The Nyquist Feedback Stability Criterion

Mark Rodwell,
University of California, Santa Barbara
Feedback loop stability

\[A_{CL}(s) = \frac{A_{OL}(s)}{1 + A_{OL}(s)\beta(s)} = \frac{A_{OL}(s)}{1 + T(s)} \]
\[= \frac{N(s)}{D(s)} \]

We want to know whether \(A_{CL}(s) \) has any poles in the right half of the S-plane.

Key point 1: poles of \(A_{CL}(s) \) are zeros of \(D(s) = 1 + A_{OL}(s)\beta(s) \)
Key point 2: zeros of \(A_{CL}(s) \) are poles of \(D(s) = 1 + A_{OL}(s)\beta(s) \)
We have a variable s. We have a function $F(s)$.

First: the trivial function $F(s) = s$

If we move the point s around the s – plane,
The point $F(s)$ moves in an identical trajectory (of course).
Walking around the S-plane (2): a zero

Now consider a zero \(F(s) = s - s_z \)

\(s \to F(s) \)

If we move the point \(s \) once in a clockwise circle around the zero, then the point \(F(s) \) moves in one clockwise circle around the origin.
Given that $F(s) = s - s_z$, the angle of the point s with respect to the zero has to equal to the angle of the point $F(s)$ with respect to the origin.

So, when s circles the zero, $F(s)$ must circle the origin, and clockwise circling leads to clockwise circling.
Walking around the S-plane (3): missing the zero

\[F(s) = s - s_z \]

If our path in the s-plane does not circle the zero, then the path in the F(s) plane will not circle the origin.
Walking around the S-plane (3): multiple zeros

\[F(s) = (s - s_{z1})(s - s_{z2}) \cdots (s - s_{zM}) \]

We can now see that, if our path in the s-plane wraps around \(N \) zeros, going clockwise, then the path in the F(s) plane will circle the origin \(N \) times, going clockwise.
Walking around the S-plane (2): a pole

Now consider a pole \(F(s) = \frac{1}{(s - s_p)} \)

\[s \rightarrow F(s) \]

Note that because \(\angle \left(\frac{1}{(s - s_z)} \right) = -1 \cdot \angle(s - s_z) \),
the angle has **changed sign**.

(Also, the radius has inverted, but that is not important here.)

If we move the point \(s \) once in a *clockwise* circle around the pole, then
the point \(F(s) \) moves in one *counter-clockwise* circle around the origin.
Our prize: Cauchy's principle

Let us travel clockwise around a closed loop in the s-plane which wraps around Z zeros and P poles.

Then $F(s)$ will wrap N times clockwise around the origin, where

$$N = Z - P$$
Towards Nyquist's criterion

If \(s \) follows the marked trajectory, then the number of times \(*N*\) that \((1+T(s))\) circles the origin, in a clockwise direction, equals the number of zeros, \(Z\), in \((1+T(s))\), minus the number of poles, \(P\), in \((1+T(s))\),

\[
N = Z - P, \quad \text{or} \quad Z = P + N
\]
Towards Nyquist's criterion

But: $Z = \# \text{ unstable poles in } A_{CL}(s)$, the closed loop gain
and: $P = \# \text{ unstable poles in } A_{OL}(s)\beta(s)$, the loop transmission.

So: $Z = P + N$, where
$Z = \# \text{ unstable poles in } A_{CL}(s)$, the closed loop gain
$P = \# \text{ unstable poles in } A_{OL}(s)\beta(s)$, the loop transmission.
$N = \# \text{ times (1+T(s)) wraps clockwise around the origin}$
Nyquist's criterion (finally)

Let's plot $T(s)$ instead of $(1+T(s))$.

So: $Z = P + N$, where

$Z = \# \text{ unstable poles in } A_{CL}(s), \text{ the closed loop gain}$

$P = \# \text{ unstable poles in } A_{OL}(s)\beta(s), \text{ the loop transmission}$

$N = \# \text{ times } T(s) \text{ wraps clockwise around the point } (-1+j0)$
Nyquist's criterion: simplified case: stable before feedback

Nyquist criterion applies even for systems which are unstable before feedback is applied! Example: pitch (nose up/down) control on some fighter planes.

NOW: let's consider cases where the system is stable before feedback is applied. In that case: \(P = \# \text{unstable poles in } A_{OL}(s)\beta(s),\text{ the loop transmission} = *\text{zero}* \)

In that case: \(Z = N, \text{ where } \)

\(Z = \# \text{unstable poles in } A_{CL}(s), \text{ the closed loop gain} \)

\(N = \# \text{times } T(s) \text{ wraps clockwise around the point } (-1+j0) \)
Nyquist stability test: feedback with one pole

Here the loop transmission has one pole.

T(s), in the Nyquist test, does not wrap around the point (-1+j0)
Nyquist stability test: feedback with two poles

Here the loop transmission has two poles.

$T(s)$, in the Nyquist test, still does not wrap around the point $(-1+j0)$.
Nyquist stability test: feedback with three poles

Here the loop transmission has three poles. Depending on the numerical parameters, \(T(s) \), in the Nyquist test, might wrap twice clockwise around the point \((-1+j0)\).

\(\rightarrow \) Two unstable poles in \(A_{CL}(s) \)
Here the loop transmission has three poles and two zeros
Depending on the numerical parameters, as shown
T(s), in the Nyquist test, might wrap *zero times* clockwise around the point (-1+j0).
→ No unstable poles in $A_{CL}(s)$