ABSTRACT BOOK

GIGAHERTZ SYMPOSIUM 2008

5-6 MARCH 2008
CHALMERS UNIVERSITY OF TECHNOLOGY
GÖTEBORG
SWEDEN
Exhibitors & Sponsors GHz Symposium 2008

Platinum sponsor:
Swedish Governmental Agency for Innovation Systems (VINNOVA)
www.vinnova.se

Gold sponsor:
Agilent technologies
www.agilent.com

Silver sponsors:

Ageto MTT
www.agetomtt.se

AMSKA
www.amska.se

Amtele
www.amtele.se

Anritsu
www.anritsu.se

Applied Wave Research
http://web.appwave.com

MicroComp Nordic AB
www.mcnab.se

National Instruments
www.ni.com

Ranatec Instruments
www.ranatec.se

Rohde Schwarz
www.rohde-schwarz.se

Wasa Millimeter Wave
www.wmmw.se
GigaHertz Symposium 5-6 March 2008 at Chalmers

www.ghz2008.se
Chalmers Conference Center, Chalmers University of Technology

Wednesday 5 March 2008

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0830-1000</td>
<td>Registration, Coffee + Sandwich</td>
</tr>
<tr>
<td>1000-1200</td>
<td>SESSION I</td>
</tr>
<tr>
<td>1000</td>
<td>Welcome</td>
</tr>
<tr>
<td></td>
<td>Jan Grahn, Chalmers; General Chairman GHz Symposium 2008</td>
</tr>
<tr>
<td></td>
<td>Stefan Bengtsson, Vice President, Chalmers</td>
</tr>
<tr>
<td>1010</td>
<td>Plenary invited speaker</td>
</tr>
<tr>
<td></td>
<td>Intelligent Transmitter Technology for Next Generation Wireless Transceivers</td>
</tr>
<tr>
<td></td>
<td>Larry Larson</td>
</tr>
<tr>
<td></td>
<td>Univ. California San Diego</td>
</tr>
<tr>
<td>1050</td>
<td>Invited speaker</td>
</tr>
<tr>
<td></td>
<td>RF/DSP co-designed power amplifiers/transmitters for advanced wireless and satellite applications</td>
</tr>
<tr>
<td></td>
<td>Fadhel Ghannouchi</td>
</tr>
<tr>
<td></td>
<td>Univ. Calgary</td>
</tr>
<tr>
<td>1120</td>
<td>Invited speaker</td>
</tr>
<tr>
<td></td>
<td>Tuneable technologies for agile microwave systems</td>
</tr>
<tr>
<td></td>
<td>S. Gevorgian</td>
</tr>
<tr>
<td></td>
<td>Chalmers, Ericsson</td>
</tr>
<tr>
<td>1200-1300</td>
<td>Lunch and Exhibition</td>
</tr>
<tr>
<td>1300-1500</td>
<td>Workshops Wednesday 5 March 2008</td>
</tr>
</tbody>
</table>

Agile Microwave Systems

Moderator: Hans-Olof Vickes
Ascom/Catella
Saab Microwave Systems

A method for switchable rejection filters
N. Meissner
Saab Avitronics

60 GHz \(\lambda/8\) Phase-Shifter in EFFA Technology
X. Rottenberg, P. Ekkels, B. Nauwelaers, W. De Raedt
Imec, KU Leuven

Tuneable Filters for Agile Microwave Systems
A. Deleniv, S. Gevorgian
Chalmers, Ericsson

RF Power Amplifiers (1)

Moderator: Bo G. Berglund
Ericsson

The Frequency Spectrum of Bandpass Pulse Width Modulated Signals
T. Blocher, P. Singerl, A. Wiesbauer, F. Dielacher
Graz Univ., Infineon

The potential of active load and source tuning on base station power amplifiers
T. Lejon
Ericsson

Comparing Polar Transmitter Architectures using GaN HEMT Power Amplifier
E. Cijvat, K. Tom, M. Faulkner, H. Sjöland
Lund Univ., Victoria Univ., Melbourne

Microwave Components

Moderator: Sven Mattisson
Ericsson Mobile Platforms

Highly Integrated MMICs for mm-wave system application
H. Zirath, S.E. Gunnarsson, M. Ferndahl, R. Kozuharov, C. Kärnfelt
Chalmers, Ericsson

An Ultra Wide Band LNA in 90 nm CMOS
W. Ahmad, A. Axholt, H. Sjöland
Lund Univ

THz Technology

Valdemar/Ledning
Moderator: Staffan Rudner
Swedish Defence Research Agency - FOI

Invited WS speaker:
An introduction to the T4000 terahertz imager
C. Mann
Thruvision Ltd., Abingdon, UK

