ECE 137 B: Notes Set 14 Feedback loop compensation

Mark Rodwell
Doluca Family Chair
University of California, Santa Barbara

Not just about transistor circuits

Negative feedback is used widely in transistor circuits.

Negative feeback is used far more widely than just in transistor circuits.
Home heating control (thermostat, etc)
Modern aircraft: electronic control of roll, pitch, yaw.
Cars: anti-lock braking, electronic stability enhancement, air/fuel mixture...
Robotics and machinery...

Most of the compenstation techniques discussed here can be used in general feedback control systems.

Exception: pole-splitting is specific to transistor circuits

One method of obtaining stability (1)

From the Bode criterion, once clear way to have adequate phase margin is for the $2 \mathrm{nd}, 3 \mathrm{rd}$, and higher pole frequencies to all be well above $f_{\text {loop }}$, the loop bandwidth

This can be understood by recollecting that, if the poles in $T(s)$ are real

$$
\begin{aligned}
\angle T\left(f_{\text {loop }}\right) & =\arctan \left(f_{\text {loop }} / f_{z 1}\right)+\arctan \left(f_{\text {loop }} / f_{z 2}\right)+\ldots \\
& -\arctan \left(f_{\text {loop }} / f_{\text {p1 }}\right)-\arctan \left(f_{\text {loop }} / f_{p 1}\right)-\ldots
\end{aligned}
$$

So, if $f_{\text {loop }}$ is well below $f_{p 2}, f_{p 3}, \ldots$. then each of these poles will contribute very little phase shift, while the term $-\arctan \left(f_{\text {loop }} / f_{p 1}\right)$ will contribute approximately -90° phase shift.

One method of obtaining stability (2)

From the Bode criterion, once clear way to have adequate phase margin is for the 2 nd , 3 rd , and higher pole frequencies to all be well above $f_{\text {loop }}$, the loop bandwidth

This can be understood by recollecting that, if the poles in $T(s)$ are real

$$
\begin{aligned}
\angle T\left(f_{\text {loop }}\right) & =\arctan \left(f_{\text {loop }} / f_{z 1}\right)+\arctan \left(f_{\text {loop }} / f_{z 2}\right)+\ldots \\
& -\arctan \left(f_{\text {loop }} / f_{\text {p1 }}\right)-\arctan \left(f_{\text {loop }} / f_{p 1}\right)-\ldots
\end{aligned}
$$

So, if $f_{\text {loop }}$ is well below $f_{p 2}, f_{p 3}, \ldots$. then each of these poles will contribute very little phase shift, while the term $-\arctan \left(f_{\text {loop }} / f_{p 1}\right)$ will contribute approximately -90° phase shift.

Dominant pole compensation

Make $f_{p 1}$ small enough that $f_{\text {loop }}=f_{p 1}\left(1+T_{0}\right) \ll f_{p 2}, f_{p 3}, \cdots$

Then, at $f_{\text {loop }}$, the higher poles $f_{p 2}, f_{p 3}, \ldots$ will contribute very little phase shift, while the first pole will contribute approximately -90° phase shift.

In the op-amp below, we do this by adding capacitance to the node that is already providing the lowest pole frequency $f_{p 1}$.

Pole-splitting compensation (1)

We seek to make $f_{\text {loop }}<f_{p 2}, f_{p 3}, \ldots$, so that the poles at $f_{p 2}, f_{p 3}$ don't contribute significant phase shift at $f_{\text {loop }}$.

If we could increase $f_{p 2}, f_{p 3}, \ldots$, then we could not need to decrease $f_{p 1}$ and $f_{\text {loop }}$ as much as would be needed if $f_{p 2}, f_{p 3}, \ldots$. , remained constant.

