Planarization and Regrowth of Self-Aligned Ohmic Contacts on InGaAs

Mark Wistey, Greg Burek, Uttam Singisetti, Austin Nelson, Brian Thibeault, Joël Cagnon, Susanne Stemmer, Arthur Gossard, Mark Rodwell
University of California, Santa Barbara

Seth Bank
University of Texas-Austin

wistey@ece.ucsb.edu, 805-893-3279
Motivation: Can InGaAs MOSFETs beat Si?
 - Contact resistance is key: \(R_c \sim 1 / f^2 \)

Planarization & Etchback — Self-aligned

Regrown Low Resistance Contacts and MEE

InGaP Etch Stop Layer

Conclusions
In Order to Beat Silicon...

Target...	Strategy...
$R_{sd} = 180 \, \Omega \cdot \mu m$ | $\text{In}_x\text{Ga}_{1-x}\text{As}$ channel
$I_{ds} = 6 \, \text{mA/}\mu \text{m} \ & \text{low gate leakage}$ | High gate barrier: MOSFET
$L_g = 22 \, \text{nm} \, \text{low SD leakage}$ | High back barrier: AlGaAs
$R_c = 1 \, \Omega \cdot \mu m^2 \ (10^{-8} \, \Omega \cdot \text{cm}^2)$ | Regrow S/D epitaxially.*
$R_{access} = 10 \, \Omega \cdot \mu m$ | Backfill channel recess etch.*

*RMajor challenges for MBE.

Source: Rodwell IPRM 2008
Surface Cleaning for Regrowth

- Encapsulate all gate metals
- Surface clean:
 - Recess etch
 - UV ozone 30min
 - 1:10 HCl:H₂O for 1 min, DI rinse
 - UHV bake 200°C
 - H clean or thermally desorb oxide
- No extended defects, low contact resistance: $1.3 \, \Omega \cdot \mu m^2$

![HRTEM](image1)

InGaAs n+ blanket regrowth

Interface

InGaAs n+

5nm

HAADF-STEM

Interface

2 nm

Oxide

Metal

SiO₂

Channel

TLM Measurement

$R_c = 1.3 \, \Omega \cdot \mu m^2$

Resistance (Ω) vs. Gap (μm)

T=100µm n-3.6e19 cm⁻³
W=25µm

MBE 2008 Conference
Planarization & Etchback

- Goal: self-aligned, selective area contacts
Planarization & Etchback

- Goal: self-aligned, selective area contacts

1. Spin on thick polymer

![Diagram showing polymer spin process with layers of SiO2, Metal, Oxide, and Channel.

2. O2 Ash or Developer

3. Mo & InGaAs Etch

4. Strip resist

• Goal: self-aligned, selective area contacts
Planarization & Etchback

- Goal: self-aligned, selective area contacts

1. Spin on thick polymer

2. O2 Ash or Developer

3. Mo & InGaAs Etch

4. Strip resist

- Goal: self-aligned, selective area contacts
Planarization & Etchback

- **Goal:** self-aligned, selective area contacts

1. Spin on thick polymer

2. O2 Ash or Developer

3. Mo & InGaAs Etch

4. Strip resist

Notes:
- Polymer
- Regrowth
- Channel
- SiO2
- Metal
- Oxide
- Source
- Drain
Choice of Polymers

PMGI / MIF developer

BCB / CF4+O2

SPR510 / O2 plasma

- Easy to process
- Withstands wet & dry etches
- Smooth & uniform...

Spin: 4kRPM 30s. Bake: 90°C 1min, 110°C 1min.
Low Power Plasma Gives Smooth Etchback

- Etchback in **high energy** O_2 plasma:
 - Extreme roughness (micromasking)
 - Scum

- Etchback in **low energy** O_2 plasma (ICP) or UV ozone:
 - Clean, smooth surfaces, no scum
Planarization: Repeatable and Easy

• Thickness by naked eye
 • Purple/Blue – 300nm
 • Yellow – 200nm
 • Light Blue – 100nm
 • Burnt/Black – <70nm

• High yield esp. for <1μm
MBE Regrowth: Bad at any Temperature?

- Conditions: 0.5 µm/hr, V/III=35
- Low growth temperature (<400°C):
 - Smooth in far field
 - Gap near gate (shadowing)
 - No contact to channel!
MBE Regrowth: Bad at any Temperature?

- Conditions: 0.5 μm/hr, V/III=35
- Low growth temperature (<400°C):
 - Smooth in far field
 - Gap near gate (shadowing)
 - No contact to channel!

- High growth temperature (>490°C):
 - Selective/preferential epi on InGaAs
 - No gaps near gate
 - Rough far field
 - High resistance

Regrowth: 50nm InGaAs:Si, 5nm InAs:Si. Si=8E19/cm³, 20nm Mo.
Gap-free Regrowth by MEE

Migration-Enhanced Epitaxy (MEE) conditions:

490-550°C (pyrometer)
As flux constant ~ 1×10^{-6} Torr: V/III~3, not interrupted.
0.5nm InGaAs:Si pulses (3.7 sec), 10-15 sec As soak
RHEED: 4x2 ==> 1x2 ==> 4x2 with each pulse.

