ECE145B (undergrad) and ECE218B (graduate)

Final Exam. Tuesday March 21, 2023

Do not open exam until instructed to.
Open notes, open books, etc.
You have 3 hrs .
Use all reasonable approximations (5% accuracy is fine.) , AFTER STATING THEM. Hint: Stop and think before doing complicated calculations. For some problems, there is an easier way.

Problem	Points Received	Points Possible (145B)	Points Possible (218B)
1a		10	10
1b		5	5
1c		5	5
1d		10	10
1e		10	10
2a		Do not work	10
2b		Do not work	5
2c		5	10
2d		10	5
2e		5	10
2f		5	5
3a		5	5
3b		10	5
3c		$\mathbf{9 0}$	10
Total			$\mathbf{1 0 5}$

*****Assume $\mathbf{T}=\mathbf{2 9 0}$ Kelvin for all noise calculations. $* * * * *$

Problem 1, 40 points (218B), 40 points (145B)
mixers and frequency conversion:
part a, 10 points
Basic mixer operation
The MOSFET is has $I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}$ with
$V_{t h}=0.3 \mathrm{~V}$ and $K_{\mu}=10 \mathrm{~mA} / \mathrm{V}^{2}$. The gate bias voltage $V_{D C}=0.4 \mathrm{~V}, V_{L O}(t)=V_{L O} \cos \left(2 \pi f_{L O} t\right)$, $V_{R F}(t)=V_{R F} \cos \left(2 \pi f_{R F} t\right)$, with $V_{L O}=0.1 \mathrm{~V}, f_{L O}=1$ $\mathrm{GHz}, V_{R F}=10 \mathrm{mV}$, and $f_{R F}=1.01 \mathrm{GHz} . V_{D D}$ is sufficiently large for the transistor to be operating in saturation (above the $V_{D S}$ knee voltage), and $R_{D}=$ $1 \mathrm{k} \Omega$. The blocking capacitor is an AC short-circuit. Find the RMS amplitude of the 10 MHz component of IF output voltage $V_{I F}(t)$.

$$
\begin{aligned}
& -\frac{V_{\text {It }}}{2 B_{D} L_{\mu}}=V_{n+}+V_{L_{0}} \cos \omega_{n+t} \cos \omega_{n} b \\
& =\frac{V_{n t} V_{c_{0}}}{4}\left(3_{e t}+1 / 3_{n t}\right)\left(\xi_{c o}+1 / m_{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{V_{k P} V_{10}}{2}\left[\begin{array}{c}
\left.\cos \left(\left(\omega_{n} 6+\omega_{0}\right) t\right)\right] \\
\left.\left[+\cos \left(\omega_{n 6}-\omega_{0}\right) t\right)\right]
\end{array}\right. \\
& \begin{array}{l}
\left.\left[+\cos \left(\omega_{n 6}-\omega_{0}\right) t\right)\right] \\
\text { tim at } 10 \mathrm{mt} \text {; drop others. }
\end{array} \\
& \frac{\left.-\frac{V_{I} t(t)}{2 P_{0} K_{\mu}}=\frac{V_{k E} V_{20}}{2} \cdot \cos (2 \pi \cdot 10 \mathrm{Mit} \cdot t)\right], 10 \mathrm{mV}}{}
\end{aligned}
$$

$$
\begin{aligned}
& 2[=-10 \mathrm{mV} \cdot \cos (2 \pi \cdot 10 n \mathrm{~V} \cdot \mathrm{t})]
\end{aligned}
$$

$$
\left[\begin{array}{rl}
4 \cos a \cos b- & (3 a+3 a)(3 b+1 / 3 b) \\
& =3 a 3 b+1 / 3 \cdot 3 b+3 a / 3 b+3 b / 3 a) \\
4 \cos a \cos b & =2 \cos (a+6)+2 \cos (a-3)
\end{array}\right.
$$

part b, 5 points
Basic mixer operation
The 4-switch mixer is an idealized representation of a passive FET ring mixer. The switches operate at $f_{L O}=1 \mathrm{GHz}$.

$$
\begin{aligned}
& V_{R F}(t)=V_{R F} \cos \left(2 \pi f_{R F} t\right), V_{R F}=10 \\
& \mathrm{mV}, \text { and } f_{R F}=\mathbf{1 . 0 1 G H z}
\end{aligned}
$$

$$
R_{L}=50 \Omega .
$$

Find the RMS amplitude of the 10 MHz component of IF output voltage $V_{I F}(t)$.