Novel 220 GHz Slot-Square Substrate Lens Feed Antenna Integrated on MMIC
J. Svedin, S. Leijon, N. Wadefalk, S. Cherednichenko, B. Hansson, S. Gunnarsson, I. Kalfass, A. Leather, A. Emrich
FOI, Chalmers, Fraunhofer-IAF, Omnissys Instruments
<table>
<thead>
<tr>
<th>Agile Microwave Systems (cont’)</th>
<th>RF Power Amplifiers (1) (cont’)</th>
<th>Microwave Components (cont’)</th>
<th>THz Technology (cont’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave MEMS activities at the Royal Institute of Technology</td>
<td>Invited WS speaker:</td>
<td>Cryogenic X-band Low Noise Amplifiers</td>
<td>Planar antennas for terahertz frequencies</td>
</tr>
<tr>
<td>KTH</td>
<td>D. E. Kelly PulseWave RF, Austin</td>
<td>Chalmers</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Phase-Comparison</td>
<td>Invited WS speaker:</td>
<td>Low-Noise Cryogenic Amplifier built using MMIC-like/TRL Technique</td>
<td>Geosynchronous Earth Orbit Atmospheric Sounder</td>
</tr>
<tr>
<td>Monopulse Direction</td>
<td>MEMS Phase Shifters for an Affordable Low-Power Ka-band Multifunctional ESA on a small UAV</td>
<td>O. Nyström, E. Sundin, D. Dochev, V. Desmaris, V. Vassilev, V. Belitsky</td>
<td>S. Andersson, J. Embretsson</td>
</tr>
<tr>
<td>Measurement Antenna Array for 6-18 GHz</td>
<td>Different Classes of Power Amplifiers using SiC MESFET</td>
<td>Chalmers, Onsala Space Observatory</td>
<td>A. Emrich, M. Ericson, M. Hjort, J. Riebeek, C. Tegnander</td>
</tr>
<tr>
<td>C. Johansson, T. Eriksson, J. Grabs, T. Windahl</td>
<td>S. Azam, R. Jonsson, Q. Wahab Linköping Univ., FOI</td>
<td>Chalmers, IEMN Lille</td>
<td>Omnisys Instruments</td>
</tr>
<tr>
<td>Saab Avitronics</td>
<td>Modeling of dual-input power amplifiers</td>
<td>Small-Signal Modeling of Narrow bandgap InAs/AlSb HEMTs</td>
<td>Back-End Module Demonstrator for radio-astronomy applications</td>
</tr>
<tr>
<td></td>
<td>Chalmers</td>
<td>Chalmers, EJM Lille</td>
<td>Univ. Cantabria, Santander</td>
</tr>
<tr>
<td>An adjustable broadband MMIC equalizer</td>
<td>Invited WS speaker:</td>
<td>Low-Noise, High-Speed Strained Channel Silicon</td>
<td>ALMA Band 5 (163-211 GHz) Sideband Separating Mixer</td>
</tr>
<tr>
<td>Tunable Impedance Matching Network</td>
<td>Modeling of wideband Microstrip 90° 3-dB Two-Branch Coupler with Minimum Amplitude and Phase Imbalance</td>
<td>Royal Institute of Technology</td>
<td>Chalmers, California Institute of Technology</td>
</tr>
<tr>
<td>M. R. Rafique, T. A. Ohki, P. Linner, A. Herr Chalmers</td>
<td>Wideband Microstrip 90° 3-dB Two-Branch Coupler with</td>
<td>Chalmers, California Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Coded OFDM in Hybrid Radio Over Fibre Links</td>
<td>Invited WS speaker:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.F. Miranda, M. Gidlund Univ. Gävle, Nera Networks</td>
<td>An Ultra-Wideband Six-Port transceiver Covering from 3.1 to 4.8 GHz</td>
<td>High Power Photonic MW/THz Generation Using UTC-PD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Håkansson, S. Gong</td>
<td>B. Bank, J. Vukusic, H. Hjelgren, H. Sunnerud, A. Wiberg, J. Stake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linköping Univ</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Equivalent Circuit of Metamaterials with a Negative Permeability</td>
<td>Design Consideration for Varactor-Based Dynamic Load Modulation Networks</td>
<td>Towards a THz Sideband Separating Subharmonic Schottky Mixer</td>
<td></td>
</tr>
<tr>
<td>A. Rumberg, M. Berroth Univ. Stuttgart</td>
<td>Gated tunnel diode pulse generator</td>
<td>P. Sobis, J. Stake, A. Emrich</td>
<td>Chalmers, Omnisys Instruments</td>
</tr>
<tr>
<td></td>
<td>U. Gustavsson, B. Almgren, H. Nernati Ericsson, Chalmers</td>
<td>M. Nilsson, S. Gong</td>
<td></td>
</tr>
<tr>
<td>HIFAS: High-Performance full-custom Autocorrelation Spectrometer ASIC</td>
<td></td>
<td>Chalmers, Omnisys Instruments</td>
<td></td>
</tr>
</tbody>
</table>
1500-1530 Coffee and Exhibition

