Ultra Low Resistance Ohmic Contacts to InGaAs/InP

Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C. Gossard

ECE and Materials Departments
University of California, Santa Barbara, CA

S.R Bank
ECE Department, University of Texas, Austin, TX

2007 Device Research Conference
South Bend, Indiana

*uttam@ece.ucsb.edu
Outline

• Motivation

• Previous Work

• Approach

• Results

• Conclusion
Device bandwidth scaling laws

\[
\frac{1}{2\pi f_\tau} = \tau_{\text{base}} + \tau_{\text{collector}} + C_{je} \frac{kT}{qI_E} + C_{bc} \frac{kT}{qI_E} + R_{ex} C_{bc} + R_{coll} C_{bc}
\]

\[
f_{\max} = \sqrt{\frac{f_\tau}{8 \cdot \pi \cdot (R_{bb} \cdot C_{cb})_{\text{eff}}}}
\]

Goal: Double transistor bandwidth
- Reduce transit delay
- Reduce RC delay

Vertical Scaling

Increased Capacitance
- Lateral Scaling
- Keep R constant
- Reduce \(\rho_c \)

\[
R_{ex} = \frac{\rho_c}{A}
\]

\(\rho_c \) has to scale as inverse square of lateral scaling

Device bandwidth scaling roadmap – THz transistor

Emitter Resistance key to THz transistor

Emitter resistance effectively contributes > 50 % in bipolar logic gate delay*

Contact resistance serious barrier to THz technology

\[2 \, \text{Ω} \cdot \mu\text{m}^2 \] contact resistivity required for simultaneous THz \(f_t \) and \(f_{\text{max}} \)

Device bandwidth scaling-FETs

Source contact resistance must scale to the inverse square of device scaling. Source resistance reduces g_m and I_d

A 22 nm III-V MOSFET with 5 mA/μm I_d

15 $\Omega \cdot \mu m$ source resistance will reduce I_d by 10%

With 50 nm contact width this will require ρ_c of $1 \Omega \cdot \mu m^2$

Low source resistance means better NF in FETs*

$$NF_{\text{min}} \approx 1 + \sqrt{g_{mi} (R_s + R_g + R_i) \Gamma} \cdot \left(\frac{f}{f_{\tau}} \right)$$

*T Takahashi, IPRM 07

2007 DRC
Conventional Contacts

- Conventional contacts
 - complex metallization and annealing schemes
 - Surface oxides, contaminants
 - Fermi level pinning
 - metal-semiconductor reaction improves resistance

$5 \, \Omega \cdot \mu m^2 \, (5 \cdot 10^{-8} \, \Omega \cdot \mu m^2)$ obtained on InGaAs, used on the latest HBT results

Further improvement difficult using this technique

S.E. Mohney, PSU
M. Urteaga, Teledyne

2007 DRC
In-situ ErAs-InGaAs Contacts

- Epitaxial ErAs-InGaAs contact
 - Epitaxially formed, no surface defects, no fermi level pinning
 - *In-situ*, no surface oxides
 - thermodynamically stable
 - ErAs/InAs fermi level should be above conduction band

3. S. R. Bank, NAMBE, 2006

Approximate Schottky barrier potential

S. R. Bank, NAMBE, 2006

2007 DRC
In-situ and ex-situ Contacts

- **In-situ Mo Contact**
 - *In-situ* deposition no oxide at metal-semiconductor interface
 - Fermi level pins inside conduction band of InAs

- **Ex-situ contacts**
 - InGaAs surface oxidized by UV Ozone treatment
 - Strong NH4OH treatment before contact metal deposition

2007 DRC
MBE growth and TLM fabrication

• MBE Growth
 – InGaAs:Si grown at 450 C
 – 3.5 E 19 active Si measured by Hall
 – ErAs grown at 450 C, 0.2 ML/s
 – Mo deposited in an electron beam evaporator connected to MBE under UHV
 – Mo cap on ErAs to prevent oxidation
 – Layer thickness chosen so as to satisfy 1-D condition in TLM

