plot).
- Exercise plots from designated starting sample to designated ending sample, with a user-specified number of samples/line.
- Zoom feature to select region of signal for display.
- Plots use either samples or seconds, as specified by the user.
Waveform Strips Plot

Strips Plot -- file: test_16k.wav, fs: 16000 Hz, nsamp: 22492

- Speech Directory
 - Choose File
 - test_16k.wav

- Samples/Line
 - 4000

- Start Sample for Plot
 - 1

- End Sample for Plot
 - 22492

- Play Speech
 - Full Waveform

- Plot Speech
 - Strip Plot

- Zoom 1

- Zoom 2

- Close GUI

Basics
Waveform Strips Plot – Zoom 1

Strips Plot -- file: test_16k.wav, fs: 16000 Hz, nsamp: 22492
Waveform Strips Plot – Zoom 2

Strips Plot -- file: test_16k.wav, fs: 16000 Hz, nsamp: 22492

- Speech Directory
 - Choose File: test_16k.wav

- Samples/Line: 4000

- x-axis units: 10^4

- Zoom 1
- Zoom 2

- Play Speech
- Close GUI

- Full Waveform
- Strip Plot

zoom_strips_plot_GUI25.m
*Plot Speech Using 4-Line Plot

file: s5, FS: 8000, SS: 1, NS: 24000, max/min: 25524 -32767
Sampling Rate Conversion

- $y = \text{srconv}(x, \text{fsin}, \text{fsout})$;
 - x: input speech array;
 - fsin: input speech sampling rate;
 - fsout: desired speech sampling rate;

- Example:
 - $[\text{xin}, \text{fsin}] = \text{loadwav}('s5.wav');$ % $\text{fsin}=8000$;
 - $\text{fsout} = 10000;$ % desired sampling rate;
 - $y = \text{srconv}(\text{xin}, \text{fsin}, \text{fsout})$;
Sampling Rate Conversion

Sampling Rate Conversion -- file:1A.wav, fs:20000 Hz, nsamp:15872

 SRC_GUI25.m
NB_WB_spectra_GUI25.m
Wideband/Narrowband Spectrogram

Spectrograms -- file: test_16k.wav, fs: 16000 Hz, nsamp: 22492

Spectrogram_GUI25.m
Plot Multiple Spectrograms

- File: original slowed speech.wav, fs:8000, wlen:3 (msec), drange:60.0
- File: slowdown speech 2.wav, fs:8000, wlen:3 (msec), drange:60.0
- File: original speeded speech.wav, fs:8000, wlen:3 (msec), drange:60.0
- File: speedup speech 2.wav, fs:8000, wlen:3 (msec), drange:60.0
Fundamentals

• 2-tube vocal tract model
• 3-tube vocal tract model
• p-tube vocal tract model
• glottal pulse model and spectrum
• composite vocal tract model and spectrum
• ideal vocal tract model and spectrum
Representations

• **time domain exercises**
 – windows; features; autocorrelation estimates; amdf

• **frequency domain exercises**
 – phase/magnitude; overlap-add windows; WSOLA

• **cepstral domain exercises**
 – analytical cepstrum; single pole cepstrum; FIR sequence cepstrums; cepstrum aliasing; cepstrum lifting; cepstral waterfall

• **linear prediction exercises**
 – LPC frames; LPC error; LPC varying p; LPC varying L; LSP roots; plot roots
Algorithms

- endpoint detector
- Voiced-Unvoiced-Background estimation method
- autocorrelation pitch detector
- log harmonic spectral waterfall plots
- cepstral pitch detector
- SIFT pitch detector
- formant estimation method
Applications – Part 1

• Speech waveform coding;
 – statistical properties of speech; quantization characteristics of a B-bit uniform or mu-law compressed and quantized speech file; uniform quantization; mu-law compression; mu-law quantization; Signal-to-Noise Ratio (SNR) of uniform and mu-law quantizers

• Automatic Gain Control (AGC)

• Adaptive Differential Pulse Code Modulation (ADPCM) waveform speech coder

• Vector Quantizer (VQ); VQ Cells

• Synthetic vowel synthesizer
Applications – Part 2

• LPC error synthesis
• LPC vocoder
• Play pitch period contour
• Two-Band subband coder
• Phase Vocoder
• Isolated, speaker-trained, digit recognizer
Speech Processing Exercises

• Search for MATLAB Central using local browser
• Click on file exchange; search for speech processing exercises
• Create a directory in which the various speech processing apps and data folders will be placed (e.g., speech_apps); use the full path in the pathnew routine (see below); e.g., C:\data\speech_apps
• If loading one or more speech processing exercises, download the following:
 • Read_Me which explains the downloading process
 • pathnew_matlab_central which links a set of functions and several data sets to the current path including:
 • runGUI – the set of files for creation of GUIs for the various speech apps
 • speech_files – set of files used to demonstrate matlab apps capabilities
 • functions_lrr – set of matlab functions used by the various matlab apps
 • high pass filter signal – filtering function for speech signals
 • isolated digit files – training and testing files for isolated digit recognition
 • cepstral coefficients – used for vector quantization matlab app
• Be sure to put each of the downloaded folders in the chosen directory so that the path links will be consistent
Summary

• Set of about 60 MATLAB speech processing exercises
• Exercises aligned with distinct sections in the textbook TADSP by Rabiner/Schafer
• Each exercise has an associated Graphical User Interface created using a GUI LITE program and created expressly for these speech processing exercises
• GUI LITE design and implementation Callbacks are in totally separate code packages