# ECE145B (undergrad) and ECE218B (graduate)

# Mid-Term Exam. February 20, 2013

Do not open exam until instructed to.

Open notes, open books, etc.

You have 1 hr. and 15 minutes.

Use any and all reasonable approximations (5% accuracy is fine. ), *AFTER STATING THEM*.

| Problem      | Points received | Points received | Points Possible |
|--------------|-----------------|-----------------|-----------------|
|              | (145B)          | (218B)          |                 |
| 1a           |                 |                 | 5               |
| 1b           |                 |                 | 5               |
| 1c           |                 |                 | 5               |
| 1d           |                 |                 | 5               |
| 2a           |                 |                 | 5               |
| 2b           |                 |                 | 5               |
| 2c           |                 |                 | 5               |
| 2d           |                 |                 | 5               |
| 3a           |                 | do not work     | 5               |
| 3b           |                 | do not work     | 15              |
| 3c           |                 | do not work     | 15              |
| 3d           |                 | do not work     | 5               |
| 4a           | do not work     |                 | 5               |
| 4b           | do not work     |                 | 15              |
| 4c           | do not work     |                 | 15              |
| 4d           | do not work     |                 | 5               |
| total (145b) |                 |                 | 80 (218 or 145) |

Name: \_\_\_\_\_\_

# Problem 1, 20 points

Radio link relationships.

Part a, 5 points

Antenna gains

Some new 5G cell phone handsets have 39 GHz transceivers. Assume a horizontal linear array, as shown, of 5 elements, each  $\lambda/2$  by  $\lambda/2$  (They are here drawn as alternating black & white squares).

For the overall 5 element array: What is the directivity in dB?  $1 \cdot 960B$ The approximate vertical 3dB beamwidth in degrees  $14 \cdot 5$ The approximate horizontal 3dB beamwidth in degrees  $10 \cdot 960B$ 





Part b, 5 points

*Receiver sensitivity.* Assume QPSK transmission, for which the minimum receiver power is  $P_{\min} = kTFBQ^2$  where k is Boltzmann's constant, T is the absolute temperature, F is the receiver noise figure, B is the bit rate and Q<sup>2</sup> is the required signal/noise ratio. Simple QPSK without error-correcting codes requires Q=3.1 for 10<sup>-3</sup> bit error rate (before error correction by coding). At the IEEE reference 290 K temperature,  $kT \cdot (1Hz) = -174.0$ dBm.

Assuming 5 dB receiver noise figure,  $10^{-3}$  bit error rate, and 1 Gb/s data transmission. What is the minimum receiver power in dBm ?  $P_{recieved} = -69$  dBm

 $P_{\min} = kTFBQ^2$ 

 $P_{\min(dBm)} = kT_{dBm} + F_{dB} + 10 \log Q^2$  $= -174 + 5 + 90 + 9 \cdot 82$ 

= -69.17 dBm

# Part c, 5 points

 $\lambda$ 

*Link propagation losses* Assume that the transmitter is 1 km distant, and has a 64-element transmit antenna array, each being, each  $\lambda/2$  by  $\lambda/2$ . Assume that the weather is giving 1 dB/km total atmospheric losses.

What is the transmitter directivity in dB? 
$$\frac{23}{2}$$
  $\frac{dB}{2}$   $\frac{21 \cdot 03}{2}$   $\frac{dB}{2}$   $\frac{21 \cdot 03}{2}$   $\frac{dB}{2}$   
What is the transmitter directivity in dB?  $\frac{23}{2}$   $\frac{dB}{2}$   $\frac{21 \cdot 03}{2}$   $\frac{dB}{2}$   $\frac{dB}{2}$   
 $\frac{16}{2}$   $\frac{21 \cdot 03}{2}$   $\frac{dB}{2}$   $\frac{21 \cdot 03}{2}$   $\frac{dB}{2}$   $\frac{21 \cdot 03}{2}$   $\frac{dB}{2}$   $\frac{21 \cdot 03}{2}$   $\frac{dB}{2}$   
 $= 16\lambda^2$   
 $= 16\lambda^2$   
 $\frac{16\lambda^2}{\lambda^2}$   
 $\frac{16\lambda^2}{\lambda^2}$   
 $= 64\pi$   
 $= 201 => 23 dB$   
without atmospheric losses  
 $\frac{P_R}{P_T} = \frac{D_t D_r}{16\pi^2} \left(\frac{\lambda^2}{R^2}\right)$   
 $= \frac{(64\pi)(5\pi)}{16\pi^2} \left(\frac{7.68 \times 10^{-3}}{10^3}\right)$   
 $= 20 \left(7 \cdot 68 \times 10^{-6}\right)^2$   
 $= 1 \cdot 178 \times 10^{-9} \Rightarrow -89 \cdot 2 dB$ 