This can be done with a pole-splitting capacitor, as shown

Pole-splitting compensation (2)

The common-source stage has
$\frac{V_{D S}(s)}{I_{i}(s)}=\left.\frac{V_{D S}}{I_{i}}\right|_{\text {mid-band }} \cdot \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$
where
$a_{1}=R_{i} C_{i n}+R_{L, e q} C_{\text {total }}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{g d}$
$a_{2}=R_{i} R_{\text {Leq }}\left(C_{g s} C_{\text {total }}+C_{g s} C_{L}+C_{\text {total }} C_{L}\right)$
Where $C_{i n}$ and C_{L} include capacaitances from other transistors
Then, using the separated pole approximation:
$1 / 2 \pi f_{p 1} \cong a_{1}=R_{i} C_{g s}+R_{L, e q} C_{g d}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{\text {total }}$
$1 / 2 \pi f_{p 2} \cong \frac{a_{2}}{a_{1}}=\frac{R_{i} R_{\text {Leq }}\left(C_{g s} C_{\text {total }}+C_{g s} C_{L}+C_{\text {total }} C_{L}\right)}{R_{i} C_{g s}+R_{L, e q} C_{\text {total }}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{\text {total }}}$
As $C_{\text {total }}$ increases (and given that $g_{m} R_{L, e q} \gg 1, g_{m} R_{i} \gg 1$)

$$
f_{p 2} \rightarrow \frac{g_{m}}{2 \pi\left(C_{g s}+C_{L}\right)}
$$

The pole frequency associated with C_{L} has increased.

Pole-splitting compensation (3)

What, physically, is happening ?

The amplifier has poles arising in part from the capacitances
 associated with M_{6}, together with $C_{D S 5}$. These capacitances are charged through the output impedance of M_{5}.

But, while $Z_{\text {out } 5}=R_{D S 5}$ at DC , as frequency increases, $\left(C_{d g 5}+C_{C}\right)$ short-circuits together the gate and drain of $M 5$. So, at high frequencies, $Z_{\text {out } 5}=\left(R_{D S 5}\left\|R_{i}\right\| \frac{1}{g_{m 5}}\right) \cong 1 / g_{m 5}$

Consequently, with a large C_{C}, we have one low pole frequency, but the pole associated with the output of M_{5}, and the poles associated with M_{6}, are driven to higher frequencies.

Lead compensation in forward path

The resistor R_{z} introduces a zero into $A_{O L}(s)$ with $s_{\text {zero }}=-1 / C_{C}\left(R_{z}-1 / g_{m}\right)$

If $s_{\text {zero }}$ is negative (left half of s-plane), then the zero adds postive phase shift.

We place $f_{\text {zero }}$ somewhat above $f_{\text {loop }}$.

Placing the zero carelessly can result in a large increase in $f_{\text {loop }}$, with consequent loop instability

Lead compensation in feedback path (1)

We can also introduce a zero into the feedback path $\beta(s)$, using the capacitor C_{z}.

This will, however, force us to consider feedback theory more carefully.

We start with the relationship, valid (we will show later) if $Z_{\text {out }}=0 \Omega$:
$A_{C L}(s)=A_{\infty} \frac{T}{1+T}$ where A_{∞} is the gain if $V_{i n}^{+}=V_{i n}^{-}$ and T is the gain once around the loop

Lead compensation in feedback path (2)

First find A_{∞} :

Use KCL at $V_{\text {in }}^{-}$
$\left(V_{\text {in }}^{-}-V_{\text {in }}^{+}\right) s C_{g s 1,2} / 2+V_{\text {in }}^{-} G_{F 2}+\left(V_{\text {in }}^{-}-V_{\text {out }}\right)\left(G_{F 1}+s C_{z}\right)=0$
but $V_{\text {in }}^{+}=V_{\text {in }}^{-}=V_{\text {gen }}$
$V_{\text {in }}^{+} G_{F 2}+\left(V_{\text {in }}^{+}-V_{\text {out }}\right)\left(G_{F 1}+s C_{z}\right)=0$
$V_{\text {gen }}\left(G_{F 1}+G_{F 2}+s C_{z}\right)-V_{\text {out }}\left(G_{F 1}+s C_{z}\right)=0$
$\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {infinite op-amp gain }}=A_{\infty}=\frac{G_{F 1}+G_{F 2}+s C_{z}}{G_{F 1}+s C_{z}}=\frac{R_{F 1}+R_{F 2}}{R_{F 2}} \frac{1+s C_{z}\left(R_{F 1} \| R_{F 2}\right)}{1+s C_{z} R_{F 1}}$

So, the frequency-dependent feedback has added a pole-zero pair to A_{∞}.