Hint, the Fourier series of $M(t)$ is

$$
M(t)=\frac{4}{\pi}\left[\cos \left(2 \pi f_{L O} t\right)+\frac{\cos \left(3 \cdot 2 \pi f_{L O} t\right)}{3}+\frac{\cos \left(5 \cdot 2 \pi f_{L O} t\right)}{5}+\ldots .\right]
$$

RMS amplitude of the 10 MHz component of IF output voltage $V_{I F}(t)=$ \qquad $4,5 \mathrm{mV}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
=\frac{2}{\pi} V_{R t} \cos \left(\left(\omega_{R t}+1 \omega_{20}\right) t\right)+\cos \left(\left(\omega_{R G}-1 \omega_{20}\right) t\right) \\
\left.+\begin{array}{l}
+\frac{1}{3} \cos \left(\left(\omega_{R G}+3 \omega_{20}\right) t\right)+\frac{1}{3} \cos \left(\left(\omega_{R G}-3 \omega_{20}\right) t\right) \\
+\frac{1}{6} \cos \left(\left(\omega_{R G}+5 \omega_{20}\right) t\right)+\frac{1}{5} \cos \left(\left(\omega_{R G}-5 \omega_{20}\right) t\right) \\
\left.+\frac{1}{7} \cos \left(\left(\omega_{R G}+7 \omega_{20}\right) t\right)+\frac{1}{7} \cos \left(\omega_{R G}-7 \omega_{20}\right) t\right) \\
4 \ldots .
\end{array}\right]
\end{array}\right]}
\end{aligned}
$$

[EErn giving miving fron 1.016 bs $\rightarrow 10 \mathrm{mlb}$ is

$$
\begin{aligned}
& \| \\
& V_{n L}(t)=\frac{z}{\pi} V_{n t} \cos \left(\left(\omega_{R t}-1 \omega_{20}\right) t\right) \\
& V_{n t}=10 \mathrm{mV} \\
& \text { Rms corpponert }=\frac{2}{\pi} \cdot 10 \mathrm{mV} \cdot \frac{1}{\sqrt{2}}=4.5 \mathrm{mV}
\end{aligned}
$$

part c, 5 points
Harmonic mixing
The 4-switch mixer is an idealized representation of a passive FET ring mixer. The switches operate at $f_{L O}=1 \mathrm{GHz}$.

$$
\begin{aligned}
& V_{R F}(t)=V_{R F} \cos \left(2 \pi f_{R F} t\right), V_{R F}=10 \\
& \mathrm{mV}, \text { and } f_{R F}=\mathbf{3} .01 \mathrm{GHz} .
\end{aligned}
$$

$$
R_{L}=50 \Omega .
$$

Find the RMS amplitude of the 10 MHz component of IF output voltage $V_{I F}(t)$.

RMS amplitude of the 10 MHz component of IF output voltage $V_{I F}(t)=-1.5 \mathrm{~m}$

part d, 10 points
Mixer image noise response We remove the IF load resistance, but add a generator resistance $R_{\text {gen }}=50 \Omega$. $f_{L O}=1 \mathrm{GHz} . f_{R F}=\mathbf{1} .01 \mathrm{GHz}$. The spectral density of $E_{n, g e n}$ is $S_{E_{n, g e n} E_{n, g e n}}=4 k T R_{\text {gen }}$
$V_{R F}(t)$ is a random information signal with spectral density $S_{V_{R F} V_{R F}}=4 k T R_{\text {gen }} \cdot 10^{3}$ over 9.9-10.1 MHz , but zero outside with bandwidth. (ie. the signal/noise ratio is 30 dB in the $9.9-10.1 \mathrm{MHz}$
 bandwidth)

1) Writing $V_{I F}(t)=V_{I F, \text { signal }}(t)+V_{I F, \text { noise }}(t)$, find the spectral densities $S_{V_{I F, \text { signal }} V_{I F, \text { signal }}}(f)$ and $S_{V_{\text {IFriose }} V_{I F, ~ \text { noise }}}(f)^{* *}$ at $10 \mathrm{MHz}^{* *}$ (not at other frequencies).
2) From this, calculate the mixer noise figure including all mixer noise image responses.

