ECE 137 B: Notes Set 15
 Feedback with finite, nonzero port impedances

Mark Rodwell
Doluca Family Chair
University of California, Santa Barbara

Models of feedback amplifier input stages

Elementary treatment: ignore $C_{g d}$ to simplify analysis.
$I_{i n}^{+}=-I_{i n}^{-}=I_{i n}=\left(V_{i n}^{+}-V_{i n}^{-}\right)\left(1 / s C_{g s}+1 / s C_{g s}\right)^{-1}=\left(V_{i n}^{+}-V_{i n}^{-}\right)\left(s C_{g s} / 2\right)$
$I_{i n}=Y_{i n}\left(V_{i n}^{+}-V_{i n}^{-}\right)=s C_{i n}\left(V_{i n}^{+}-V_{i n}^{-}\right)$where $Y_{i n}=s C_{i n}$ and $C_{i n}=C_{g s} / 2$

$I_{i n}^{+}=\left(V_{i n}^{+}-V_{i n}^{-}\right) s C_{g s}=Y_{i n}^{+}\left(V_{i n}^{+}-V_{i n}^{-}\right)$where $Y_{i n}^{+}=s C_{i n}$ and $C_{i n}=C_{g s}$ $I_{i n}^{-}=\left(g_{m}+s C_{i n}\right)\left(V_{i n}^{-}-V_{i n}^{+}\right)=Y_{i n}^{-}\left(V_{i n}^{-}-V_{i n}^{+}\right)$where $Y_{i n}^{-}=\left(g_{m}+s C_{i n}\right)$ Key point: $\quad I_{i n}^{+} \neq-I_{\text {in }}^{-}$

Model and analysis of Feedback Amplifier (1)

Nodal analysis: $\Sigma I=0$ at $V_{i n}^{-}$:
$V_{\text {in }}^{-}\left(Y_{1}+Y_{2}+Y_{\text {in }}^{-}\right)+V_{\text {out }}\left(-Y_{2}\right)+V_{\text {in }}\left(-Y_{\text {in }}^{-}\right)=0$
also:
$V_{\text {out }}=A_{\text {oL }}\left(V_{\text {in }}^{+}-V_{\text {in }}^{-}\right) \rightarrow V_{\text {in }}^{-}=V_{\text {in }}^{+}-V_{\text {out }} / A_{\text {oL }}=V_{\text {in }}-V_{\text {out }} / A_{\text {oL }}$

Now combine these two equations and solve:
$\left(V_{\text {in }}-V_{\text {out }} / A_{\text {oL }}\right)\left(Y_{1}+Y_{2}+Y_{\text {in }}^{-}\right)+V_{\text {out }}\left(-Y_{2}\right)+V_{\text {in }}\left(-Y_{\text {in }}^{-}\right)=0$
$V_{\text {in }}\left(Y_{1}+Y_{2}\right)+V_{\text {out }}\left(-\frac{Y_{1}+Y_{2}+Y_{\text {in }}^{-}}{A_{\text {oL }}}-Y_{2}\right)=0$
$V_{\text {in }}\left(Y_{1}+Y_{2}\right)=V_{\text {out }}\left(\frac{Y_{1}+Y_{2}+Y_{\text {in }}^{-}}{A_{\text {oL }}}+Y_{2}\right)=V_{\text {out }} Y_{2}\left(\frac{Y_{1}+Y_{2}+Y_{\text {in }}^{-}}{Y_{2} A_{O L}}+1\right)$
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Y_{1}+Y_{2}}{Y_{2}} \frac{1}{\left(\frac{Y_{1}+Y_{2}+Y_{i n}^{-}}{Y_{2} A_{O L}}+1\right)}=\frac{Y_{1}+Y_{2}}{Y_{2}} \frac{\left(A_{o L} \frac{Y_{2}}{Y_{1}+Y_{2}+Y_{\text {in }}^{-}}\right)}{\left(1+A_{o L} \frac{Y_{2}}{Y_{1}+Y_{2}+Y_{\text {in }}^{-}}\right)}$

Model and analysis of Feedback Amplifier (2)

We want an expression we can recognize.
We are looking for expressions similar to $T /(1+T)$, so...
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{1}+Z_{2}}{Z_{1}} \frac{A_{o L}\left(\frac{Y_{2}}{Y_{1}+Y_{2}+Y_{\text {in }}^{-}}\right)}{1+A_{O L}\left(\frac{Y_{2}}{Y_{1}+Y_{2}+Y_{\text {in }}^{-}}\right)}$
Calculate the voltage divider between $V_{\text {out }}$ and $V_{\text {in }}^{-}$:
$\frac{Z_{1} \| Z_{i n}^{-}}{Z_{1} \| Z_{i n}^{-}+Z_{2}}=\frac{\left(\frac{1}{Y_{1}+Y_{i n}^{-}}\right)}{\left(\frac{1}{Y_{1}+Y_{i n}^{-}}\right)+\left(\frac{1}{Y_{2}}\right)}=\frac{Y_{2}}{Y_{1}+Y_{2}+Y_{i n}^{-}}$
So:
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{1}+Z_{2}}{Z_{1}} \frac{A_{o L}\left(\frac{Z_{1} \| Z_{\text {in }}^{-}}{Z_{1} \| Z_{\text {in }}^{-}+Z_{2}}\right)}{1+A_{o L}\left(\frac{Z_{1} \| Z_{\text {in }}^{-}}{Z_{1} \| Z_{\text {in }}^{-}+Z_{2}}\right)}$

