

QUAD/DUAL N-CHANNEL ZERO THRESHOLD™ EPAD® MATCHED PAIR MOSFET ARRAY

 $V_{GS(th)} = +0.0V$

GENERAL DESCRIPTION

ALD110800A/ALD110800/ALD110900A/ALD110900 are monolithic quad/dual N-Channel MOSFETs matched at the factory using ALD's proven EPAD® CMOS technology. These devices are intended for low voltage, small signal applications. The ALD110800/ALD110900 features zero threshold voltage, which reduces or eliminates input to output voltage level shift, including circuits where the signal is referenced to GND or V+. This feature greatly reduces output signal voltage level shift and enhances signal operating range, especially for very low operating voltage environments. With these zero threshold devices an analog circuit with multiple stages can be constructed to operate at extremely low supply or bias voltage levels. As an example, an input amplifier stage operating at 0.2V supply voltage has been demonstrated.

ALD110800A/ALD110800/ALD110900A/ALD110900 matched pair MOSFETs are designed for exceptional device electrical characteristics matching. As these devices are on the same monolithic chip, they also exhibit excellent tempco tracking characteristics. They are versatile as design components for a broad range of analog applications such as basic building blocks for current sources, differential amplifier input stages, transmission gates, and multiplexer applications.

Besides matched pair electrical characteristics, each individual MOSFET also exhibits well controlled parameters, enabling the user to depend on tight design limits. Even units from different batches and different date of manufacture have correspondingly well matched characteristics.

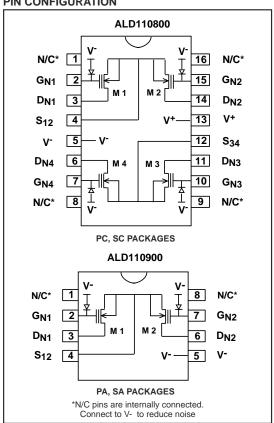
These devices are built for minimum offset voltage and differential thermal response, and they are designed for switching and amplifying applications in +0.2V to +10V systems where low input bias current, low input capacitance and fast switching speed are desired. The V_{GS(th)} of these devices are set at +0.0V, which classify them as both enhancement mode and depletion mode devices. When the gate is set at 0.0V, the drain current = $+1\mu A$ @ V_{DS} = 1+0.1V, which allow a class of circuits with output voltage level biased at or near input voltage level without voltage level shift. These devices exhibit same well controlled turn-off and sub-threshold characteristics as standard enhancement mode MOSFFTs.

The ALD110800A/ALD110800/ALD110900A/ALD110900 are MOSFET devices that feature high input impedance ($10^{12}\Omega$) and high DC current gain (> 10^8). A sample calculation of the DC current gain at a drain current of 3mA and input leakage current of 30pA at 25°C is = 3mA/ 30pA = 100,000,000. For most applications, connect V+ pin to the most positive voltage potential (or left open unused) and V- and N/C pins to the most negative voltage potential in the system. All other pins must have voltages within these voltage limits.

ORDERING INFORMATION

0°C to +7	Operating Tempe 70°C	erature Range* 0°C to +70°	С
16-Pin	16-Pin	8-Pin	8-Pin
Plastic Dip	SOIC	Plastic Dip	SOIC
Package	Package	Package	Package
ALD110800APC	ALD110800ASC	ALD110900APA	
ALD110800PC	ALD110800SC	ALD110900PA	

^{*} Contact factory for industrial temp, range or user-specified threshold voltage values


FEATURES

- Precision zero threshold voltage mode
- Nominal R_{DS(ON)} @V_{GS}=0.0V of 104KΩ
- Matched MOSFET to MOSFET characteristics
- Tight lot to lot parametric control
- VGS(th) match (VOS) to 2mV and 10mV
- Positive, zero, and negative V_{GS(th)} tempco
- Low input capacitance
- Low input/output leakage currents

APPLICATIONS

- Very low voltage analog and digital circuits
- Zero power fail safe circuits
- Backup battery circuits & power failure detector
- Low level voltage clamp & zero crossing detector
- Source followers and buffers
- Precision current mirrors and current sources
- Capacitives probes and sensor interfaces
- Charge detectors and charge integrators
- · Differential amplifier input stage
- High side switches
- · Peak detectors and level shifters
- Sample and Hold
- Current multipliers
- Analog switches / multiplexers
- Voltage comparators and level shifters

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Drain-Source voltage, V _{DS}	10.6V
Gate-Source voltage, V _{GS}	10.6V
Power dissipation —	500 mW
Operating temperature range PA, SA, PC, SC package —	0°C to +70°C
Storage temperature range	65°C to +150°C
Lead temperature, 10 seconds	+260°C

OPERATING ELECTRICAL CHARACTERISTICS

V+ = +5V (or open) V- = GND $T_A = 25^{\circ}C$ unless otherwise specified

CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

		ALD110800A / ALD110900A		ALD110800/ ALD110900					
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Gate Threshold Voltage	VGS(th)	-0.01	0.00	0.01	-0.02	0.00	0.02	V	$I_{DS} = 1\mu A, V_{DS} = 0.1V$
Offset Voltage VGS(th)1-VGS(th)2	Vos		1	2		2	10	mV	
Offset Voltage Tempco	TCVOS		5			5		μV/°C	VDS1 = VDS2
GateThreshold Voltage Tempco	TCVGS(th)		-1.7 0.0 +1.6			-1.7 0.0 +1.6		mV/°C	$I_D = 1\mu A, V_{DS} = 0.1V$ $I_D = 20\mu A, V_{DS} = 0.1V$ $I_D = 40\mu A, V_{DS} = 0.1V$
On Drain Current	IDS (ON)		12.0 3.0			12.0 3.0		mA	VGS = +9.5V, VDS = +5V VGS = +4.0V, VDS = +5V
Forward Transconductance	GFS		1.4			1.4		mmho	VGS = +4.0V VDS = +9.0V
Transconductance Mismatch	ΔGFS		1.8			1.8		%	
Output Conductance	GOS		68			68		μmho	VGS = +4.0V VDS = +9.0V
Drain Source On Resistance	RDS (ON)		500			500		Ω	V _{DS} = +0.1V V _{GS} = +4.0V
Drain Source On Resistance	RDS (ON)		104			104		ΚΩ	V _{DS} = +0.1V V _{GS} = +0.0V
Drain Source On Resistance Tolerance	ΔRDS (ON)		5			5		%	V _{DS} = +0.1V V _{GS} = +4.0V
Drain Source On Resistance Mismatch	ΔRDS (ON)		0.5			0.5		%	
Drain Source Breakdown Voltage	BVDSX	10			10			٧	IDS = 1.0μA V-= VGS = -1.0V
Drain Source Leakage Current ¹	IDS (OFF)		10	400		10	400	pA	VGS = -1.0V, V _{DS} =+5V V ⁻ = -5V
				4			4	nA	V = -5V T _A = 125°C
Gate Leakage Current ¹	IGSS		5	30 1		5	30 1	pA nA	VDS = 0V VGS = +10V T _A =125°C
Input Capacitance	CISS		2.5			2.5		pF	
Transfer Reverse Capacitance	C _{RSS}		0.1			0.1		pF	
Turn-on Delay Time	ton		10			10		ns	V+ = 5V R _L = 5KΩ
Turn-off Delay Time	toff		10			10		ns	V+ = 5V R _L = 5KΩ
Crosstalk			60			60		dB	f = 100KHz

Notes: ¹ Consists of junction leakage currents