SILVER SPONSORS: Anritsu Ageto MTT

1530-1730 SESSION II Runan Chairman: Piotr Starski, Chalmers

1530 Invited speaker
Extremely Low-Noise Amplification with Cryogenic FET’s and HFET’s: 1970-2006 (Where do we go from here?)
Marian W. Pospieszalski
National Radio Astronomy Observatory, Charlottesville, VA

1600

560 GHz \(f_i, f_{max} \) operation of a refractory emitter metal InP DHBT
E. Lind, A.M. Crook, Z. Griffith, M.J. Rodwell
Lund Univ., Univ. California Santa Barbara

Low phase-noise balanced Colpitt InGaP-GaAs HBT VCOs with wide frequency tuning range and small VCO-gain variation
H. Zirath
GHz Centre, Chalmers, Ericsson

Feasibility of Filter-Less RF Receiver Front-End
Linköping University

Small-Size 2-10 GHz Radar Receiver Si-RFIC
H. Berg, H. Thieses, M. Hertz, F. Norling
Saab Microwave Systems

High frequency, current tunable spin torque oscillators: experimental characterization
S. Bonetti, J. Garcia, J. Persson, J. Åkerman
Royal Institute of Technology

N-coupling the capacity of wireless communication using electromagnetic angular momentum
B. Thide
Swedish Institute of Space Physics, Uppsala

1730-1830 Visit (optional) MC2 Cleanroom or Microwave Labs, Chalmers (www.chalmers.se/mc2)

1900 Conference Dinner at Universeum (www.universeum.se)

Thursday 6 March 2008

0830- 1000 SESSION III Runan Chairman: Herbert Zirath, Chalmers

0830 Plenary invited speaker
The Next Wireless Wave is a Millimeter Wave
Joy Laskar
GeorgiaTech

0910 Invited speaker
High Frequency and Mixed Signal Design for Communication and Remote Sensing applications in advanced technologies
Mehran Mokhtari
Teledyne Scientific

0940
MMIC design at G-band (140-220 GHz) including a 220 GHz Single-Chip Receiver MMIC with Integrated Antenna
Chalmers, FOI, Ericsson, Fraunhofer-IAF

A Quad-Core 130-nm CMOS 57-64 GHz VCO
V. P. Goluguri, J. Wernehag, H. Sjöland, N. Troedsson
Cambridge Silicon Radio Sweden, Lund University

1000-1030 Coffee and Exhibition

SILVER SPONSORS: Amtele AMSKA MicroComp Nordic

V
1030-1210 SESSION IV

Runan

Chairman: Niklas Rorsman, Chalmers

1030 Invited speaker

GaN HEMT development for microwave power applications - Current status and trends

Masaaki Kuzuhara

Univ. Fukui

1100

Paving the road for integrated gallium nitride transceivers

Demonstrator of Class-S Power Amplifier

A. Samulak, G. Fischer, R. Weigel

Univ. Erlangen-Nürnberg, Alcatel-Lucent

1210-1300 Lunch and Exhibition

PLATINUM SPONSOR: VINNOVA

1300-1430 Workshops

Thursday 6 March 2008

Antennas

Ascom/Catella

Moderator: Per Sjöstrand

Saab Avitronics

Moderator: Johan Ståhl

RF Power Amplifiers (2)

Runan

Moderator: Johan Ståhl

Saab Microwave Systems

Measurement - Modeling

Scania

Moderator: Niclas Keskitalo

Ericsson

Integrated Antennas for RF MEMS Routes

A. Rydberg, S. Cheng, P. Hallbjörner, S. Ogden, K. Hjort

Uppsala Univ., SP, Borås

Presented by C. Karlsson, SP

Output Power Density and Breakdown Voltage in Field-Plated Buried Gate Microwave SiC MESFETs

Model-Based Predistortion for Signal Generators

C. Luque, N. Björsell

Univ. Gävle

Microstrip patch antenna for wireless applications

N.A. Touhami, B. Aja, A. Tazón, E. Artal

Univ. Cantabria, Santander

Silicon-on-SiC hybrid substrate with low RF-losses and improved thermal performance

J. Olsson, Ø. Vallin, D. Martin, L. Vestling, U. Smith, H. Norström

Uppsala Univ., Infineon

A Comparison of Antenna Diversity Characterization Methods using Reverberation Chambers and Drive Tests

