

Problem 1: The NMOS FET has
$K_{\mu}=10 \mathrm{~mA} / \mathrm{V}^{2} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right)$
$K_{v}=2.0 \mathrm{~mA} / \mathrm{V} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \Delta V=0.1 \mathrm{~V}$,
$1 / \lambda=4$ Volts, and a 0.25 V threshold.
$L_{g}=30 \mathrm{~nm}$
The gate-source capacitance $C_{g s}$ is
$\left(20 \mathrm{fF} /(\mu \mathrm{m})^{2}\right) \cdot L_{g} W_{g}+(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$ while $C_{g d}$ is $(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$.
$V_{d d}$ is 1.5 Volts. We will bias device at $V_{g s}=0.35$ Volts and $I_{d}=2 \mathrm{~mA}$ and $V_{d s}=0.5$ V. From this you can find W_{g}.

The NMOS FET has
$K_{\mu}=10 \mathrm{~mA} / \mathrm{V}^{2} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right)$
$R_{\text {gen }}=100 \mathrm{k} \Omega$. The parallel combination of $R_{g 1}$ and $R_{g 2}$ is $1 \mathrm{M} \Omega . C_{\text {in }}$ and $C_{\text {out }}$ are both infinite. The load resistance is to be twice R_{d}
(a) Find all resistor values, the values of $C_{g s}$ and $C_{g d}$. Also find the transistor $f_{\tau}(\mathrm{b})$ Using the results derived by nodal analyis, find the low-frequency gain and the 2 dominant poles of the transfer function and the zero frequency. Is it so high in frequency that it can be neglected? (c)Now suppose that the input signal is a 10 mV step-function occuring at $\mathrm{t}=0$. What will be the output signal voltage waveform (compute it as a function of time)? What is the amplifer's $10 \%-90 \%$ step-response risetime? (to compute this, if one pole is much higher in frequency that the other, neglect it in the risetime calculation) (d) Draw a Bode plot (on semi-log paper) of the gain-frequency characteristics.

Problem 2: Using the same values as in problem 1, now set $C_{g s}$ and $C_{g d}$ to zero, and $C_{\text {in }}=1 \mathrm{nF}, C_{\text {out }}=2 \mathrm{nF}$. (a) compute calculate the low-frequency gain-frequency characteristics of the amplifier. (b) Now suppose that the input signal is a 1 mV step-function occuring at $\mathrm{t}=0$. What will be the output signal voltage waveform
(compute and graph as a function of time)?
Problem 3:
$V_{d d}=1$ Volts, $-V_{s s}=1$ Volts,
Bias the transistor at $V_{d}=0.25 \mathrm{~V}, V_{g s}=$ 0.35 V , and select the gate width W_{g} such that the transistor is carrying 0.5 mA drain current.
The load resistance is to be 10 times Rd. Rgen=100 Ohm.
(a) Find all resistor values, Cgs and Cgd , and transistor ft .

$K_{v}=2.0 \mathrm{~mA} / \mathrm{V} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \Delta V=0.1 \mathrm{~V}$,	(b) Compute the small signal Vout/Vgen at mid-band. (c) Using the results derived by
$1 / \lambda=$ infinity Volts, and a 0.25 V	nodal analysis, find the first two poles in
threshold. $L_{g}=30 \mathrm{~nm}$. The gate-source	the transfer function. (d) Draw clean Bode plots on semilog paper of the mangitude capacitance $C_{g s}$ is
$\left(20 \mathrm{fF} /(\mu \mathrm{m})^{2}\right) \cdot L_{g} W_{g}+(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$	and phase of the transfer function.
while $C_{g d}$ is $(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$.	

