ECE137B Problem set \#6,
Problem 1
a) The operational amplifier has infinite
input impedance, zero output impedance,
infinite common-mode rejection ratio, and
a differential gain of $A_{\text {diff }}=10,000$.
$R_{l}=9 \mathrm{kOhm}, R_{2}=1 \mathrm{kOhm}$.
Find the gain $\mathrm{V}_{\text {out } / \mathrm{Vin}^{2} \text {. (b) Now suppose }}^{\text {that the op-amp has a differential input }}$
impedance of 100 kOhm. Find the closed-
loop input impedance
c) The differential amplifier has an output
impedance of 10 Ohm (but infinited input
impedance). Find the closed-loop output
impedance.
Problem 4
Stability analysis: the Root Locus
The operational amplifier has a differential
gain of 10^{6} at DC. Its differential gain has
two significant poles, one at 10 Hz, and
one at 1 MHz The amplifier is otherwise
ideal (zero output impedance, infinite input
impedance, infinite CMRR). Consider 2
cases: a) R1=0 and R2=1kOhm b)
$\mathrm{R} 1=9 \mathrm{kOhm}$ and R2=1kOhm. In each of
cases a), and b) do the following:
Solve mathematically for Vout(s)/Vgen(s)
Find the natural frequency, the damped
frequency, and the damping factor
Draw to scale the location of the poles of
Vout(s)/Vgen(s) on the S-plane.
Graph the (amplitude) of Vout(jf)/Vgen(jf)
Graph the step response of the amplifier
Vout(t) given Vin(t)=1V*U(t)