For 1km, atmospheric  $\begin{array}{ll} \text{attenuation is} & \frac{1dB}{km} \times 1km \end{array}$ = 1 dB.with atmospheric losses  $\therefore P_{RdBm} - P_{TdBm}$ = -89.2 - 1= -90.2 dB $P_{Tr} = P_{Rmin} + 90.2$  $= -69 \cdot 17 + 90.2$ = 21.03 dBm

Part d, 5 points Radio frequency plans:

С



With the 39 GHz carrier, 1 Gb/s QPSK modulation, and the smallest possible bandwidth of the (root raised cosine) filter that still gives zero inter-symbol interference, make sketches below of the signal power spectral density, in W/Hz at the RF, IF, and baseband (BB) points indicated. You can use a relative scale for the vertical axis of the plots, i.e. there's no need to compute the absolute value of the spectrum in W/Hz.

# Bitrate = 1Gb/sIn QPSK 1 symbol = 2bits Symbol rate = 1G/2 $= 500M \frac{symbols}{2}$

Smallest possible bandwidth corresponds to beta=0 for the root raised cosine filter

Assume  $f_{L0} = 30 GHz$ 

 $\Rightarrow f_{IF} = 9GHz$ 



## Problem 2, 20 points

basic noise math, simple circuit noise relationships

Part a, 5 points V<sub>in</sub> has a spectral density (in V<sup>2</sup>/Hz) of  $S_{V_{in}V_{in}} = 4kTR$ , where  $R = 1 \text{ k}\Omega$ ,  $H_1(j2\pi f) = (1 + j2\pi f / 1\text{ MHz})$ , and  $H_2(j2\pi f) = (1 + j2\pi f / 10\text{ MHz})$ .



Write algebraic expressions for the spectral densities of  $V_A$ ,  $V_B$ , and their cross spectral density

 $egin{aligned} V_A\left(j2\pi f
ight) &= H_1\left(j2\pi f
ight)V_{in}\ V_B\left(j2\pi f
ight) &= H_2\left(j2\pi f
ight)V_{in} \end{aligned}$ 

$$egin{aligned} ilde{S}_{V_A V_A} &= \left| H_1 \left( j 2 \pi f 
ight) 
ight|^2 ilde{S}_{V_{in} V_{in}} \ &= \left( 1 + \left( rac{2 \pi f}{1 M H z} 
ight)^2 
ight) 4 k T R \end{aligned}$$

 $\tilde{S}_{V_B V_B} = \left| H_2 \left( j 2\pi f \right) \right|^2 \tilde{S}_{V_{in} V_{in}}$  $= \left( 1 + \left( \frac{2\pi f}{10MHz} \right)^2 \right) 4kTR$ 

 $S_{V_A V_B} = V_A \left( j 2\pi f \right) V_B^* \left( j 2\pi f \right)$  $. = H_1(j2\pi f) H_2^*(j2\pi f) V_{in}V_{in}^*$  $= \left(1 + \frac{j2\pi f}{1MHz}\right) \left(1 - \frac{j2\pi f}{10MHz}\right) \tilde{S}_{V_{in}V_{in}}$  $= \left(1 + \frac{(2\pi f)^2}{10(1MHz)^2} + j\frac{(18\pi f)}{10MHz}\right) 4kTR$ 

# part b, 5 points

A volage  $V_3 = V_1 + V_2$  is the sum of two voltages  $V_1$  and  $V_2$ , both of which are random processes. If  $V_1$  has a power spectral density of  $3 \cdot 10^{-16} \text{ V}^2/\text{Hz}$ ,  $V_2$  has a power spectral density of  $2 \cdot 10^{-16} \text{ V}^2/\text{Hz}$ , and the cross spectral density of  $V_1$  and  $V_2$  is  $10^{-16} \text{ V}^2/\text{Hz}$ , what is the spectral density of  $V_3$ ?