Hint: $(1 / 1)^{2}+(1 / 3)^{2}+(1 / 5)^{2}+(1 / 7)^{2}+\ldots=\pi^{2} / 8$

$$
\begin{aligned}
& \begin{array}{l}
S_{V_{I F, \text { signal } l} V_{I F, \text { signal }}}(f) \text { at } 10 \mathrm{MHz}=\frac{3.246 \cdot 10^{-16}}{8 \cdot / 6^{-19}}\left(\mathrm{~V}^{2} / \mathrm{Hz}\right) \\
S_{V_{\text {IFnoise }} V_{I F, \text { noise }}}(f) \text { at } 10 \mathrm{MHz}=-\left(\mathrm{V}^{2} / \mathrm{Hz}\right)
\end{array} \\
& \text { Noise figure }=2 \cdot 47 \text { (linear) }=3.92(\mathrm{~dB})
\end{aligned}
$$

I mizer gains

3GIV-10MAG EO romb $\frac{2}{\pi} \cdot \frac{1}{3}$

5Glo - 10 MHE EO $10 \mathrm{MH} \frac{2}{\pi} \cdot \frac{1}{5}$

$$
\left[\begin{array}{l}
\text { Etc } \\
\text { Sttsinteriy }
\end{array}=4 \mathrm{KT} \cdot \text { Pgen } \cdot 10^{3} \cdot \frac{4}{\pi^{2}}\right. \text { s.ynol }
$$

$$
\begin{aligned}
\text { SIIF }^{\text {HeN }} & =4 \text { KT } \cdot \text { Pgen } \cdot \frac{4}{\pi^{2}} \\
& \cdot 2 \cdot\left[1+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{5}\right)^{2}+\cdots\right]
\end{aligned}
$$

2

$$
\begin{aligned}
\text { SIf. } \text { HeN } & =4 \mathrm{KT} \cdot \operatorname{Rgen} \cdot \frac{4}{\pi^{2}} \cdot 2 \cdot\left[\frac{\pi^{2}}{8}\right] \\
& =8 \cdot 10^{-19} \mathrm{~V} / 16
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { at nt } \\
\text { SNR } R_{R_{i}}=\frac{4 k T \cdot R_{\text {ga }} \cdot 10^{3}}{4 k T \cdot 1 \text { Igan }}=10^{3}
\end{array}\right.} \\
& \text { ab }=p \\
& 2 \quad \operatorname{swn} h_{T F}=\frac{4 u T \cdot R_{y a} \cdot 10^{3} \cdot 4 / \pi^{2}}{4 k T \cdot R_{y e} \cdot 1 \cdot 41 \pi^{2} \cdot 2\left[T^{2} / 8\right]} \\
& F=\frac{5 N n_{n t}}{S N n_{\text {It }}}=2 \cdot \frac{\pi^{2}}{8}=2.467=3.92 d 6
\end{aligned}
$$

part e, 10 points
Image responses in receivers. $f_{L O}=190 \mathrm{GHz}, f_{R F}=200 \pm 1 \mathrm{GHz}$ (i.e. has 2 GHz modulation bandwidth centered at 200 GHz), $f_{I F}=10 \mathrm{GHz}$. $\mathrm{T}=290$ Kelvin. The LNA has $F=10$ dB; all other components have $F=0$ dB.
Filter 1 has a $200 \pm 30 \mathrm{GHz}$ passband, filter 3 has a $10 \pm 1 \mathrm{GHz}$ passband, filters 4,5 have a $0-1 \mathrm{GHz}$ passband

1) If filter 2 has a $200 \pm 30 \mathrm{GHz}$ passband, what is the receiver noise figure?
noise figure $=$ \qquad (dB)
2) If filter 2 has a $200 \pm 10 \mathrm{GHz}$ passband, what is the receiver noise figure ? noise figure $=$ \qquad 10 (dB)

Case 1: Input to Miver has KTF. GMA wIUG (2) 2006 k and
2 KT withe (1)
$2\left[\begin{array}{l}\text { It Glnx is larqes the zid tirn. } \\ \text { is neqliyible }\end{array}\right.$

$$
\begin{aligned}
{\left[\rightarrow \text { receive noiso tiger }=F_{n}\right.} & =F_{\text {wis }} \\
& =10 \mathrm{~dB}
\end{aligned}
$$