Lead compensation in feedback path (3)

Now find $T(s)$:
To do this, we *unwrap* the feedback loop, replacing it with an infinite chain of forward gain $\left(A_{o L}\right)$ and feeback (β) elements. We insert a test voltage $V_{\text {test }}$, and compute the voltage that reaches the identical point after passing once through a forward gain $\left(A_{o L}\right)$ element and once through a feeback (β) element. This keeps the loading impedance of each node unchanged. (you will better avoid loading anomalies by comparing the points $T V_{\text {test }}$ and $T^{2} V_{\text {test }}$, but that requires more work).

Lead compensation in feedback path (4)

The loop transmission involves $A_{O L}(s)$, including its poles, and the feedback network $\beta(s)$
$\beta(s)$ involves a voltage divider between $R_{F 2} \|\left(C_{g s 1,2} / 2\right)$ and $R_{F 1} \| C_{z}$.
$\beta(s)=\frac{R_{F 2}}{R_{F 1}+R_{F 2}} \frac{1+s R_{F 1} C_{z}}{1+s\left(R_{F 1}| | R_{F 2}\right)\left(C_{z}+C_{g s 1,2} / 2\right)}$

$T(s)=A_{O L}(s) \beta(s)=A_{O L}(s) \frac{R_{F 2}}{R_{F 1}+R_{F 2}} \frac{1+s R_{F 1} C_{z}}{1+s\left(R_{F 1} \| R_{F 2}\right)\left(C_{z}+C_{g s 1,2} / 2\right)}$
We have introduced a zero ($s_{z}=-1 / R_{F 1} C_{Z}$) into $T(s)$, improving the loop phase margin

Lead compensation in feedback path (5)

$$
A_{C L}(s)=A_{\infty} \frac{T(s)}{1+T(s)}
$$

where
$A_{\infty}=\frac{R_{F 1}+R_{F 2}}{R_{F 2}} \frac{1+s C_{z}\left(R_{F 1} \| R_{F 2}\right)}{1+s C_{z} R_{F 1}}$
and
$T(s)=A_{O L}(s) \beta(s)=A_{O L}(s) \frac{R_{F 2}}{R_{F 1}+R_{F 2}} \frac{1+s R_{F 1} C_{z}}{1+s\left(R_{F 1} \| R_{F 2}\right)\left(C_{z}+C_{g s 1,2} / 2\right)}$
The zero in the feedback path has
added a zero to $T(s)$, improving the phase margin, but added a pole to A_{∞}, which may or may not be desirable.

At higher frequencies, we have also added a pole to $T(s)$ and a zero to A_{∞}.

Such feedback lead compensation is nevertheless very commonly used.

Lag or Integral Compensation

$$
A_{O L}(D C)=10^{6} \rightarrow 10^{8}
$$

We add a pole-zero pair to the amplifier while increasing its DC gain.

$$
\begin{aligned}
& f_{p 1}=5 \mathrm{~Hz} \rightarrow 5 \mathrm{~Hz} \\
& f_{p 2}=2 \mathrm{MHz} \rightarrow 2 \mathrm{MHz} \\
& f_{p 3}=20 \mathrm{MHz} \rightarrow 20 \mathrm{MHz} \\
& \operatorname{added} f_{z 1}=100 \mathrm{kHz} \\
& \operatorname{added} f_{p 4}=1 \mathrm{kHz}
\end{aligned}
$$

class notes, M. Rodwell, copyrighted 2012-2023

Overall loop banwidth remains constant
Phase margin is decreased (not good)
Loop transmission, T, is greatly increased at low frequencies.
This provides greater loop precision, distortion suppression.

