ECE 145C / 218C, notes set xx: Automatic Gain Control (very quick summary)

Mark Rodwell Doluca Family chair University of California, Santa Barbara

rodwell@ece.ucsb.edu

Power detectors & peak detectors

Square-wave drive (easy analysis) $\exp\left(\frac{V_{out}}{nkT/q}\right) = \left(\exp\left(\frac{V_{pp}}{2nkT/q}\right) + \exp\left(\frac{-V_{pp}}{2nkT/q}\right)\right)^{-1}$ $V_{out} \approx \begin{cases} -\left(\frac{V_{pp}}{2} - \frac{nkT}{q}\ln(2)\right) \text{ (peak detection)} & \text{if } V_{pp} \gg \frac{nkT}{q} \\ -\frac{V_{pp}^2}{2nkT/q} \text{ (power detection)} & \text{if } V_{pp} \ll \frac{nkT}{q} \end{cases}$

This will be derived in lecture

Power detectors & peak detectors

Sinusoidal drive (more difficult analysis)

$$V_{out} \approx -\frac{V_{peak}^2}{4nkT/q}$$
 (power detection) if $V_{pp} \ll \frac{nkT}{q}$

this will again be derived in lecture

AGC detector, set point, and AGC loop amplifier

 $I_{REF1} / I_{REF2} = R_2 / R_1$

So, if
$$V_{pp} = 0$$
 V,
 $V_{DET} = \frac{nkT}{q} \ln (R_2 / R_1)$

Given sinusoidal drive with $V_{pp} \ll nkT / q$

$$V_{DET} \approx \frac{nkT}{q} \ln \left(R_2 / R_1 \right) - \frac{V_{peak}^2}{4nkT / q}$$

Loop stabilizes when $V_{DET} = 0$ V, hence $V_{peak} = 2 \frac{nkT}{q} \sqrt{\ln(R_2 / R_1)}$

Need R_1 , R_2 , and R_3 all >> nkT / qI_{REF} If needed, exchange the polarity of the connection to V_{DET} to obtain the correct sign of AGC loop gain

AGC detector, set point, and AGC loop amplifier

You can also set up an offset like so...

With $V_{pp} = 0$ V, $V_{DET} = I_{REF} R_2$

Given sinusoidal drive with $V_{pp} \ll nkT / q$

$$V_{DET} \approx I_{REF} R_2 - \frac{V_{peak}^2}{4nkT / q}$$

Loop stabilizes when $V_{DET} = 0$ V, hence $V_{peak}^2 = (I_{REF}R_2)(4nkT/q)$

Need R_1 , R_2 , and R_3 all >> nkT / qI_{REF} If needed, exchange the polarity of the connection to V_{DET} to obtain the correct sign of AGC loop gain

Mixer vs. variable-gain amplifier

Mixer

 $V_{out} = \kappa V_{RF} V_{LO}$ for some constant κ

For large positive $V_{LO}: V_{out} = \kappa V_{RF}$ For large negative $V_{LO}: V_{out} = -\kappa V_{RF}$ AGC loop will not function correctly

Variable-gain amplifier

 $V_{out} = A_v V_{RF}$ For large positive $V_{AGC} : A_v$ is large For large negative $V_{AGC} : A_v$ is zero AGC loop will function correctly

Simpler variable-gain amplifiers

The top circuit is complex but has stable DC bias

The middle circuit is less complex but bias currents vary strongly with β .

The bottom circuit has stable DC bias, and has clean RF layout parasitics (with micro-X bjt packages), but requires + and - supplies.

Simpler variable-gain amplifiers

Two more single-supply

options...

Even simpler variable-gain amplifiers

This is a common-base stage with a variable-current shunt

By adding R_5 and R_6 , the input and output networks become lossy matching networks.

Lower gain, higher noise figure broader bandwidth easier matching network design