Problem 2, 45 points (218B), 30 points (145B)
nonlinearities, harmonic generation and intermodulation generation. :
part a, 10 points ECE218B only
Circuit nonlinearity analysis (somewhat difficult)
With ideal transistors,
$V_{\text {out }}=2 I_{0} R_{L} \frac{\exp \left(V_{\text {in }} / V_{T}\right)-1}{\exp \left(V_{\text {in }} / V_{T}\right)+1}$ where
$V_{t}=k T / q$
To third order
$e^{x}=1+x+x^{2} / 2+x^{3} / 6+O\left(x^{4}\right)$ and
$\frac{1}{1+y}=1-y+y^{2}-y^{3}+O\left(y^{4}\right)$ and

$$
V_{\text {out }}=a_{1} V_{\text {in }}+a_{3} V_{\text {in }}^{3}+O\left(V_{\text {in }}^{5}\right)
$$

Can you find a_{1} and a_{3} ?

Hint: to keep the math tractable, at
 each calculation, drop any term higher in order than $V_{i n}^{3}$.

Snow write $y=x 2 / 2$

$$
\begin{aligned}
& 2 \frac{1}{1+y}=1-y+y^{2}-y^{3} \\
& =1-x^{2} / 2+\left(x^{2} / 2\right)^{2}-\left(x^{2} / 2\right)^{3} \\
& =1-x^{2} / 2+O\left(x^{4}\right) \\
& {\left[\tan 6 x=\left(x+x^{3} / 6\right)\left(1-x^{2} / 2\right)\right.} \\
& 2 \\
& =x-x \sqrt[3]{3}+0 \text { (}(4) \\
& \tanh (x) \cong x-x^{3 / 3} \\
& {\left[V_{\text {out }}=2 \operatorname{Ti} \operatorname{Re}\left[\left(\frac{v_{i i}}{2 v_{t}}\right)-\left(\frac{v_{i}}{2 v_{0}}\right)^{3} \frac{1}{3}\right]\right.} \\
& V_{\text {wm }}=\frac{2 I_{0} R_{c}}{2 v_{t}} v_{i n}-\frac{2 J_{0} R_{t}}{24 v_{t}^{3}} v_{i n}^{3} \\
& =\frac{T_{0} R_{t}}{v_{t}} v_{i n}-\frac{\Sigma_{0} R_{c}}{12 v_{t}^{3}} v_{12}^{3} \\
& 1 \text { a } 1, a_{3}
\end{aligned}
$$

part b, 5 points ECE218B only
Circuit nonlinearity analysis
We can also write (with $V_{t}=k T / q$)

$$
V_{\text {in }}=V_{t} \ln \left(1+V_{\text {out }} / 2 I_{0} R_{L}\right)
$$

$$
-V_{t} \ln \left(1-V_{\text {out }} / 2 I_{0} R_{L}\right)
$$

hence $V_{\text {in }}=b_{1} V_{\text {out }}+b_{3} V_{\text {out }}^{3}+O\left(V_{\text {out }}^{5}\right)$.
Use the expansion

$$
\ln (1+x)=x-x^{2} / 2+x^{3} / 3+O\left(x^{4}\right)
$$

to find b_{1} and b_{2}.
If $V_{\text {in }}=b_{1} V_{\text {out }}+b_{3} V_{\text {out }}^{3}+O\left(V_{\text {out }}^{5}\right)$ then

$$
b_{3}\left(V_{\text {in }} / b_{1}\right)^{3} \simeq\left(V_{\text {out }}+b_{3} V_{\text {out }}^{3} / b_{1}\right)^{3}
$$

$$
=b_{3} V_{\text {out }}^{3}+O\left(V_{\text {out }}^{4}\right)
$$

so $V_{\text {in }}-b_{3}\left(V_{\text {in }} / b_{1}\right)^{3}=b_{1} V_{\text {out }}$, hence $V_{\text {out }}=V_{\text {in }} / b_{1}-b_{3} V_{\text {in }}^{3} / b_{1}^{4}$
Comparing this to: $V_{\text {out }}=a_{1} V_{\text {in }}+a_{3} V_{\text {in }}^{3}+O\left(V_{\text {in }}^{5}\right)$
we have: $a_{1}=1 / b_{1}$ and $a_{3}=-b_{3} / b_{1}^{4}$