is the spectral density of  $V_3$ ? Spectral density of  $V_3 = \frac{7 \times 10}{7 \times 10}$  (V<sup>2</sup>/Hz)

$$egin{aligned} &V_3 = V_1 + V_2 \ & ilde{S}_{V_3V_3} = \left(V_1 + V_2
ight) \left(V_1 + V_2
ight)^* \ &= V_1V_1^* + V_1V_2^* + V_2V_1^* + V_2V_2^* \ &= ilde{S}_{V_1V_1} + 2Re\left( ilde{S}_{V_1V_2}
ight) + ilde{S}_{V_2V_2} \ &= 3 imes 10^{-16} + 2 imes 10^{-16} + 2 imes 10^{-16} \end{aligned}$$

$$= 3 \times 10^{-16} + 2 \times 10^{-16}$$
$$= 7 \times 10^{-16} \frac{V^2}{Hz}$$





Part d, 5 points

The current source  $I_0$  is noiseless, and its current is much larger than that of the ideal PN junction diode having characteristics  $I_{diode} = I_s (\exp(qV/kT) - 1)$ . Calculate an expression for the spectral density of V<sub>A</sub> in units of V<sup>2</sup>/Hz.



 $I_o$ 

 $V_A$ 

### Problem 3, 60 points: 145B only

Transistor noise derivation (145B only) This is a low-frequency noise equivalent  $I_{nb} R_{be}$  $g_m V_{be} I_{nc}$ circuit model of a bipolar transistor with С no parasitic resistances.  $I_{nb}$  and  $I_{nc}$  are + V<sub>be</sub> the base and collector shot noise generators, and  $R_{be} = \beta / g_m$ , where  $g_m = qI_{E,dc} / kT$ . Note that  $R_{be}$  has no thermal noise. Part a, 5 points (145B only) Setting  $\beta = 100$  and  $I_{E,dc} = 1$ mA, first determine the spectral densities below: base shot noise  $S_{I_{nb}I_{nb}} = \frac{3.2 \cdot 10^{-22}}{(A^2/Hz)}$ collector shot noise  $S_{I_{nc}I_{nc}} = \frac{3.2 \cdot 10^{-22}}{(A^2/Hz)}$ Collector Shot noise SE = ZQIE = 3.2.10-22 12/12 base Shot noise Is = Ic/S = 10pl SIS = Zq IS = 3.2.10 A //2



Ichlyn. 92 Vie Inc Ins + V6C Inc gukse > Idac 54. = Ichlyn. 92 Vie Inc \$ + V6C In = ILG+Inclps SEL = SILC 19/2 = 29/2 9/2 1/2 = ZET/qm = ZET( KT/9 IC) = Z. 10-19 y 2/14. SIL = ZqIb + ZqIe/B2 = 3.24. 10-24 A2/1/2.

 $S_{6a}I_{h} = Z_{q}I_{c}$   $S_{6a}I_{h} = Z_{q}I_{c}$   $\mathcal{G}_{4a}/\mathcal{G} = \mathcal{F}.e.10^{-23} WH_{q}$ 

#### Part c,15 points (145B only)

If we now connect the transistor to a generator of source impedance  $Z_{gen} = R_{gen} + j0\Omega$ , with  $R_{gen} = 100\Omega$ , we have a generator noise  $E_{N,gen}$ with spectral density  $4kTR_{gen}$  and amplifier total noise voltage  $E_{NT,A} = E_N + I_N R_{gen}$ 



Determine the spectral densities below: Spectral density of the generator noise voltage  $S_{E_{Ngen}E_{Ngen}} = \frac{1.6 \cdot 10^{-18}}{(V^2/Hz)}$ Spectral density of the amplifier total noise voltage  $S_{E_{NTA}E_{N,TA}} = \overline{2.4 \cdot 10^{-19}}(V^2/Hz)$ 

Enter = EL + In Rgen SELFA = SEL + SIL Ry + 2 Rel SEIL ROOL / = Z, C, 10-19 V2/1/2 + 3.24.10 Nº./14. (1000)2 +2. [8.10 VALIA]. 100N = 2.4.10 V2/14

55, yer = 4/47 Kger = 1.6.10 1/6

Part d, 5 points (145B only ) What is the resulting noise figure, F in linear units and dB? F in linear units= 1.15F in dB = 0.607