• TLM Fabrication
 – Samples processed into TLM structures by photolithography and liftoff
 – Mo and TiW dry etched in SF$_6$/Ar with Ni as etch mask, isolated by wet etch
 – Separate probe pads from contacts to minimize parasitic metal resistance
Contact Resistance

- Resistance measured by 4155 C parameter analyzer
- Pad spacing verified by SEM image
- Smallest gap, contact resistance 60% of total resistance
- 15-18 Ohm sheet resistance for all three contacts

<table>
<thead>
<tr>
<th>Contact</th>
<th>$\rho_c (\Omega \cdot \mu m^2)$</th>
<th>L_t (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErAs/InAs</td>
<td>1.5</td>
<td>300</td>
</tr>
<tr>
<td>Mo/InAs</td>
<td>0.5</td>
<td>175</td>
</tr>
<tr>
<td>TiW/InGaAs</td>
<td>0.7</td>
<td>190</td>
</tr>
</tbody>
</table>

\[1 \Omega \cdot \mu m^2 = 1 \cdot 10^{-8} \Omega \cdot cm^{-2} \]
Ex-situ Contacts

- Ex-situ contact depends on the concentration of NH$_4$OH*

ρ_c (Ω·µm2)

NH$_4$OH Normality

* A.M. Crook, submitted to APL
Thermal Stability

- Contacts annealed under N₂ flow at different temperatures
- Contacts stays Ohmic after anneal
- In-situ Mo/InAs, ex-situ TiW/InGaAs contact resistivity < 1 Ω-μm² after anneal
- ErAs/InAs contact resistivity increases with anneal
- The increase could be due to lateral oxidation of ErAs
Thermal Stability

- SIMS depth profiling shows that Mo and TiW act as diffusion barrier to Ti and Au

SIMS profile of contacts annealed at 400 C
Error Analysis

• 1-D Approximation
 • Large L_t/L,
 • 1-D case overestimates ρ_c

• Overlap resistance
 • Wide contact width reduces overlap resistance.

• 1-D case, Overlap resistance overestimates extracted ρ_c

• Errors
 • Pad spacing, minimized by SEM inspection
 • Resistance, minimized by using 4155C parameter analyzer
 • $\delta \rho_c/\rho_c$ is 60% at 1 Ω-μm², 75% at 0.5 Ω-μm²

*H. Ueng, IEEE TED, 2001
Integration into Device Processing

• HBT emitter contact*

<table>
<thead>
<tr>
<th>Ti/W or Mo</th>
<th>Ti/W</th>
<th>Ti/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>InGaAs/InP emitter</td>
<td>InGaAs Base</td>
<td>InGaAs Base</td>
</tr>
<tr>
<td>InP Collector</td>
<td>InP Collector</td>
<td>Sub-Collector</td>
</tr>
<tr>
<td>Sub-Collector</td>
<td>Sub-Collector</td>
<td>SI substrate</td>
</tr>
<tr>
<td>SI substrate</td>
<td>SI substrate</td>
<td>Dry + Wet etch Emitter</td>
</tr>
</tbody>
</table>

Blanket metal deposition

Dry etch Emitter metal

*E. Lind, Late News, DRC 2007

• Source Contact in FETs

2007 DRC
Conclusion

• Ultra Low Ohmic contacts to InGaAs/InP with $\rho_c < 1 \ \Omega \cdot \mu m^2$

• Contacts realized by both in-situ and ex-situ

• In-situ Mo/InAs and ex-situ TiW/InGaAs $\rho_c < 1 \ \Omega \cdot \mu m^2$ even after 500 C anneal

• In-situ ErAs/InAs contacts $\rho_c = 1.5 \ \Omega \cdot \mu m^2$, increases gradually with anneal

This work was supported by Office of Naval Research (ONR) Ultra Low Resistance Contacts program and a grant by Swedish Research Council