Again, please find a_{1} and a_{3}.
$a_{1}=$ \qquad $a_{3}=$ \qquad
2

$$
=\ln (1+x)-\ln (1-x)
$$

$$
=\ln (1) x / 2+x^{3} / 3+x+y^{2} / 2+x^{3} / 3
$$

$$
=2 x+2 x^{3} / 3
$$

$$
\left[\begin{array}{l}
a_{3}=\frac{-b_{3}}{b_{1} 4}=-\frac{2 V_{t}}{3} \frac{1}{\left(2 I_{0} R_{t}\right)^{3}} \frac{\left(I_{0} R_{t}\right)^{4}}{v_{t}^{4}} \\
=\frac{-2}{3} \frac{1}{8} \frac{I_{0} R_{2}}{v_{t}^{3}}=-\frac{1}{12} \frac{I_{0} R_{2}}{v_{t}^{3}} \\
\\
\text { chicte= } D_{0} .
\end{array}\right.
$$

$4 \cos a \cos b=2 \cos (a+6)+2 \cos (a-3)$
part c, 10 points
nonlinear amplification of sine waves
$V_{\text {in } 1}(t)=2^{0.5} V_{R M S 1} \cos \left(2 \pi f_{1} t\right)$
$V_{\text {in } 2}(t)=2^{0.5} V_{\text {RMS } 2} \cos \left(2 \pi f_{2} t\right)$
$V_{\text {in }}(t)=V_{\text {in } 1}(t)+V_{\text {in } 2}(t)$
$V_{R M S 1}=V_{R M S 2}=V_{R M S}$
$V_{\text {out }}=a_{1} V_{\text {in }}+a_{2} V_{\text {in }}^{2}$
find the *second order* intercept, ie. the value of $V_{R M S}$ at which the Fourier component of $V_{\text {out }}$ at $\left(f_{1}+f_{2}\right)$ is equal to the Fourier component of $V_{\text {out }}$ at f_{1}.

$$
\mathcal{Z}\left[\begin{array}{rl}
\text { Vent } & =a_{1}(\sqrt{2}) \cdot\left(V_{\mathrm{nm}} \cos \omega_{1} t+V_{\text {ins }} \cos \omega_{2} t\right) \\
& +a_{2}(2)\left(V_{\mathrm{nms}} \cos \omega_{1} t+V_{\text {ins }} \cos \omega_{2} t\right)^{2}
\end{array}\right.
$$

part d, 5 points
Third-order distortion levels
An amplifier has 10 dB gain and a +10 dBm third-order intercept. Two input signals at f_{1} and f_{2} are applied, both with -20 dBm power. Find the output powers at $f_{1}, f_{2},\left(2 f_{1}-f_{2}\right)$
 and $\left(2 f_{2}-f_{1}\right)$

input power, $d B$

$$
=-70 \mathrm{~d} / \mathrm{m}
$$

part e, 10 points
Third-order distortion levels
An amplifier has 10 dB gain and a +10 dBm third-order intercept. Two input signals at f_{1} and f_{2} are applied, with power levels -10 dBm and -20 dBm respectively. Find the output powers at $f_{1}, f_{2},\left(2 f_{1}-f_{2}\right)$ and

input power, $d B$

nuw we have Incrensed the powr in
fi by $10!1$ (to dib)
pover in $z f_{1}-f_{2} \rightarrow$ incrases zod h powar in $2 f_{2}-f_{1} \rightarrow$ rncieup lo d D
odth
$-50 d b_{1}$

$$
\begin{aligned}
& 2 f_{1}-f_{2} f_{1} f_{2} 2 f_{2}-f_{1} \\
& \text { odkn }-10 d k_{n}-70+10=-60 d k_{n}
\end{aligned}
$$

$$
-70+20=-50 \mathrm{~d} / \mathrm{Br}
$$

$$
P_{R t}=-60 d \mathrm{P}_{\mathrm{m}}
$$

part f, 5 points
Receiver dynamic range calculation. A receiver is designed for 2 GHz RF
signal frequency. The RF power, at sensitivity, is -60 dBmal $10^{-9} \mathrm{~W}$. The receiver has a -20 dBm input-referred third order intercept. There are two interfering radio stations, one at 1.8 GHz , one at 1.9