 $= 1 + \frac{S_{6n,0mp,tetel}}{S_{6n,0mp,tetel}}$ = 1 +  $\frac{S_{6n,0mp,tetel}}{S_{6n,0mp,tetel}}$ = 1 +  $\frac{2.9.10^{-19}V_{1/4}}{1.6.10^{-18}V_{1/4}}$  $\frac{1.6.10^{-18}V_{1/4}}{V_{1/4}}$ = 1.15 (lineg)

15 = 0.667 dB

### Problem 4, 60 points: 218B only

Transistor noise derivation (218B only). This is a simple high-frequency noise equivalent circuit model of a FET  $E_{NRg}$  is the thermal noise of the gate (and other input resistances) and  $I_{nch}$  is the channel noise generator, having spectral density  $4kT\Gamma g_m$ , here taking  $\Gamma = 2/3$ .

Part a, 5 points (218B only) Setting  $g_m = 100 \text{ mS}$ ,  $C_{gs} = g_m / 2\pi f_\tau$ , where  $f_\tau = 100 \text{ GHz}$  and  $R_g = 10\Omega$  first determine the spectral densities below: Gate resistance thermal noise voltage  $S_{E_{nRg}E_{nRg}} = \frac{1.6 \cdot 100}{1.6 \cdot 100} \text{ (V}^2/\text{Hz})$ channel thermal noise  $S_{I_{nch}I_{nch}} = \frac{1.07 \cdot 100}{1.07 \cdot 100} \text{ (A}^2/\text{Hz})$ 

Saky = 44TRg = 44T. 1000 = 1.6.10 -14 V2/16

SIG = 46T II gm = 1.07.10 1/14.

Part b, 15 points (218B only)

The transistor's internal noise generators can be modelled by an external short-circuit noise voltage  $E_N$  and short-circuit noise current  $I_N$ 

At a frequency of 10 GHz, determine the spectral densities below: Short circuit input noise voltage spectral density  $S_{E_N E_N} = \underbrace{2.7 \cdot 10}_{(V^2/Hz)} (V^2/Hz)$ Open circuit input noise current spectral density  $S_{I_N I_N} = \underbrace{1.07 \cdot 10}_{(V^2/Hz)} (A^2/Hz)$ Cross spectral density  $S_{E_N I_N} = \underbrace{(V^*A/Hz)}_{(.07 \cdot 10} \underbrace{V^*A/Hz}_{(.07 \cdot 10)} \underbrace{(V^*A/Hz)}_{(.07 \cdot 10)} \underbrace$ 

 $E_N I_n$ 

-• *V gs* 

G **0−−(**1<u>§</u>+)−





$$\begin{split} S_{E_{L}I_{l}} &= \frac{4\mu T C}{g_{h}} \left( \begin{array}{c} \omega^{2} C R_{g} - j \ \omega \ C \right) \\ &= 1.07.10 - j.1.07.10^{-21} \ A \cdot V / N_{d}. \end{split}$$

#### Part c, 15 points (218B only)

If we now connect the transistor to a generator of source impedance  $Z_{gen} = R_{gen} + j0\Omega$ , with  $R_{gen} = 100\Omega$ , we have a generator noise  $E_{N,gen}$ with spectral density  $4kTR_{gen}$  and amplifier  $V_{gen,S}$ total noise voltage  $E_{NTA} = E_N + I_N R_{gen}$ 



At a frequency of 10 GHz, determine the spectral densities below: Spectral density of the generator noise voltage  $S_{E_{Ngen}E_{Ngen}} = \frac{2.6 \cdot 10^{-19}}{16}$  (V<sup>2</sup>/Hz) Spectral density of the amplifier total noise voltage  $S_{E_{NTA}} = 3.92 \cdot 10^{-4} (V^2/Hz)$ 

Sgen = 4 kT Ryen = 1.60. 10 -18 V/Hz

GATA = ELA + ILARga.

Some = Sen, + SIn, Rya + 2Re [Sail] . Rya = Z. 69.10-19 V2/16 + 1.07.10-19 12/14 + Z. 13. 10-20 V2/14 = 3.96.10 V2/14

Part d, 5 points (218B only ) What is the resulting noise figure, F in linear units and dB? F in linear units= $(\cdot 2)^{f}$ F in dB =  $(\cdot 2)^{f}$ 

1= = 1 + 3.96.10<sup>-19</sup> VUIX 1. 6.10-18 V2111 = 51.25 ar 0.96 dB