- No gaps
- Smooth surfaces.

- High Si activation ($4 \times 10^{19} \text{ cm}^{-3}$).
- Quasi-selective: no growth on sidewalls
Rough Regrowth on Thin InP Etch Stop Layer

- Conversion of 2-4nm InP to InAs
- Strain relaxation

![Diagram showing conversion and strain relaxation in InP and InAs layers with InAlAs barrier and InGaAs.]
Rough Regrowth on Thin InP Etch Stop Layer

- Conversion of 2-4nm InP to InAs
- Strain relaxation

InP regrowth RHEED

InP regrowth SEM

- Acc.V: 5.00 kV, Spot Mag.: 3.0, Det. WD: 80000x, Exp.: 5.0, 1
- SEM: U. Singisetti

InAlAs barrier

InP etch stop (2-4 nm)

InGaAs

InAs

InAs

InGaAs

InAlAs barrier
Regrowth on InGaP

- Replace InP with InGaP
- Converts to InGaAs (good!)
- Strain compensation
Summary

• Surface clean before regrowth:
 – UV ozone, 10% HCl, then H clean or thermal desorb
 – Lowest resistance regrown contacts: \(R_c = 1.3 \ \Omega \cdot \mu \text{m}^2 \)
 \((1.3 \times 10^{-8} \ \Omega \cdot \text{cm}^2)\)

• Planarization by photoresist: simple & repeatable
 – No lithography needed
 – MBE + Planarization = Self-Aligned Regrowth

• Gap-free regrowth \((n=4 \times 10^{19} \ \text{cm}^{-3})\) by MEE above 490°C

• InGaP etch stop prevents relaxation before regrowth
Acknowledgements

- Chris Palmstrøm and Erdem Arkun (now at UCSB)
- IBM Yorktown: Yanning Sun, Edward Kiewra, Devendra Sadana
- SRC
Additional Slides
Transmission Line Method

Length (L)

Metal contact

Conducting layer

Metal contact

\[R(L) = \left(\frac{R_{SH}}{W} \right) \left(L + 2L_t \right) \]

\[R(0) = 2R_c = 2L_t \frac{R_{SH}}{W} \]

\[r_c = R_c A_c \quad \text{or} \quad r_c = R_{SH} L_t^2 \]

Slide courtesy Adam Crook, 2007
Transmission Line Method

Resistance measurements

4-Point Probe

TLM Measurement

Image courtesy Adam Crook, 2007

\[R_c = 1.3 \times 10^{-8} \, \Omega \cdot \text{cm}^2 \]
Contact Resistance: In-situ Mo Contacts

- InGaAs-InGaAs regrown interface resistance < 1 Ω -μm² on unprocessed surfaces.
- Regrown interfaces comparable with 0.5 Ω-μm² from continuous epitaxy.

Step 1
- In-situ Mo
- n+ Regrowth
- n+ InGaAs
- SI InP

Step 2
- In-situ Mo
- n+ Regrowth
- n+ InGaAs
- SI InP

TLMs by U. Singisetti
MOSFET Process Flow Detail

non-selective area
S/D regrowth

selective area
S/D regrowth
Process Flow: Gate Deposition

High-k first on pristine channel.

Tall gate stack.

Litho.

Selective etches to channel.

<table>
<thead>
<tr>
<th>NID InGaAs Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>InP etch stop</td>
</tr>
<tr>
<td>InAlAs barrier</td>
</tr>
<tr>
<td>InP substrate</td>
</tr>
</tbody>
</table>
Process Flow: Gate Deposition

- High-k first on pristine channel.
- Tall gate stack.
- Litho.
- Selective etches to channel.

<table>
<thead>
<tr>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
</tr>
</tbody>
</table>

| Metals |
| εᵣ |
| NID InGaAs Channel |
| InP etch stop |
| InAlAs barrier |
| InP substrate |
Process Flow: Gate Deposition

High-k first on pristine channel.

Tall gate stack.

Litho.

Selective etches to channel.

Critical etch process:
Stop on channel with no damage.
Gate Stack: Multiple Layers & Selective Etches

Key: stop etch before reaching dielectric, then gentle low-power etch to stop on dielectric

- SF$_6$ / Ar etch
- Cr
- SiO$_2$
- Cr or Hf
- W/Mo gate metal
- gate dielectric
- InGaAs well
- InP well
- barrier
- SI substrate

Damage free InGaAs Channel after dry etch

FIB Cross-section
Process Flow: Sidewalls & Recess Etch

SiN\(_x\) or SiO\(_2\) sidewalls
- Encapsulate gate metals

Controlled recess etch
- Slow facet planes
- Not needed for depletion-mode FETs
Regrowth Interface Resistances: Measured Data

When tested individually in separate experiments:

In-situ Mo Contact $\rho_c = 1 \, \Omega \cdot \mu m^2$

25 nm regrown InGaAs $R_{sh} = 70 \, \Omega/sq$

InGaAs-InGaAs re-growth resistance < 1 $\Omega \cdot \mu m^2$.

InGaAs-InP re-growth resistance = 6 $\Omega \cdot \mu m^2$ (on thick InP).