What RF signal power for the interfering signals would result in a 30 dB carrier-tointerference ratio, ie. the 2 GHz IM3 product from the 2 interferes is 30 dB below the desired RF signal?

$$
2\left[P_{z f_{2}-f_{1}}\left(d b_{m}\right)=\left(P_{1, f_{2}} d B_{n}-P_{E \pm p_{3}} d B_{n}\right) 3\right.
$$

$$
\left[\begin{array}{l}
-90 d B_{m}=3\left(P_{f_{1}, f_{2}}, d B_{n}+20 d B_{n}\right) \\
-30 d B_{n}=P_{f_{1}, f_{2}} d B_{n}+20 d B_{n} \\
P_{f_{1}, f_{2}}=-50 d B_{n}
\end{array}\right.
$$

cleck—inaproluets @ 3.(-50+20 dh)

$$
\begin{aligned}
& =3(-70 d(B) \\
& =-90 \mathrm{~dB}
\end{aligned}
$$

Problem 3, 20 points (218B), 20 points (145B)
Oscillators and phase noise:
part a, 5 points
Oscillator design principles.
The MOSFETs have $I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}$ with $V_{t h}=0.3 \mathrm{~V}$ and $K_{\mu}=8 \mathrm{~mA} / \mathrm{V}^{2}$. There are no parasitic capacitance or resistances. $I_{0}=1$ mA . Note that the transistors operate with a DC bias of $V_{G D}=0$, hence $V_{D S}=V_{G S}$, whereas the knee (saturation) voltage is $V_{D S, " \text { knee" }}=V_{D S, \text { sat }}=V_{G S}-V_{t h}$, consequently the maximum peak-peak oscillator output voltage is $V_{L O}(t)=V_{L O, \text { max }} \cos \left(2 \pi f_{L O} t\right)$ with $V_{L O, \text { max }}=V_{t h} / 2$.
Set $Z_{r}=L^{1 / 2} / C^{1 / 2}=100 \Omega$, and $f_{L O}=1 / 2 \pi L^{1 / 2} C^{1 / 2}=10 \mathrm{GHz}$.

1) What is the FET transconductance?
2) What is the negative conductance $-a_{1}$ presented by the GETs to the resonator?
3) What is the maximum (positive) load conductance G that will maintain oscillation ?

part b, 5 points
Oscillator phase noise.
The circuit is modelled as is shown to the right, with $I_{\text {res }}(V)=a_{1} V+a_{3} V^{3}$ and with channel noise generators $I_{n, c h, M 1}$ and $I_{n, c h, M 2}$ having spectral densities $S_{I_{n, c k 1} I_{n, c h 1}}=4 k T \Gamma g_{m 1}$ and
$S_{I_{n, c c 2} I_{n, c h 2}}=4 k T \Gamma g_{m 2}$, where $\Gamma=2 / 3$ Note the factors of $(1 / 2)$ in the circuit diagram.

From the expression

$$
L(\Delta f)=\left(\frac{Z_{r}}{4 V_{0}}\right)^{2}\left(\frac{f_{L O}}{\Delta f}\right)^{2} S_{I_{n} I_{n}}(f)
$$

find the phase noise spectral density at 100 MHz offset from carrier, expressed as $\mathrm{xxx} \mathrm{dBc}(1 \mathrm{~Hz})$.

Note that $V_{0}=V_{\text {th }} / 2=0.15 \mathrm{~V}$ (peak, not RMS)

$$
26 H_{5}=1 \operatorname{lith}_{\beta} d d d x \text {. }
$$

part c, 10 points
Impact of phase noise
A receiver is designed to receive signals in the $2 \mathrm{GHz} \pm 1 \mathrm{MHz}$ RF frequency range. The receiver noise figure is 4 dB . The receiver's local oscillator has $-120 \mathrm{dBc}(1$ Hz) phase noise at 100 MHz offset from carrier. There is an interfering radio station at 1.9 GHz .

What RF power for this 1.9 GHz interfering signal would result in 10 dB sensitivity degradation in receiving the $2 \mathrm{GHz} \pm 1 \mathrm{MHz}$ signals of interest ?

methed z-Mabh.