D. Nyberg, M. Fränzén, P.S. Kildal

Chalmers, Bluetest AB

Small Microstrip Fractal Antenna for RFID Tag

P. Enoksson, M. Rusu, A. Curutiu, H. Rahimi, C. Rusu

Chalmers, Bucharest Univ., Bonn Univ., Imego

A review of validation criteria for behavioral power amplifier models

P. Landin, M. Isaksson, Univ. Gävle

Measuring Relative Receiver Sensitivity of Wireless Terminals in One Minute in a Reverberation Chamber

M. Andersson, C. Orenius, M. Fränzén

Bluetest AB

The WS provides some personal reflections on doing business from innovations and IP in RF/Microwave from three small companies, one global company and one venture company. The WS is concluded by a discussion

Mikael Reimers, CEO

Foodradar Systems AB

www.foodradar.com

Tomas Ornstein, CEO

Ranatec Instrument AB

www.ranatec.se
<table>
<thead>
<tr>
<th>Antennas (cont')</th>
<th>RF Power Amplifiers (2) (cont')</th>
<th>Measurement - Modeling (cont')</th>
<th>The GHz Entrepreneur</th>
</tr>
</thead>
</table>

1430-1500 Coffee
SILVER SPONSORS: ROHDE & SCHWARZ National Instruments
1500-1600 SESSION V Runan Chairman: Arne Alping, Ericsson
1500 Invited speaker
Industrial aspects of 100 Gb/s optical communication Bengt-Erik Olsson Ericsson Research
1530
All-Optical Waveform Sampling with TeraHertz Capacity M. Westlund, P.A. Andrekson, H. Sunnerud Chalmers, Picoseolve Inc.
High Speed 1.3 μm VCSELs for FTTH and RoF P. Westbergh, E. Söderberg, J.S. Gustavsson, P. Modh, A. Larsson, Z.Z. Zhang, J. Berggren, M. Hammar Chalmers, Royal Institute of Technology
1600
Closing Remarks Jan Grahn, Chalmers; General Chairman GHz Symposium 2008 Henrik Sjöland, Lund University: Next GHz Symposium arranger
1630-1730 Visit (optional) MC2 Cleanroom or Microwave Labs, Chalmers (www.chalmers.se/mc2)
560 GHz f_t, f_{max} operation of a refractory emitter metal InP DHBT

Erik Lind*
Solid State Physics, Lund University
Lund University, Sweden
Erik.Lind@ftf.lth.se
* work performed in part while at UCSB

Abstract—We present results of a hybrid dry/wet-etched type I InGaAs/InP DHBT using a refractory emitter metal. Simultaneously high f_t and f_{max} of 560 GHz is obtained, with a breakdown voltage BV_{CEO} of 3.4V.

I. INTRODUCTION

Scaling theory [1] of HB Ts indicate that a 2:1 increase in bandwidth requires a 4:1 reduction in emitter and collector widths – for THz operation this requires emitter widths below 125nm. Traditional lift-off techniques and wet etching techniques used for triple-mesa HBTs are difficult to reliable scale below 300 nm emitter widths. We have developed a hybrid dry/wet etch technique that reliable scales to emitter widths below 250nm. First results on a 22nm base thickness, 70 nm collector thickness with ~200 nm emitter width produced record simultaneous f_t and f_{max} of 560 GHz [2].

II. FABRICATION

The epitaxial material was grown on 4” S.I. InP wafers at commercial vendor IQE. The fabrication starts with a blanket sputtered deposited Ti$_{0.1}$W$_{0.9}$ film, which is subsequently patterned using a SF$_6$/Ar dry etching. Using the emitter metal as mask, the emitter is dry etched in a Cl$_2$/N$_2$ plasma, stopping just short of the base. A InP wet etch is then used to clear the In$_{0.53}$Ga$_{0.47}$As base. The transistors are finished using self aligned base ohmics, forming a triple-mesa transistor. A cross-section SEM image is shown in Fig. 1. Emitter junctions with widths down to 200 nm could controllable be fabricated, showing a substantial improvement over fully wet etched processes.

III. MEASUREMENTS & CONCLUSIONS

The transistors were characterized from DC-67 GHz. The DC current gain was \sim 25. The Breakdown voltages were BV_{CEO} \sim 3.4V, and BV_{CEO} \sim 3.6 V, limited by band-to-band tunneling. For devices with emitter widths of 200 nm, a simultaneous extrapolated f_t and f_{max} of 560 GHz was obtained, which is the first report of a device with both f_t and f_{max} above 500 GHz. Peak f_t was 600 GHz for a device with lower (430 GHz) f_{max}.

ACKNOWLEDGMENT

This work was supported by the DARPA SWIFT program and a grant from the Swedish Research Council.

REFERENCES