$$
\begin{aligned}
& V_{\text {out }}=A_{\text {oL }}\left(V_{\text {in }}^{+}-V_{\text {in }}^{-}\right) \\
& I_{\text {in }}^{+}=Y_{\text {in }}^{+}\left(V_{\text {in }}^{-}-V_{\text {in }}^{-}\right) \\
& I_{\text {in }}^{-}=Y_{\text {in }}^{-}\left(V_{\text {in }}^{-}-V_{\text {in }}^{+}\right)
\end{aligned}
$$

Model and analysis of Feedback Amplifier (3)

Compare our answer to $A_{\infty} \frac{T}{1+T}$:

To compute T, unwrap the feedback loop, and compute gain from the point $T V_{\text {test }}$ to the point $T^{2} V_{\text {test }}$ $\rightarrow T=A_{o L}\left(\frac{Z_{1} \| Z_{i n}^{-}}{Z_{1} \| Z_{i n}^{-}+Z_{2}}\right)$
To compute A_{∞}, assume $A_{O L}=\infty$ and compute $V_{\text {out }} / V_{\text {in }}$:

$$
A_{\infty}=\left.\frac{V_{\text {out }}}{V_{\text {in }}}\right|_{\text {infinite } A_{o L}}=\frac{Z_{1}+Z_{2}}{Z_{1}}
$$

So, we have shown that
$A_{C L}=\frac{Z_{1}+Z_{2}}{Z_{1}} \frac{A_{o L}\left(\frac{Z_{1} \| Z_{i n}^{-}}{Z_{1} \| Z_{\text {in }}^{-}+Z_{2}}\right)}{1+A_{o L}\left(\frac{Z_{1} \| Z_{\text {in }}^{-}}{Z_{1} \| Z_{\text {in }}^{-}+Z_{2}}\right)}=A_{\infty} \frac{T}{1+T}$

...shown given (1) $Z_{\text {out }}=0 \Omega$ and (2) voltage-sense, voltage sum feedback

Formula for the other three cases

We have shown that
$A_{C L}=A_{\infty} \frac{T}{1+T}$
...given (1) $Z_{\text {out }}=0 \Omega$ and (2) voltage-sense, voltage sum feedback.

We have not considered
voltage-sense, current sum
current-sense, voltage sum
current-sense, current sum.
....I will leave these as exercises to the reader.

Model with finite output impedance

Nodal analysis: $\Sigma I=0$ at $V_{i n}^{-}$:
$V_{\text {in }}^{-}\left(Y_{1}+Y_{2}+Y_{\text {in }}^{-}\right)+V_{\text {out }}\left(-Y_{2}\right)+V_{\text {in }}\left(-Y_{\text {in }}^{-}\right)=0$

Nodal analysis: $\Sigma I=0$ at $V_{\text {out }}$:

$$
V_{\text {out }}\left(Y_{\text {out }}+Y_{2}\right)+V_{\text {in }}^{-}\left(-Y_{2}\right)+A_{\text {oL }}\left(V_{\text {in }}^{+}-V_{\text {in }}^{-}\right)\left(-Y_{\text {out }}\right)=0
$$

From our earlier calculation, treating V_{x} as a feedback amplifier output:

$\frac{V_{X}}{V_{\text {in }}}=\frac{Z_{1}+Z_{2}+Z_{\text {out }}}{Z_{1}} \frac{A_{\text {oL }} \beta}{1+A_{\text {oL }} \beta}$ where $\beta=\frac{Z_{1} \| Z_{\text {in }}^{-}}{Z_{1} \| Z_{\text {in }}^{-}+Z_{\text {out }}+Z_{2}}$
also $V_{\text {out }}=\frac{Z_{2}+Z_{1} \| Z_{\text {in }}^{-}}{Z_{1} \| Z_{\text {in }}^{-}+Z_{\text {out }}+Z_{2}} V_{X}+\frac{Z_{\text {out }}}{Z_{\text {out }}+Z_{2}} \frac{\left(Z_{\text {out }}+Z_{2}\right) \| Z_{1}}{Z_{\text {in }}^{-}+\left(Z_{\text {out }}+Z_{2}\right) \| Z_{1}} V_{\text {in }}$
So
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{1}+Z_{2}+Z_{\text {out }}}{Z_{1}} \frac{Z_{2}+Z_{1} \| Z_{\text {in }}^{-}}{Z_{1} \| Z_{\text {in }}^{-}+Z_{\text {out }}+Z_{2}} \frac{T}{1+T}$...forward gain term
$+\frac{Z_{\text {out }}}{Z_{\text {out }}+Z_{2}} \frac{\left(Z_{\text {out }}+Z_{2}\right) \| Z_{1}}{Z_{\text {in }}^{-}+\left(Z_{\text {out }}+Z_{2}\right) \| Z_{1}} V_{\text {in }}$...feed forward through feedback loop

